初一数学上整式的加减(共13篇)
阅读与思考
整式的加减涉及许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点:
1.透彻理解“三式”和“四数”的概念
“三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的系数、次数.
2.熟练掌握“两种排列”和“三个法则”
“两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则.
物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项.这样,使得整式大为简化,整式的加减实质就是合并同类项.
例题与求解
[例1] 如果代数式ax5+bx3+cx-5,当x=-2时的值是7,那么当x=7时,该式的值是______.
(江苏省竞赛试题)
解题思路:解题的困难在于变元个数多,将x两个值代入,从寻找两个多项式的联系入手.
[例2] 已知-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对于任意a,b对应的代数式的值最大的是()
A.a+b
B.a-b
C.a+b2
D.a2+b
(“希望杯”初赛试题)
解题思路:采用赋值法,令a=,b=-,计算四个式子的值,从中找出值最大的式子.
[例3] 已知x=2,y=-4时,代数式ax2+by+5=1997,求当x=-4,y=-时,代数式3ax-24by3+4986的值.
(北京市“迎春杯”竞赛试题)
解题思路:一般的想法是先求出a,b的值,这是不可能的.解本例的关键是:将给定的x,y值分别代入对应的代数式,寻找已知与待求式子之间的联系,整体代入求值.
[例4] 已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5.当x=2时的值为-17,求当x=-2时,该多项式的值.
(北京市“迎春杯”竞赛试题)
解题思路:解题的突破口是根据多项式降幂排列、多项式次数等概念挖掘隐含的关于a,b的等式.
[例5] 一条公交线路上起点到终点有8个站.一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点下车的乘客有多少人?
(“希望杯”初赛试题)
解题思路:前7站上车总人数等于第2站到第8站下车总人数.本例目的是求第8站下车人数比第7站上车人数多出的数量.
[例6] 能否找到7个整数,使得这7个整数沿圆周排列成一圈后,任3个相邻数的和等于29?如果,请举出一例;如果不能,请简述理由.
(“华罗庚金杯”少年邀请赛试题)
解题思路:假设存在7个整数a1,a2,a3,a4,a5,a6,a7排成一圈后,满足题意,由此展开推理,若推出矛盾,则假设不成立.
能力训练
A级
1.若-4xm-2y3与x3y7-2n是同类项,m2+2n=______.
(“希望杯”初赛试题)
2.当x=1,y=-1时,ax+by-3=0,那么当x=-1,y=1时,ax+by-3=______.
(北京市“迎春杯”竞赛试题)
3.若a+b<0,则化简|a+b-1|-|3-a-b|的结果是______.
4.已知x2+x-1=0,那么整式x3+2x2+2002的值为______.
5.设则3x-2y+z=______.
(2013年全国初中数学联赛试题)
6.已知A=a2+b2-c2,B=-4a2+2b2+3c2,若A+B+C=0,则C=().
A.5a2+3b2+2c2
B.5a2-3b2+4c2
A.3a2-3b2-2c2
A.3a2+b2+4c2
7.同时都有字母a,b,c,且系数为1的7次单项式共有().
A.4个
B.12个
C.15个
D.25个
(北京市竞赛题)
8.有理数a,b,c在数轴上的位置如图所示:
0
b
a
c
第8题图
则代数式|a|-|a+b|+|c-a|+|b-c|化简后的结果是为().
A.-a
B.2a-2b
C.2c-a
D.a
9.已知a+b=0,a≠b,则化简(a+1)+(b+1)得().
A.2a
B.2b
C.+2
D.-2
10.已知单项式0.25xbyc与单项式-0.125xm-1y2n-1的和为0.625axnym,求abc的值.
11.若a,b均为整数,且a+9b能被5整除,求证:8a+7b也能被5整除.
(天津市竞赛试题)
B级
1.设a<-b<c<0,那么|a+b|+|b+c|-|c-a|+|a||+b|+|c|=______.
(“祖冲之杯”邀请赛试题)
2.当x的取值范围为______时,式子-4x+|4-7x|-|1-3x|+4的值恒为一个常数,这个值是______.
(北京市“迎春杯”竞赛试题)
3.当x=2时,代数式ax3-bx+1的值等于-17,那么当x=-1时,代数式12ax-3bx3-5的值等于______.
4.已知(x+5)2+|y2+y-6|=0,则y2-xy+x2+x3=______.
(“希望杯”邀请赛试题)
5.已知a-b=2,b-c=-3,c-d=5,则(a-c)(b-d)÷(a-d)=______.
6.如果对于某一特定范围内x的任意允许值,P=|1-2x|+|1-3x|+…+|1-9x|+|1-10x|的值恒为一个常数,则此值为().
A.2
B.3
C.4
D.5
(安徽省竞赛试题)
7.如果(2x-1)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,那么a0+a1+a2+a3+a4+a5+a6等于______;a0+a2+a4+a6等于______.
A.1,365
B.0,729
C.1,729
D.1,0
(“希望杯”邀请赛试题)
8.设b,c是整数,当x依次取1,3,6,11时,某学生算得多项式x2+bx+c的值分别为3,5,21,93.经验证,只有一个结果是错误的,这个错误的结果是().
A.当x=1时,x2+bx+c=3
B.当x=3时,x2+bx+c=5
C.当x=6时,x2+bx+c=21
D.当x=11时,x2+bx+c=93
(武汉市选拔赛试题)
9.已知y=ax7+bx5+cx3+dx+e,其中a,b,c,d,e为常数,当x=2时,y=23;当x=-2时,y=-35,那么e的值是().
A.-6
B.6
C.-12
D.12
(吉林省竞赛试题)
10.已知a,b,c三个数中有两个奇数,一个偶数,n是整数,如果s=(a+n+1)·(b+2n+2)(c+3n+3),那么().
A.s是偶数
B.s是奇数
C.s的奇偶性与n的奇偶性相同
D.s的奇偶性不能确定
(江苏省竞赛试题)
11.(1)如图1,用字母a表示阴暗部分的面积;
(2)如图2,用字母a,b表示阴暗部分的面积;
(3)如图3,把一个长方体礼品盒用丝带打上包装(图中虚线为丝带),打蝴蝶结的部分需丝带(x-y)cm,打好整个包装需用丝带总长度为多少?
图1
a
a
a
b
a
b
图2
a
x
y
z
图3
1. 重要概念
(1)单项式:像4x、a2、-mn等,它们都是数字和字母的积,这样的式子叫单项式.
[要点点拨:]单独一个字母或一个数也是单项式,如x、0.2、-等都是单项式;单项式中不能含有加减运算,分母中也不能有字母,如2x-3y、等都不是单项式.
(2)多项式:几个单项式的和叫做多项式.
[要点点拨:]多项式的每一项都包括它前面的符号,如多项式-x2-2y+5中的项分别是-x2、-2y、5.
(3)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.
[要点点拨:]判断几个项是不是同类项,一要抓住“两同”(即所含的字母相同,相同字母的指数也相同);二要注意“两无关”(即与系数无关,与字母的先后顺序无关).如2a2b与-ba2是同类项,3x2与2y、-2x2与xy2都不是同类项.几个常数项也是同类项,如2、0.3、-是同类项.
2. 重要法则
(1)合并同类项法则:①合并同类项的关键是“一变两不变”(即系数要改变,字母和字母的指数不变),如2x2y+3x2y=5x2y;②如果两个同类项的系数互为相反数,合并后的结果是0,如-3xy+3xy=0;③不是同类项的不能合并,如2x2-3x不能合并.
(2)去括号法则:①去括号时不能只去括号,而要把括号连同它前面的“+”或“-”一起去掉; ②括号前面是“-”时,把括号和它前面的“-”去掉后,括号内的各项一定要改变符号; ③去括号时,如果括号前有数字因数,先把数字与括号内的各项相乘,再去括号,也可以把括号前的符号当做性质符号,连同数字因数,运用乘法分配律直接去括号,如-2(x-3y+5)=-(2x-6y+10)=-2x+6y-10, 或-2(x-3y+5) =-2x+6y-10.
二、典型例题分析
1. 概念题
例1若单项式-2amb3的次数是7,则m=.
[解析:]单项式的次数是指这个单项式中所有字母的指数的和,所以字母a和b的指数和等于7,即m+3=7.解得m=4.
例2若单项式-3x2yb - 1与5xay3是同类项,求a+b的值.
[解析:]根据同类项的“两同”可知,相同字母x的指数相等,相同字母y的指数也要相等,即a=2,b-1=3.解得a=2,b=4.
所以a+b=6.
2. 化简计算题
[解题要点:]解这类题实质上就是去括号,合并同类项.
例3计算2x2
-+3x-4x - x2+
.
[解析:]原式=2x2-+3x-4x+4x2-2
(去括号)
=(2x2+4x2)+(3x-4x) +-
-2
(根据加法交换律和结合律,将同类项放在一起)
=(2+4)x2+(3-4)x+-
-2
(系数相加减,字母与字母的指数不变)
=6x2-x-2.
(合并)
3. 求值题
[解题要点:]这类题的解法分两步,第一步是去括号,合并同类项,第二步是把已知字母的值代入化简后的式子进行运算.
例4求x-2x
-y2
+
-x+
y2
的值,其中x=-2,y=.
[解析:]原式=x-2x+y2-x+y2
=-3x+y2.
当x=-2,y=时,原式=(-3) × (-2)+
2=6.
[小试身手]
1. 已知3x2m+1y3与-5x5yn-1是同类项,则m= ,n=.
2. 若多项式2xa-1y2-3xy-是一个四次三项式,则a=.
3. 下列说法中正确的是().
A.-xy的系数是-2,次数是2
B. 单项式a的系数是0,次数是0
C. 是二次单项式
D.-的系数是-,次数是4
4.已知5x5y与-2x3m-1y3n-m是同类项,求3(m-3n)-2(m-4n)的值.
[参考答案]1. 24 2. 3 3. D4. 1.
【责任编辑:穆林彬】
大多数同学认为初中功课比较复杂,学起来比较吃力,还有的同学逻辑思维能力不强,所以就不会解题,查字典数学网的“初一数学期中考整式的加减”帮助同学们梳理知识、加强练习,提高成绩!
1.先化简下式,再求值:3x2y-[2x2y-(2xyz-x2z)]+4(x2z-xyz),其中x=-2,y=4,z=2.2.化简并求值:2b2+2ac-2(b2-6ac),求当a=-1,b=2,c=1时的值.3.“求代数式4a3-2a2b-a3-2b2+2a2b-3a3的值,其中,b=3”解题过程中,小华把错写成了,但最后的答案却仍然是正确的,你知道是什么原因吗?
4.化简、求值
(1)化简:3(x-2y)+2(3x+y)
(2)先化简再求值(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2.5.计算:
先化简,再求值:(-5x2+x+4)-3(-2x2+x-1),其中x=-2,y=4
6.化简求值:若(x+2)2+|y-1|=0,求4xy-(2x2+5xy-y2)+2(x2+3xy)的值.7.有一道题“先化简,再求值:15x2-(6x2+4x)-(4x2+2x-3)+(-5x2+6x+9),其中x=2018.”小芳同学做题时把“x=2018”错抄成“2021”,但她的计算结果却是正确的,你能说明这是什么原因吗?
8.先化简,并求2(3x-2y)+5(y-x)+2(2x-3y)的值,其中x=,y=-1.9.先化简,再求值:
(1)求3y2-x2+(2x-y)-2(x2+3y2)的值,其中x=l、y=-.(2)求4xy-[(x2+5xy-y2)-(3xy-y)]的值,其中x=
学科: 数学
第 2 单元(章、课、节)
第2 节 年级:
七年级
第 周 第3 教案
总编号:27
课
时 总 1 课时
课型
新授
备课时间
第1 课时
使用10、25 时间
教学目标 重
点 难
点 教学准备 教学方法 板书设计
整式的加减
1、同类项定义:
2、同类项的特点: 自主探究,合作交流
正确理解概念 识别同类项; 直尺
1、使学生了解同类项的定义
2、向学生渗透由特殊到一般,具体到抽象的思维方式。10、24
教
学
过
程 教学修改、反思
一、知识回顾
1、练习下列整式中,哪些是单项式,哪些是多项式,并指生答 出单项式的系数,多项式的各项。
22(1)10x
(2)ab-ab
(3)-5xy
(4)
4-m2n-2mn2
二、新授:
1、同类项定义
(提问)(投影)下列各式能否合并:
(1)3a-2a
(2)3ab+4ab
(3)3a+b
(4)ab+2(5)4b2+5b2
(6)3a2-2a
(7)2x2y+x2y
(8)3a2b-2ab2
引导学生观察上述可以化简的式子,得出含字母相同, 并且相同字母的指数也相同的项可以合并。
从而,引出“同类项”课题.
1.同类项的定义∶所含字母相同,并且相同字母的次数也相同的项,叫做同类项.
★几个常数项也是同类项。
练习1 判断下列各组中的两项是不是同类项,并说明为什么?(1)0.2xy与0.2xy;
(2)4abc与4ac;
(3)mn与-mn(4)-125与12;
(5)1/4st与1/5ts.(6)2与a
小结:强调同类项的两条特征:(1)所含字母相同;(2)相同字母的指数也分别相同,两条缺一不可.
练习2 标出下列多项式中的同类项:(1)4x2-8x+5-3x2+6x-2;(2)4a2+3b2+2ab-4a2-3b
2三、小结 2
2生板演
(此定义是在学生讨论的基础理论,由一名学生进行总结,教师与其他学生进行修改、补充后得到的。)
这节课学到了什么?
四、作业:
作业批
多数学生作业完成较好,个别学生有抄袭可能,需进一步强调。
生析 多生发言
改记录 学校评 价意见
批改时间:10 年 10月26日
评价情况
评价人
知识与能力:掌握去括号法则,运用法则,能按要求正确去括号.
过程与方法:经历类比带有括号的有理数的运算,探究、发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.
情感、态度与价值观:通过参与探究活动,培养学生主动探究、合作交流的意识,严谨治学的学习态度,体会合作与交流的重要性.
教学重难点
重点:去括号法则,准确应用法则将整式化简.
难点:括号前面是“-”号,去括号时括号内各项都变号.
教学过程
一、复习旧知
1. 化简
-(+5) +(+5) -(-7) +(-7)
2. 去括号
① -(3- 7) ② +(3- 7)
二、探索新知
想一想:根据分配律,你能为下面的式子去括号吗?
①+(- a+c) ② - (- a+c)
③ +(a-b+c) ④ -(a-b+c)
观察这两组算式,看看去括号前后,括号里各项的符号有什么变化?
去括号法则:
括号前是“+”号的,把括号和它前面的“+”号去掉,
括号里各项都不改变符号;
括号前是“ - ”号的,把括号和它前面的“ - ”号去掉,
括号里各项都改变符号。
顺口溜:
去括号,看符号;是“+”号,不变号;是“-”号,全变号。
三、巩固练习:
(1)去括号:
a+(b-c)= _______ a- (b-c)= ______
a+(- b+c)= _______ a- (- b+c)= ______
(2)判断正误
a-(b+c)=a-b+c ( )
a-(b-c)=a-b-c ( )
2b+(-3a+1)=2b-3a-1 ( )
3a-(3b-c)=3a-3b+c ( )
四、例题学习:为下面的式子去括号
+3(a - b+c) - 3(a - b+c)
五、课堂检测:
去括号:
① 9(x-z) ②-3(-b+c) ③ 4(-a+b-c) ④ -7(-x-y+z)
六、课堂小结
去括号时应注意的事项:
(1)、去括号时应先判断括号前面是“+”号还是“-”号。
(2)、去括号后,括号内各项符号要么全变号,要么全不变号。
(3)、括号前面是“-”号时,去掉括号后,括号内的各项都要改变符号,不能只改变第一项或前几项的符号。
七、布置作业:
必做题:课本70页习题2.2 第2,3题
例1求单项式4a2b、-6a2b、3ab2的和与-7a2b的差.
[说明:](1)求若干个单项式的和或差的步骤一般有列式,去括号,合并同类项三步.要注意每一步运算的根据,做到步步有理有据,以保证运算的正确性.
(2)有多重括号时,一般先从内层括号开始,先去掉小括号,合并同类项;再去中括号,合并同类项;最后去大括号,合并同类项.一层一层地去括号不会发生混乱,去括号时一定要注意符号是否变号.
例2若16x3m-1y5和-x5y2n+1是同类项,求3m+2n的值.
解: ∵16x3m-1y5和-x5y2n+1是同类项,
[说明:]这道题考查同类项的概念.在判断同类项时要抓住“两个相同”的特点(即所含字母相同,并且相同字母的指数也相同),不要忘记几个常数也是同类项.
例3已知A=3x2-6x+5,B=4x2+7x-6.
[说明:]这道题是求两个多项式的和与差,列式时尤其要注意都要添上括号,把每个多项式分别括起来,再用加号或减号连接.运算时,按去括号法则:括号前面是“+”,去掉括号和“+”,括号里各项都不改变符号;括号前面是“-”,去掉括号和“-”,括号里各项都改变符号.先去掉括号,再合并同类项.结果按某个字母的降幂排列.
例4先化简再求值:
[说明:]所给字母的值是负数,代入化简时要添上括号.
例5已知(a-1)2+|2a-b|=0,求3a-[(4a-2b)-2(4a-b)-6a+3b]的值.
[分析:]题中没有直接给出a和b的值,因为(a-1)2、|2a-b|是非负数,由非负数的性质可知,a-1=0,2a-b=0,由此可求出a和b的值,然后将它们代入化简后所得的整式求值.
[说明:]化简后的整式中含有2a-b,因而可以把2a-b的值直接代入即可求得结果,而没有必要再求出b的值.这种思考问题的思想方法叫做整体代换,希望同学们在学习过程中注意使用.
[例1]若A=3x3+2x2-1,B=1-x+x2,求A-2B的值,其中x=-
点拨:先列出式子,化简之后再代入数值求值.解:A-2B=(3x3+2x2-1)-2(1-x+x2)
=3x3+2x2-1-2+2x-2x2
=3x3+2x-3
当x=-1.21时 2
131)+2×(-)-3 22原式=3×(-
=3×(-
=-1)-1-3 83-4 8
3=-4 8
[例2]求1125x-29x+10y与x2+13x-5y的2倍的差.22
点拨:“„„与„„的差”是用前面整式减后面整式,(注意)被减数与减数.解:
=1125x-29x+10y-2(x2+13x-5y)22112x-29x+10y-5x2-26x+10y 2
1=x2-55x+20y
一、素质教育目标
(一)知识教学点
1.理解:实质就是去括号,合并同类项.
2.掌握:学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤.
3.运用:能够正确地进行运算.
(二)能力训练点
1.培养用代数的方法解决实际生活中的问题的能力和口头表达能力.
2.培养学生用代数方法解几何问题的思路.
(三)德育渗透点
渗透教学知识来源于生活,又要为生活而服务的辩证观点.
(四)美育渗透点
实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美.
二、学法引导
1.教学方法:以旧引新,通过自己操作发现解题规律.
2.学生学法:练习→总结步骤→练习
三、重点、难点、疑点及解决办法
整式加减运算.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
教师出示探索性练习,学生解答归纳整式加减运算的一般步骤,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(一)创设情境,复习引入
(出示投影1)
化简下列各式
(1) ;
(2) ;
(3) .
学生活动:同桌两位同学出一个学生在胶片上化简,另一个学生在练习本上完成,然后把几个学生的演算胶片用投影打出,其他学生一起来给打分.不对的,由学生找出错在哪里,错误的原因是什么.
师提出问题:上述三个数学式子,同学们讨论一下,怎样用数学语言进行叙述呢?(把每个括号看作一个整体)
学生活动:同桌同学互相讨论、研究,若讨论的结果、语句认为比较通顺者可以举手回答,同学们再互相更正.(学生回答时,教师用彩笔把运算符号写在胶片上显示出来,以引起注意.)
【教法说明】前两节去括号、合并同类项的内容,其实就是整式加减内容的一部分,复习上述知识,学生可以很轻松地就过渡到整式加减这一节内容上来,使新旧知识很自然地衔接起来.
师提出问题:上述式子中,每个括号内的式子是什么式子?(整式)从而引出课题,并板书.
[板书]
【教法说明】以合并同类项、去括号为铺垫,从而引出本节知识,可以说是自然顺畅,学生不会感到整式加减法陌生.
(二)探求新知,讲授新课
(出示投影2)
例1 求单项式 , , , 的和.
学生活动:在练习本(或投影胶片)上用数学式子表示出来,然后用投影仪显示出部分胶片来,正确的师生给予掌声,不对的则由自己或他人找出错在何处,并及时改正.
师做相应的板书:
[板书]
学生活动:学生在练习本上接着计算(或在投影胶片上计算),一个学生接着老师板书继续完成以下过程.把不同层次学生的胶片显示在投影上,师生给予肯定或纠正.
师提问题:在这几个单项式相加时,为什么 , 要加上括号(学生讨论后回答,师做必要的强调)
练习:(出示投影3)
l.说出下列单项式的和(口答)
(1) , , , ;(2) , , .
2.写出下列第一个式子减去第二个式子的差
(1) , ;(2) , ;(3) , .
学生活动:1题学生在练习本上完成后口答.2题直接观察回答(先答所列式子,再回答结果).
【教法说明】上述两个题目学生完成应该没有什么困难,教师给学生创造机会实践,然后叫不同层次的学生回答,特别是要调动差生的参与积极性.
师:如果求几个多项式的和与差又该怎么办呢?
(出示投影4)
例2 求 与 的和.
学生活动:教师不做任何提示,让学生在练习本(或胶片)上完成.
说明:在学生完成过程中,教师巡回检查,然后把出现问题的胶片显示在投影上,学生一起改,这样可使学生印象更深一些,在列代数式时可能每个多项式有的学生不加括号,教师要引导学生分析为什么把每个多项式加括号,利用复合投影胶片把例2中的“和”变为“差”.
学生活动:学生都在练习本上完成,然后同桌互相交换打分,并让一名学生把完整的解题格式板演到黑板上.
【教法说明】变式训练也是课堂上的一个重要环节,上题求“和”时,每个多项式加与不加括号不影响其结果,学生对括号的重要性就没有足够的认识,而变为“差”,括号的重要性就显而易见了.
师提出问题:通过例l、例2的学习,你发现进行运算一般分几步?
学生活动:小组讨论,互相叙述,教师深入某一小组,同学共同讨论,待讨论结果认为合理后,让学生举手回答.教师做简要归纳后,板书以下内容.
[板书]
【教法说明】通过例题的解答,让学生自己发现多项式加减法的一般解题步骤,有利于培养学生规范的解题格式.
(三)尝试反馈,巩固练习
(出示投影5)
1.单项式: , , 的和为____________.
2.计算:(1) ;
(2) ;
(3) .
学生活动:1题学生回答,2题部分学生板演,其余在练习本上独立完成,看谁做的又准又快,鼓励差生的进步与参与.
【教法说明】注意不同层次学生的积极性的调动,使每个学生都参与到训练中来,积极动脑、动手,同时教师对差生进行指导和鼓励.
(四)变式训练,培养能力
(出示投影6)
1.已知 ; ;计算
(1) ; (2) ; (3) ; (4) ;
2.一个多项式加上 得 ,求这个多项式.
3.三角形的第一边是 ,第二过比第一边大 ,第三边比第二边小5,求三角形的周长.
学生活动:1题同桌同学分别做,左边位置的完成(2)(4),右边位置的完成(1)(3).再让四个学生分别在黑板上完成,座位上的学生完成后互相交换检查;2、3题也让中国学习联盟胆尝试,然后教师规范解题格式.
【教法说明】1题四个小题方法一样,所以可以每人做两个,可节省时间,l题完成后再引导学生观察:(1)(2)小题计算结果是不是相同?并让学生说出为什么;(3)(4)小题如何.2题是在前面求多项式和、差的基础上的简单变式,学生会计算,但可能解题格式不会写,教师应重点规范学生的解题格式,3题是用代数方法解决几何问题,然后教师可根据学生实际情况把3题再做一些变式.
如:已知长方形一边长为 ,另一边长比它小 ,则长方形的周长为多少?
(五)归纳小结
师:本节课我们主要学习了,为把本节课内容有一个完整的了解,请看以下问题:
(出示投影7)
1.实际上就是______________________.
2.的步骤,一般分为_____________________.
3.整式加减的结果是__________或__________(单项式或多项式).
学生活动:学生观察后回答.
教师做适当强调:在整式加减中实际就是去括号,合并同类项,在去括号时一定注意括号前是“+”还是“-”.
【教法说明】归纳小结有时也不用教师包办代替,教师引导学生回顾本节内容,以完成填空题的形式出现,可能比教师简单归纳效果要好.
八、随堂练习
1.化简
(1) ;
(2) .
2.一个多项式加上 得 ,求这个多项式.
3.已知一个长方形一边长为 ,另一边比它小 ,求长方形周长.
4.已知 ,求 的值.
5.已知 , 在数铀上的位置如图,化简 .
九、布置作业
(一)必做题:课本第169页A组7、8、11.
(二)选做题:有这样一道题:“已知 , , ,当 , , 时,求 的值”.有一个学生指出,题目中给出的 , 是多余的.他的说法有没有道理?为什么?
易错点一:对有关概念理解出现错误
同学们如果对单项式的概念、系数和次数,多项式的概念和次数,同类项的概念不善辨别,就不容易理解这些概念的内涵.
正解:选B.
点评:单项式是只含有数与字母的积, 其含义解析:①不含加减运算;②字母不出现在分母里;③单独的一个数或字母也是单项式.
易错点二:在项的移动过程中,项动符号不动而出错
同类项应为所含字母相同,并且相同字母的指数分别相同的项叫做同类项.
同类项必须同时具备两个条件: (1)所含字母相同;(2)相同字母的指数分别相同.两个条件缺一不可.几个常数项也叫同类项.同类项与系数无关,与字母的排列顺序无关.合并同类项时,系数相加是关键,字母及其指数都不变.
例2 计算:2x2+4y3-y3-5-3y3-4x2+3.
错解:原式=(2x2+4x2)+(4y3-y3+3y3)+(5+3)=6x2+6y3+8.
诊断:此题解法的错误在于移动项时没有把该项前面的符号一起移动,特别是“-”号.
正解:原式=(2x2-4x2)+(4y3-y3-3y3)+(-5+3)=-2x2-2.
点评:整式的加减实质上是合并同类项.移动项时,要将项的符号一起移动,项的系数是“-”号时,一定不要遗漏“-”号.
易错点三:去括号时,照顾不全而符号出错
例3 化简:-3(a2b+2b2)+(3a2b-13b2).
错解:原式=-3a2b+2b2+3a2b-13b2=-11b2.
诊断:错误的原因在于第一步应用乘法分配律时,2b2这一项漏乘了-3.
正解:原式=-3a2b-6b2+3a2b-13b2=-19b2.
点评:整式的加减中去括号是至关重要的一环.去括号的法则是:括号前是“+”号时,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都要改变符号,不能漏掉任何一项.
易错点四:忽略分数线的作用
一、整式的基本概念:
1、单项式:
定义:
各部分名称:
书写要求
2、多项式: 定义:
各部分名称:
书写要求
排列:
3、整式:
二、整式的加减:
1、同类项:
(1)定义:
在多项式中,所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
几个常数项也是同类项。
(2)判定:
所含字母是否相同;相同字母的指数是否相同;常数项
(3)合并同类项:
①定义:把多项式中的同类项合并成一项,叫做合并同类项。
②法则:把同类项的系数相加,所得的结果作为系数,字母及其指数不变。
③步骤:标出同类项;同类项写在一起;系数连同符号用括号括起来,字母及其指数写在括号外;几个同类项之间用加号连接;写结果。
(4)结果书写要求:
2、去括号:
括号前面是“+”号,把它及前面的“+”号去掉,括号里的各项都不改变符号。
括号前面是“-”号,把它及前面的“-”号去掉,括号里的各项都改变符号。
3、整式加减法则: 法则内容:
步骤:去括号;
对于《整式的加减》教材中首先是在学习有理数的基础上,结合学生已有的生活经验,引入用字母表示数。了解代数式、代数式的值、整式、单项式与多项式及其相关概念,并在这些概念的基础上逐步展开同类项的概念、合并同类项的法则以及去括号的法则,最后将这些法则应用于本章的重点——整式的加减,全章知识体系井然有序,层层深入。通过本章的学习应使学生达到以下目标:
1、理解并掌握单项式、多项式、整式的概念,弄清它们之间的区别和联系。
2、理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确的进行同类项的合并和去括号,正确合并同类项的基础上进行整式的加减运算。
3、理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4、能分析实际问题中的数量关系,并列出整式表示。体会用字母表示数后,从算数到代数的进步。
我在《整式的加减》复习课教学中尝试了“相互交流,归纳提升”的教学策略,学生在独立探索,合作交流中系统整理学习的知识。
1、在教学中力求让学生独立思考,小组讨论,再让全班合作交流。
课前,我再次要求学生去观察家里衣服的摆放,课上引导学生想一想东西这样摆放的好处。这些事情看似与数学学习毫不相干,但从学生身边的生活实际出发就可以让学生自然而然地感受分类思想,为“合并同类项”概念及方法打下了较好的基础。同
时使学生明白现实生活中蕴藏着大量的数学信息,而数学知识在现实世界里有着广泛的应用,从而引起学生进行数学探索活动的热情。
新课程标准中要求学生“数学学习活动应该是一个生动活泼的、主动的和富有个性的过程”。因此,在学生对“合并同类项”已经有了初步的体验,在这样的学习情景中,提出问题“多项式-3+5xy+2xy+5中。①这个多项式中有哪些项?②各项的系数又是多少?③哪些项可以合并在一起?为什么?”然后安排了小组活动。这样在教学中力求让学生独立思考,小组讨论,再全班合作交流。让学生在思维的碰撞中积极主动地学习,增强了学生参与数学活动的意识,并从中体验到了数学学习的过程充满了探索和创造的乐趣,有意识地让学生在抽象思维、情感态度等方面得到进步与发展。
2、在课堂教学中增加了对学困生的关注
由于学习方式的改变,学生自主探究的时间多了,机械模仿的时间少了。再加上是学过的知识,所以在教学中我就采用你问我答的游戏为学困生创造了切实参与学习的机会,有意地让他们与其他同学组对,先让他们提问,然后倾听他人的回答,从中让他们能逐步学会表达知识,然后再把回答的次序倒过来。在出现问题的时候多鼓励,排除他们学习中的障碍,增强学习的信心,调动他们的学习内驱力,使他们能积极主动地参与学习。如果他
们的学习每天都能得到及时的辅导,将减少学生的两极分化。这种做法体现了人人获得数学知识的思想。
当然,本节课也有一些不足之处,比如对活动时间的掌控上,活动的时间过长,以致后面的教学实践不足,预计的内容没有完成;评价的方式有些单一等。
因此,今后应注意:
1.要不断学习新的教学理念,更新教学观念,使数学教学面向全体学生。
2.要最大程度的相信学生,要学会放手,让学生真正的做“学习”的主人、课堂的主体。
1、有必要关注问题创设的有效性。朱老师的课堂很少有这样的元素,一般地虽然是计算类型的问题最好应融入情境,为解决实际问题而学数学的必要性。这样能调动学生的学习能动性,激发好学生的学习主动性,从而为教师后面展开课堂教学的有效性学习做好铺垫,也为学生的学习能走向成功铺好路,设计好步骤。
2、关注知识的形成过程。朱老师通过对学生已有知识的复习,进行知识的整合,展开课堂教学,问题的出现有一定的层次性,但跳跃性太大,尤其是例2的难度是大部分学生很难在当堂时间内将已学的知识熟练运用于化简,然而作为一节平时的随堂课就有必要关注中下学生的水平。而且在问题解决之后,教师能进行一定得概括和总结,帮助学生提炼知识。
教学目标
(1)学生经过观察、合作交流、讨论总结出去括号的法则,并较为牢固地掌握。(2)理解去括号就是将分配律用于整式运算,掌握去括号法则。(3)能正确且较为熟练地运用去括号法则化简整式。教学重点:
去括号法则及其运用。教学难点:
括号前面是“—”号,去括号时,应如何处理。教学过程
一、复习
问1.复习:整式的加减——合并同类项法则 问2.你记得乘法分配律吗?用字母怎样表示?
一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用字母表示为: a(b+c)=ab+ac 问3.用不同的算式表示下面两个问题:
1、七年级原来有40个人,转来5个同学,又转来3个同学,现在七年级还有多少个同学?
2、七年级班原来有40个人,转走了5个同学,又转走了3个同学,问现在七年级还有几个同学? 1、40+(5+3)= 40+5+3 2、40-(5+3)= 40-5-3 观察两个等式的左边式子和右边式子有什么不同?为什么会出现这种情况呢?这个就是我们这节课要来研究的问题-----(去括号)
根据分配律,你能为下面的式子去括号吗?
(1)、+(5+3)=+5+3(2)、-(5+3)=-5-3 请同学们探究 +(-a+c)=;(-a-c)
”号,把括号和它前面的“x2 + y2)= 提升学习
为下面的式子去括号
(1)+3(a3(a强调:第(1)题括号内每一项都要乘以+3,第(2)题括号内每一项都要乘以-3•。
解:原式3a3b3c解:原式-3a3b3c
3a3b3c3a3b3c随堂练习:
1.去括号:① 2(3a+b)②-7(-a+3b-2c)
③-3(-2a+3b)
④ 4(2x-3y+3c)2.错误我纠正:
(1):3(x8)3x8(2):3(x8)3x24(3):2(6x)122x(4):4(32x)128x
例:.化简下列各式:(1)8a2b(5ab)
(2)(5a-3b)-3(a2-2b)
三、小结:
这节课我们学到了什么? 1.去括号的依据是:分配律 2.去括号的法则 3.去括号在整式加减中的运用
你觉得我们去括号时应特别注意什么?
1、去括号时要将括号前的符号和括号一起去掉。
2、如果括号前是 “ - ”号,则去掉括号后原括号内每项都要变号。
3、当括号前带有数字因数时,这个数字因数要乘以括号内的每一项,切勿漏乘某些项。
4、括号内原有几项,去掉括号后仍有几项,不能丢项。
四、作业布置
1.课本68页 练习第1、2题
【初一数学上整式的加减】推荐阅读:
《整式的加减――数学活动》教学设计10-27
初一上学期数学教案12-13
初一数学上学期教学工作计划06-17
初一上有理数的加减法07-26
小学二年级数学上《加减混合运算》教学反思05-27
初一数学数轴教案06-01
初一数学集体备课06-11
数学的初一作文07-27
初一数学期末试卷11-21
初一数学上册教案12-03