八年级数学下册知识点

2024-11-09 版权声明 我要投稿

八年级数学下册知识点(精选9篇)

八年级数学下册知识点 篇1

一. 不等关系

※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式

※2. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.

非负数 <===>大于等于0(≥0) <===>0和正数 <===>不小于0

非正数 <===>小于等于0(≤0) <===>0和负数 <===>不大于0

二. 不等式的基本性质

※1. 掌握不等式的基本性质,并会灵活运用:

(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:

如果a>b,那么a+c>b+c, a-c>b-c.

(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:

如果a>b,并且c>0,那么ac>bc,

(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:

如果a>b,并且c<0,那么ac

※2. 比较大小:(a、b分别表示两个实数或整式)

一般地:

如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a

即:

a>b <===>a-b>0

a=b <===>a-b=0

a a-b<0

三. 不等式的解集:

※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。

※2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同

3.不等式的解集在数轴上的表示:

用数轴表示不等式的解集时,要确定边界和方向:

①边界:有等号的是实心圆圈,无等号的是空心圆圈;

②方向:大向右,小向左

四. 一元一次不等式:

※1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,像这样的不等式叫做一元一次不等式。

※2.解一元一次不等式的过程与解一元一次方程类似,当不等式两边都乘以一个负数时,不等号要改变方向。

※3.解一元一次不等式的步骤:

①去分母;

②去括号;

③移项;

④合并同类项;

⑤系数化为1(不等号的改变问题)

※4.一元一次不等式基本情形为ax>b(或ax

①当a>0时,解为 ;

②当a=0时,且b<0,则x取一切实数;

当a=0时,且b≥0,则无解;

③当a<0时,解为 。

5. 列不等式解应用题基本步骤与列方程解应用题相类似,即:

①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;

②设:设出适当的未知数;

③列:根据题中的不等关系,列出不等式;

④解:解出所列的不等式的解集;

⑤答:写出答案,并检验答案是否符合题意。

六. 一元一次不等式组

※1.定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组。

※2.一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集。如果这些不等式的解集无公共部分,就说这个不等式组无解。(解集的公共部分,通常是利用数轴来确定。)

※3.解一元一次不等式组的步骤:

(1)分别求出不等式组中各个不等式的解集;

(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集。

两个一元一次不等式组的解集的四种情况(a、b为实数,且a

x>b,两大取较大

x>a,两小取小

a

八年级数学下册知识点 篇2

总复习内容多、跨度大、知识的综合性强。教材采用“按学习领域分节, 分栏目编写”的方式, 按“数与代数”、“空间与图形”、“统计与可能性”、“实践与综合运用”四个领域依次编排, 适当注意不同领域内容的沟通融合。分领域复习, 便于整理知识, 组织合理的知识结构。由于每个领域的内容比较多, 因而再划分成若干节。分节复习, 有利于把握复习的重点, 合理分配时间, 也便于按课程标准的要求评价教学效果。前三个领域先回忆重要的基础知识和思想方法, 沟通知识之间的联系, 整理成合理的知识结构, 再通过适量的练习, 加深对知识的理解, 形成必要的技能, 进一步发展数学思维。第四个领域综合应用已有的知识, 经过自主探索和合作交流, 积淀一些解决问题的经验和方法, 更好地应用数学知识解决与生活密切联系的、具有挑战性的问题, 提高解决问题的能力, 培养应用意识。下面就六年级数学总复习中的一些主要做法, 谈几点粗浅的体会。

一、突出主体, 梳理知识, 优化认知结构

《数学课程标准 (实验稿) 》指出:“学生是数学学习的主人, 教师是数学学习的组织者、引导者与合作者。”总复习应在教师的组织、引导下, 让学生在自主探索和合作交流的过程中, 对所学内容进行系统整理, 以达到弥补知识缺漏的目的。因此, 复习课要从新的角度, 把已学的零散的概念、性质、方法等基础知识加以分类梳理, 沟通知识之间的联系, 将孤立与分散的知识点串成线, 连成片, 形成良好的网络结构。这样有助于学生牢固地掌握知识的内在联系与相互转化的关系, 从而形成新的认知结构, 得到新的感受, 引发新的思考, 使之灵活运用。

如“约数和倍数”这一单元的概念术语较多且易混, 可引导学生从其产生的条件辨析异同及其相互关系, 并列出结构表, 显示其联系和区别。

对“三个基本性质”, 应通过比较, 弄清它们之间的内在联系及其应用范围与功能;“五个运算定律和两个运算性质”是进行简便计算的依据, 应分清异同, 灵活运用。同时通过一定量的练习, 让学生熟练掌握。

在对“比和比例”的内容进行复习时, 引导学生抓住与“比和比例”有关的内容, 从“比”和“比例”的性质、意义入手, 通过回忆、分析、比较, 构建如下网络图。

又如, 在复习“平面图形面积的计算”时, 可让学生把学习过的平面图形面积的计算公式用网络图表示, 然后引导学生从左往右看, 想一想发现了什么?学生会得出:“由长方形面积公式推导出正方形、平行四边形、圆的面积公式, 由平行四边形面积公式又推导出三角形和梯形的面积公式。”接下来再让学生从右往左看, 引导学生明白:求三角形和梯形的面积, 可以转化为求平行四边形的面积;求正方形、平行四边形、圆的面积又是通过怎样转化实现的。着重强调转化是重要的数学学习方法。最后让学生把这张图竖起来看, 使学生明白长方形是干、是根, 是学习平面图形的基础。在此基础上串点成线, 通过纵向系统梳理, 形成有序的知识网络 (如下图) 。

通过对平面图形面积知识的复习, 促进学生把知识真正融入知识系统中, 形成良好的认知结构, 从而全面掌握本单元内容, 提高学生应用知识解决问题的能力。

有些知识可通过练习的方式复习, 进而加深理解。如让学生在验算、解方程中复习加、减与乘、除法中各部分的关系。

二、精选练习, 强化训练, 提升数学思考

培养和提升学生的数学思考是数学教学的一项重要任务, 也是六年级数学总复习的重心之一。数学思考是在数学活动中形成和发展的, 而练习是重要的数学活动, 是学生掌握知识、形成技能、发展智力的重要途径。在数学总复习中要认真汲取以往的经验教训, 力避教师大量收集习题, 把学生浸泡在题海里, 或是“炒冷饭”, 学生机械重复练习, 使其不堪重负, 事倍功半, 收效甚微的做法。因此, 教师应当在系统复习基本知识之后, 针对学生实际, 精心选编具有一定基础性、典型性、启发性、综合性和发展性的练习, 做到数量少、容量大, 覆盖面广, 启迪性强, 让学生在练习中不断提升数学思考能力和解决问题的能力, 从而拓展总复习的功能。

(一) 精心设计训练内容, 发展学生的数学能力。

在数学学习中, 学生或多或少会存在知识上的盲点, 在总复习时教师要认真分析学生中存在的知识“盲点”及其产生原因, 切实加强知识点之间的比较、辨析, 利用对比题组等形式, 引导学生对知识的系统、解题思路、方法和步骤进行必要的归纳总结, 突出规律, 排除干扰, 防止混淆, 达到熟练灵活、融会贯通的要求。题组训练内容要少而精, 分层次、有梯度, 着眼于由题及“类”, 就题论理, 触类旁通。例如:

1.四则运算的训练重点是: (1) 熟练掌握基本计算。如, 8.26+1.74、40-0.76、0.85×16、0.18×0.11、36÷4.5、6.25÷2.5, 虽然计算难度不高, 却包含了小数四则计算的几个难点。 (2) 整数、小数的四则混合运算。 (3) 分数四则混合运算。 (4) 简便计算。如何运用运算定律进行简便计算, 是对小学阶段学生计算能力考查的主要方面, 而计算能力并非单纯看是否会计算, 计算数据是否正确, 更重要的是看学生的计算技能是否熟练。为此, 可依据课程标准的要求和教材中出现的类型精心设计如下题组, 重点训练简便计算能力。复习时让学生口述题目特点、简算思路与依据。以下题组可供选用:

2.解决问题的练习应以思维训练为主, 通过引申、扩展、改编、合理演化, 让学生运用不同的数学思想方法, 多向联想探索解题途径, 并通过自我内化完善一些问题解决的策略, 拓宽思路, 以促进知识的系统化, 从而提高思维的广阔性、深刻性和解题的灵活性。

教师可先出示基本例题:“向阳小学买来105本图书, 分给五、六两个年级的学生阅读, 六年级分得的图书本数是五年级的4倍。六年级和五年级各分得了多少本图书?”

当学生在整数范围内用算术方法 (或列方程) 解答后, 教师可进一步引导:在不改变第二个条件的本意的情况下, 还可以怎样表述两个年级分得的图书之间的数量关系呢?如:

(1) 五年级分得的图书本数是六年级的 (或25%) ;

(2) 六年级分得的图书本数占图书总本数的 (或80%) ;

(3) 五年级分得的图书本数占图书总本数的 (或20%) ;

(4) 五年级分得的图书本数比六年级少 (或75%) ;34 (

(5) 六年级分得的图书本数比五年级多图书总本数的 (或60%) ;

(6) 五年级分得的图书本数与六年级分得的图书本数的比是1∶4;

(7) 六年级分得的图书本数与五年级分得的图书本数的比是4∶1;

(8) 六年级分得的图书本数与图书总本数的比是4∶5;

(9) 五年级分得的图书本数与图书总本数的比是1∶5;

……

从而得出:第 (1) (2) (3) (4) (5) 根据分数 (或百分数) 的意义可用算术方法或方程解答:第 (6) (7) 用按比例分配的知识解答; (8) (9) 用比例知识 (正比例方法) 解答。当然, 也可以改变所求问题, 然后引导学生比较以上几种解法的特点及其联系, 沟通相关知识与解题思路的内在联系, 提升灵活解题的层次。

通过以点带面, 层层递进, 巧妙地把分数、百分数乘除法解决问题以及比和分数的关系等有关知识融为一体, 切实提高学生综合运用知识的能力, 使学生在复习中得到新的收获, 突现新的飞跃。

(二) 精心选编富有生活性与情

境性、探索性与应用性的训练内容, 培养学生的数学思考, 展现数学的应用价值。

在复习中, 教师既要关注学生知识技能的掌握, 更要关注他们在实际生活中运用所学知识处理实际问题的能力。因此, 在选编训练内容时, 要体现生活性与情境性, 探索性与应用性, 注重选择涉及学校生活和现实生活的内容, 使学生更好地体验数学与生活之间的紧密联系, 让他们在有趣的情境中进行数学思考。例如:

1.北海市实验小学校园里有一块正方形空地, 面积是6400平方米。 (1) 如果学校要在这块空地上围出一个最大的圆, 并铺上草坪, 草坪的面积是多少? (2) 如果学校要在这块空地上设计一个花圃, 使花圃的面积占正方形面积的 (如图1所示) , 你认为怎样设计更美观?请你再设计3种方案 (在图2、图3、图4上用阴影部分表示花圃的位置) 。

(此题把面积计算与发挥学生的空间想象结合起来, 有利于空间观念的逐步形成。)

2.小明家装修新房, 油漆面积为80平方米, 用去油漆100升, 油漆费用6000元, 共用35个工时。结算工钱时, 有三种方案: (1) 按工时计算, 每个工时60元; (2) 按油漆费用的30%计算工钱; (3) 按油漆面积计算, 每平方米25元。请你帮小明家选用一种合适的结算方案。

3.王奶奶家打算把家里堆放的稻谷卖掉, 按市场价格:稻谷每千克1.50元, 大米每千克2.20元, 稻谷的出米率是70%, 稻谷加工成米后, 糠皮可抵加工费。请你帮王奶奶合计一下, 是卖稻谷合算, 还是卖米合算?

4.李老师去买体育用品, 他带的钱正好够买8个篮球或12个足球。他先买了6个篮球, 剩下的钱全部买足球。剩下的钱够买多少个足球?

5.爸爸和4岁的小红生病了, 妈妈要给他们买三天的药。妈妈要买几板才够?

(第2、3、4、5题是把数学知识融入学生生活的开放题, 有利于培养学生灵活解决问题与综合应用的能力。)

6.某游泳馆修建了一座标准化的游泳池, 这个游泳池的长是60米, 宽是长的, 深2米。 (1) 这个游泳池占地面积是多少平方米? (2) 这个游泳池最多能容水多少吨? (每立方米水重1吨) (3) 在池的四周和池底抹一层水泥, 抹水泥的面积是多少平方米?

7.小强和小华都是集邮爱好者。小强和小华邮票枚数的比是3∶4, 如果小华给小强9枚邮票, 那么他们两人的邮票数就相等, 你知道他们两人共有邮票多少枚吗?

8.东风路第一小学图书室里故事书、文艺书和连环画三种书中, 故事书本数是后两种书本数之和的, 文艺书本数与三种书总本数的比是2∶7, 其中连环画有65本。这三种图书共有多少本?

(本题有一定难度。把“故事书本数是后两种书本数之和的”转化为“是全部的几分之几”是解题的关键。)

9.周日, 李华全家3人去吃火锅, 打算花200元钱左右。爸爸点的火锅底料是“乌骨鸡火锅底”, 需要45元。现在需要选择火锅菜类, 价格如下:

(1) 2元 (一份) :麻辣调料;

(2) 2元 (一份) :冬瓜、土豆、毛豆腐、青菜、大白菜、油豆腐、豆芽、花菜、菠菜;

(3) 4元 (一份) :粉条、香菜、鸡蛋面、水饺、各种菇类、山药、竹笋;

(4) 8元 (一份) :猪肝、猪肉片、鱼丸、鸡片、带鱼、虾饺、鱼饺;

(5) 12元 (一份) :羊肉、墨鱼片。

如果既要注意营养合理, 又要荤素搭配, 你会怎样选择?

(第9题有愉悦的生活情趣, 解题过程是张扬学生个性的过程。)

人教版《新目标》英语八年级下册 篇3

本单元谈论的话题是“Fun places”,其功能项目是“Talk about past experiences”,通过对比、使用现在完成时态、一般过去时态谈论过去曾经去过的地方. Section A的内容是在复习巩固一般过去时用法的基础上学习使用Have you ever been to…这个句式表述过去曾经去过的地方。

学情分析:

八年级学生已经具备了一定的语言知识,能够就简单的话题进行小组讨论,并且已经接触了多种时态,学习使用现在完成时态表达过去曾经去过的地方,难度不是很大。根据教学对象的特点,合理运用多媒体辅助教学,通过师生间的闲聊、动画片欣赏、创设情境等方式,优化课堂教学结构,培养学生综合语言运用能力,提高课堂教学效率。

设计思路

通过情境导入提出Have you ever been to…? 的问题,引导学生积极参与课堂口语交际,学习使用新的词汇和短语,来训练和强化现在完成时态句型Have you ever been to …?的答语形式,,最终达到使用该句型描述过去的某个经历。

教学目标

1、知识目标

掌握现在完成时态句型Have you ever been to ……?及答语形式Yes,… have/ No, … haven’t;通过情景设置、两人一组对话练习、小组合作等方式学会谈论过去曾经到过的地方。

2、能力目标

通过情境导入来引导学生谈论过去发生的事,提出Have you ever……?的问题,继而引出一些新的词汇和句型,然后通过精讲多练的课堂教学来达到本节课的教学目标。

3、情感目标

以学生的某种经历为依托,培养学生热爱家长、热爱生活、热爱大自然的美好情怀。

教学重难点

1. 掌握重点句型Have you ever been to an amusement park? Yes, I have. /No, I have never been to an amusement park.學会使用该句型与其他人谈论过去曾经去过的地方,并能对该地的风景、娱乐等方面进行简单的描述。

2. 熟练运用现在完成时态句型Have you ever been to…?描述过去曾经去过的地方,并能就这个话题进行讨论。

教学设备

多媒体教学课件

教学方法

分层教学法、任务型教学法

教学流程

Step 1 Warming-up

1. Make conversations with some students to talk about past events.

T: Tom, what did you do yesterday?

S1:I played basketball.

T:(writing the words on the board) Tom played basketball yesterday. (to another student) Mary, What did you do last Sunday?

S2:I went to the zoo.

T:(writing on the board) Mary went the zoo last Sunday.

2. Make a short conversations in pairs. (两人一组进行以上的对话练习)

( 设计意图:用闲聊的方式带领学生走进课堂,给学生创造轻松愉快的学习氛围,学生容易接受。 同时以简单的对话方式复习前面所学的内容,过渡自然。小组对话练习不但可以提高学生对过去发生事情的表述能力,还可以提高他们的听说能力,达到较好的复习效果,为新课的学习做好铺垫)

Step 2 Leading in

1. Learn the new sentence “ Have you ever been to …?” with some pictures. ( 长城、北京、红峪上庄) T: I went to the Great Wall last week.

I have ever been to the Great Wall. Have you ever been to the Great Wall?

Yes, I have. / No, I haven’t.

2. Practice in pairs by using some pictures.

提示句型:

A: Have you ever been to …?

B: Yes, I have. (No, I haven’t) Have you ever been to…?

A: Yes, I have./ No, I haven’t.

(设计意图:用学生熟悉的图片引出本节课的重点句型,学生用已学过的单词操练新句型,降低学生的学习难度,小组对话练习提高学生的小组合作能力,重点句型提示能帮助不同知识层面的学生完成教师布置的任务。)

Step3 Learning new words

1.Watch a short play (Disney 动画片)

2. Learn the new words by some pictures. Using some Disney Character to talk about the amusement park.

3. Practice in pairs (Ask some students to practice in pairs)

4. Talk about 1a

(设计意图:使用Disney动画片《猫和老鼠》引出“游乐园”这一话题,通过视听感官激发学生的学习积极性,提高学生们参与口语活动的热情,简单的两人一组的对话降低了口语练习的难度,使不同英语基础的学生都能具有成就感)

Step 4 Listening

1. 1b Listen. Have these students ever been to these places?

2. Read the listening materials loudly.

3. Talk about the places that Claudia and Sarah have ever been to.

(设计意图:谈论听力材料中的人物曾经的经历又将听力内容进一步升华,增加了一定的难度,学生不但要听懂听力材料,而且还要能用自己的话进行表述,在此项活动中,学生的听力、口语、语言表达能力都能得到不同程度的提高)

Step 5 Groupwork

Talk about your unforgettable place that you have ever been in groups.

(温馨提示:Have you ever been to …? When did you go there? How did you go there ?Have you taken any photos there? Bring some of your photos here and write a short composition to introduce the place you have ever been to.)

(设计意图:谈论自己曾经到过的难忘的地方,对于部分学生来将有一定的难度,以小组活动的方式来完成,做到人人参与,共同进步)

Step 6 Homework

1. Make a survey (小组合作,共同完成)

《家乡知多少》,谈谈对自己家乡的认识,比如:曾经到过哪些旅游景点,什么时间、怎么去的那里?你对家乡旅游景点的看法?都做了什么?等等)

Where have you ever been?

When did you go there ?

How did you go there ?

What did you do there ?

How do you like it ?

做完调查之后,让学生来做汇报。

(提示句型:Report : ***has ever been to … .

He / She went there ***.

He /She went there by ***.

He /She ***. He /She thinks it’s ***.)

2. Write your unforgettable place that you have ever been .

(温馨提示:Have you ever been to …? When did you go there? How did you go there ?Have you taken any photos there? Bring some of your photos here and write a short composition to introduce the place you have ever been to.)

八年级数学下册知识点 篇4

1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子

A

B

叫做分式。2.分式有意义、无意义的条件:

分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。

3.分式值为零的条件:分式A

B

=0的条件是A=0,且B≠0.(首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。)

4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为AAC

AAC(其中A、B、C是整式C0),5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异BBC

BBC分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是确定几个式子的最简公分母。几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;

(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。6.分式的约分:

和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。

约分的关键是找出分式中分子和分母的公因式。

(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:

① 当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;

②当分子、分母都是多项式时,先把多项式因式分解。7.分式的运算:

分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

用式子表示是:ac

bdacbd;abcadaddbcbc分式的乘除混合运算统一为乘法运算。

①分式的乘除法混合运算顺序与分数的乘除混合运算相同,即按照从左到右的顺序,有括号先算括号里面的;

②分式的乘除混合运算要注意各分式中分子、分母符号的处理,可先确定积的符号;

③分式的乘除混合运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式。

分式乘方法则:分式乘方要把分子、分母各自乘方。

(ananb)b

n用式子表示是:(其中n是正整数)

分式的加减法则:

同分母的分式相加减,分母不变,把分子相加减。

用式子表示为:ab± cb= a±c

b

异分母的分式相加减,先通分,转化为同分母分式,然后再加减。

用式子表示为:ab± cd=adbcad±bc

bd±bd=bd

注意:(1)“把分子相加减”是把各个分子的整体相加减,即各个分子应先加上括号后再加减,分子是单项式时括号可以省略;(2)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;

(3)运算时顺序合理、步骤清晰;wwW.x kB1.c Om(4)运算结果必须化成最简分式或整式。分式的混合运算:

分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,计算结果要化为整式或最简分式。8.整数指数幂:

(1)a01(a0)(2)a -n=1an(n是正整数,a≠0),(3)同底数的幂的乘法:amanamn;

(4)幂的乘方:(am)n

a

mn

;(5)积的乘方:(ab)nanbn

n

(6)同底数的幂的除法:am

an

a

mn

(a≠0);(7)商的乘方:(ab)nab

n ;(b≠0)

9.分式方程:含分式,并且分母中含未知数的方程叫做分式方程。

分式方程的解法:去分母

(1)解分式方程的基本思想方法是:分式方程 -----→ 整式方程.(2)解分式方程的一般方法和步骤:

转化

①去分母:即在方程的两边都同时乘以最简公分母,把分式方程化为整式方程,依据是等式的基本性质;

②解这个整式方程;

③检验:把整式方程的解代入最简公分母,使最简公分母不等于0的解是原方程的解,使最简公分母等于0的解不是原方程的解,即说明原分式方程无解。

注意:① 去分母时,方程两边的每一项都乘以最简公分母,不要漏乘不含分母的项; ② 解分式方程必须要验根,千万不要忘了!

列分式方程解应用题的步骤是:(1)审:审清题意;(2)找: 找出相等关系;(3)设:设未知数;(4)列:列出分式方程;(5)解:解这个分式方程;(6)验:既要检验根是否是所列分式方程的解,又要检验根是否符合题意;(7)答:写出答案。

10.科学记数法:把一个数表示成a10n的形式(其中1a10,n是整数)的记数方法叫做科学记数法.

用科学记数法表示绝对值大于1的数时,应当表示为a×10n的形式,其中1≤︱a︱<10,n为原整数部分的位数减1;wwW.x kB1.c Om

八年级数学下册知识点 篇5

(一)一、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式

A

子叫做分式。B

11a2b2

例1.下列各式,x+y,-3x2,0•中,是分式的有()

三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,AACAAC分式的值不变。(C0)

BBCBBC

四、分式的通分和约分:关键先是分解因式。

xy

a

x15ab

个。

二、分式有意义的条件是分母不为零;【B≠0】 分式没有意义的条件是分母等于零;【B=0】

分式值为零的条件分子为零且分母不为零。【B≠0且A=0即子零母不零】 例2.下列分式,当x取何值时有意义。

2x13x2(1)3x2;(2)2x3。

例3.下列各式中,无论x取何值,分式都有意义的是()。

1x3x2x1B.2x1C.1xD.x2

A.22x2

1例4.当x______时,分式2x13x4无意义。当x_______时,分式x21x2x2的值为零。

例5.已知115x3x-y=3,求xy5y

x2xyy的值。

例6.不改变分式的值,使分式1的各项系数化为整数,分子、分母应3x19y乘以(•)。

例7.不改变分式23x2x

5x32x3的值,使分子、分母最高次项的系数为正数,则是(•)。

8.分式4y3xx21x2xyy2

例a22ab4a,x41,xy,ab2b2中是

最简分式的有()。

例9.约分:(1)x26x9m23m2

x29;(2)m2m

例10.通分:(1)x6ab2,y9a2bc;(2)a1

6a2

2a1,a2

1例11.已知x2+3x+1=0,求x2+1

x

2的值.

例12.已知x+1x=3,求x2

x4x21的值.

五、分式的运算:

分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。acac;acadad

(anb)anb

n

bdbdbdbcbc

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减。

ababacadbcccc,bdbdbdadbc

bd

混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。

例13.当分式121

x21-x1-x1的值等于零时,则x=_________。

例14.已知a+b=3,ab=1,则ab

b+a的值等于_______。

例15.计算:x2xx22x-1

x2

4x4。

计算:x2

例16.x1

-x-

1例17.先化简,再求值:a3a3-a63a23a+a,其中a=2。

16章分式复习

(二)例21.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达3000000个核苷酸,这个数用科学记数法表示是__________。

六、任何一个不等于零的数的零次幂等于1 即a0

1(a0);

当n为正整数时,an

a

n(a0)

七、正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)(1)同底数的幂的乘法:am

an

amn;

(2)幂的乘方:(am)n

amn

;

(3)积的乘方:(ab)

nanbn;

(4)同底数的幂的除法:am

an

a

mn

(a≠0);

(5)商的乘方:(anan

b)b

n(b≠0)

八、科学记数法:把一个数表示成a10n的形式(其中1a10,n是整

数)的记数方法叫做科学记数法。

1、用科学记数法表示绝对值大于10的n位整数时,其中10的指数是n1。

2、用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)。例18.若102x

25,则10x

等于()。

A.1111

5B.5C.50

D.625

例19.若aa13,则a2a2等于()。A.9B.1C.7D.11

1

例20.计算:(1)413(62)03

(2)2a3b1

xy2

32

3例22.计算31052

3101

___________。

例23.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为_________。例24.计算

3xxx4y+y4yx-7y

x4y

得()A.-

2x6y2xx4yB.6y

x4y

C.-2D.2 25.计算a-b+2b2

例ab

得()

ab2b2

A.a2b2ab

B.a+bC.abD.a-b

九、分式方程:含分式,并且分母中含未知数的方程——分式方程。

1、解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

2、解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

3、解分式方程的步骤:

(1)、在方程的两边都乘以最简公分母,约去分母,化成整式方程。(2)、解这个整式方程。

(3)、把整式方程的根代入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。(4)、写出原方程的根。

增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

4、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

例26.解方程。

(1)322xx6(2)x13x16

x2

1(3)25x11x0(4)63x814x7

83x

例27.X为何值时,代数式2x9x31x32

x的值等于2?

3例28.若方程2x42

x21

有增根,则增根应是()

十、列方程应用题

(一)、步骤(1)审:分析题意,找出研究对象,建立等量关系;(2)设:选择恰当的未知数,注意单位;(3)列:根据等量关系正确列出方程;(4)解:认真仔细;(5)检:不要忘记检验;(6)答:不要忘记答。

(二)应用题的几种类型:

1、行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题。

例29.甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.2、工程问题 基本公式:工作量=工时×工效。

例30.一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?

3、顺水逆水问题v顺水=v静水+v水;v逆水=v静水-v水。

八年级下册历史知识点 篇6

2、为了有计划地进行社会主义建设,我国政府编制了发展国民经济的第一个五年计划。

3、第一个五年计划的基本任务:集中主要力量发展重工业,建立国家工业化和国防现代化的初步基础;相应地发展交通运输业、轻工业、农业和商业;相应地培养建设人才。时间:1953年---1957年

3、▲第一个五年 计划的成就:

㈠ 工业方面:1953年底,鞍山钢铁公司大型轧钢厂等单打工程建成投产。到1956年,长春第一汽车制造厂生产出第一辆汽车;中国第一个飞机制造厂试制成功第一架喷气式飞机;中国第一个制造机床的工厂——沈阳第一机床厂建成投产。

㈡交通方面:1957年,武汉长江大桥建成,连接了长江南北的交通。川藏、青藏、新藏公路修到“世界屋脊”,密切了祖国内地同边疆的联系,也便利了经济文化的交流。㈢工业基地方面:东北工业基地形成;沿海地区原有的工业基地得到发展;华北和西北也建立了一批工业基地。从此,我国开始改变了工业落后的面貌,向社会主义工业化迈进。

八年级数学下册知识点 篇7

关键词:新教材,旧教材,教材结构,教材内容

随着地理教育课程改革的深入推进,依据2011年最新颁布的《义务教育地理课程标准》,人教2002年版《义务教育教科书·地理(八年级下册)》以下简称”旧教材”在使用了10年后改版,于2013年人教版《义务教育课程标准实验教科书·地理(八年级下册)》(以下简称“新教材”)经过审定。对地理教科书进行比较研究有利于明确内容变化和发展特征,更有针对性地加强和改善地理教学。

从教材对比看,新教材无论从形式上,还是从内容上,都有很大变化。以下就新旧地理教科书内容的体系结构、章节内容、人文地理知识、具体内容几方面进行简要分析。

一、新旧教科书体系结构

旧教科书共五章12节,第五章中国的地理差异,分3节:1.四大地理区域的划;2.北方地区和南方地区;3.西北地区和青藏地区。第六章认识省级区域,分4节,1.全国政治文化中心———北京;2.特别行政区———香港和澳门;3.祖国的神圣领土———台湾省;4.西部开发的重要阵地———新疆维吾尔自治区。第七章认识省内区域,分2节,1.面向海洋的开放地区———珠江三角洲;2.西南边陲的特色旅游区———西双版纳。第八章认识跨省区域,分2节,1.沟壑纵横的特殊地形区———黄土高原;2.以河流为生命线的地区———长江沿江地区。第九章走向世界的中国。

新教科书共六章14节,第五章中国的地理差异。第六章北方地区,分4节,1.自然特征与农业;2.“白山黑水”———东北三省;3.世界最大的黄土堆积区———黄土高原;4.祖国的首都———北京。第七章南方地区,分4节,1.自然特征与农业;2.“鱼米之乡”———长江三角洲地区;3.“东方明珠”———香港和澳门;4.祖国的神圣领土———台湾省。第八章西北地区,分2节,1.自然特征与农业;2.干旱的宝地—塔里木盆地。第九章青藏地区,分2节,1.自然特征与农业;2.高原湿地———三江源地区;第十章中国在世界中。

从上面对比可以看出,新旧教材的体系结构做了重大调整。旧教材从第一部分内容综合介绍了我国的四大地理区域,继而分为省级、省内、跨省区域三个框架分别介绍代表性的区域,知识框架为“总—分”结构,但整个教材的衔接性和章节之间的联系性体现不明显。新教材体系结构更简单明了,全书先介绍我国划分地四大地理区域,继而依次介绍北方地区、南方地区、西北地区和青藏地区。每一章节内,又将每个区域的“自然特征与农业”综合介绍,再选取最具代表性的地区进行介绍。大框架为“总—分”,个分区又以“总—分”结构再具体介绍,各区域内部联系紧密。这样的框架体系,更简洁明了,学生更易理解,体现了更强的综合性和区域性。

二、新旧教材章节内容安排比较

从章节来看,新教材对内容进行了增减。删减的内容包括:“新疆、珠江三角洲、西双版纳和长江沿江地带。”新教材新增的内容包括“东北三省、塔里木盆地、长江三角洲、三江源地区”从这几个章节内容对比来看,新教材删减的主要是内容有重叠的部分。如:新教材虽然删减了“新疆”一节,但是在分析塔里木盆地的干旱原因以及人口城市的分布时,也突出了新疆的地理人文特征。新教材删减的“珠江三角洲,长江沿江地带”分别和“港澳地区、长江三角洲”这部分内容有重叠。从新教材新增的内容来看,新增了四大区域当中具有代表性的区域。如“东北三省”和“三江源区”分别是北方地区和青藏地区极具代表性的区域。有很强的区域特色。

三、教材具体内容方面的比较

新旧教材在内容设置中,都体现了培养学生地理思维,体现可持续发展观、全球意识观、环保意识观等内容。但对比看来,新教材也具有以下特点:

(一)内容方面时代特色明显,资料新颖,与时俱进。如“同城效应”“零关税”“南海争端”等时事材料进入教材内容。

(二)开放性强,热点地理问题给学生提供更多的思考途径,符合地理学思想的精髓。

例如“在西部地区资源的开发利用中,经济效益和生态效益双赢是怎样体现的?”学生可以提出不同看法,而且每种看法都有其合理性。

总之,2013年人教版《义务教育课程标准实验教科书·地理(八年级下册)》教科书有很多方面都有很好的编排,还有需要我们在教学实践中进一步钻研,最终利用好教材,让学生学好地理,学会地理。

参考文献

[1]张素娟.义务教育地理课程标准修订前后的对比分析[J].中学地理教学参考,2012(05).

[2]熊建新,王志文.新版地理教材中的活动系统分析.现代教育科学,2014(08).

[3]张晓燕.《义务教育地理课程标准》的进步与缺憾[J].教育科学论坛,2012(06).

八年级数学下册知识点 篇8

[摘要]湘教版初中地理新教材的修订以《义务教育地理课程标准》(2011年)为依据,在原教材的基础上更新了大量的素材,同时也对章节的设计进行了重新梳理。以八年级下册为例,新教材除了增设了前言,章节设置及地理图像也有了一定的变化。

[关键词]湘教版 八年级下册 地理教材 比较

[中图分类号] G633.55 [文献标识码] A [文章编号] 16746058(2015)070119

2011年12月28日,教育部颁布了义务教育地理等学科19个课程标准,湘教版初中地理新教材的修订以《义务教育地理课程标准》(2011年)为依据,在原教材的基础上更新了大量的素材和资料,同时也对章节的设计进行了重新梳理和编排。新教材的出现,不得不让人思考这样一个问题:它与湘教版旧教材相比,究竟有何变化?下面对湘教版八年级下册地理新旧教材进行一些比较分析。

一、 前言的增设

与旧教材相比,新教材别出心裁地在目录前增设了前言。前言的第一句话是:“在本册书中,我们一起来认识中国的区域。”从这句话就可以看出,新教材从一开始就体现出新课改“以学生为本”的理念,采用的是“我们一起来认识”而不是“你们将要学习的是”,教师不再是高高在上,学生才是学习的真正主人。接下来的部分用了非常优美生动的语言对整册内容进行了简单概括,学生可以通过阅读这些优美的语句身临其境地感受祖国的大好河山,从而增强对学习本册内容的兴趣。

二、章节设置的变化

1.章节数量的变化。旧版教材共有6个章节,而新版教材只有5个章节,而且与旧教材相比,新教材的章节号与上册章节是相连的,体现湘教版八年级整册内容的统一性和连贯性。

2.章节内容的变化。从新旧两版教材的内容可以看出,教材的编写思路发生了很大的转变,旧版教材的编写思路应该是总—分的传统思维方式,从一般到具体,先介绍中国的产业,包括上一册的中国的人口、气候、资源等等,先让学生对整个中国的各个方面有个大概的了解,然后在下册就详细从东部沿海、内陆沿疆、黄河和长江沿岸这四个部分对中国每个行政单位进行了介绍,内容繁杂,追求面面俱到,但是要在有限的篇幅内完成又是不可能的。因此,新版教材针对这些问题做了很大的改进,主要从认识区域的方法着手,教会学生从位置和分布、联系与差异、环境和发展这三个方面来学习和了解中国的区域,不再是简单知识内容的呈现,而更注重的是学习如何分析区域的方法,这才是学生适应当今变幻莫测的时代最需要掌握的东西。新版教材把《中国的产业》这一章节放到了上册,而下册的重心完全放到了区域的学习上,不管是章节先后的安排,还是章节内容的选取,都体现了“学习对生活有用的地理”和“学习对终身发展有用的地理”的课程理念。

三、地理图像的变化

地理图像是地理教材不可或缺的一部分,它是传递地理知识的一个重要载体,对于抽象思维能力还未发展成熟的初中生来说,色彩鲜明、生动形象的地理图像能让他们迅速地产生学习地理的兴趣。根据初中生这一显著的特点,无论是旧版教材还是新版教材,教材编写者都采用了大量的地理图像来凸显教材内容。尽管如此,与旧版教材相比,新版教材采用的地理图像在数量和质量上都有较大的突破。

1.新旧教材地理图像数量和密度的变化。旧版教材共分为6个章节,地理图像在每个章节的数量分别是33幅、57幅、16幅、15幅、16幅和1幅,总共是138幅;而新版教材5个章节的地理图像数量分别是42幅、37幅、46幅、73幅和3幅,总共是201幅。新教材的图像密度和数量都比以前有所增加,说明地理图像在地理教材中的地位日趋重要。

2.新旧教材地理图像质量的变化。从整体看,与旧版教材相比,新版教材的地理图像色彩更加鲜明、丰富,图注更加清晰,图像的线条也比较饱满。旧版教材以彩图为主,而新教材在彩图的基础上也适当地采用了黑白图像,比如在教材第12页,为了突出中国传统交通工具的地域特色是“南船北马”,图521和图522就分别采用了“20世纪40年代江南水运”和“北方传统运输方式”两张黑白图像,黑白图像的运用准确地反映了中国历史上真实的人文景观,具有历史的厚重感和更强的说服力。除此之外,新版教材的地理图像更具时代感。两版教材中都有对北京的区域介绍,体现北京最近这些年来高速发展成果的图片更是大量出现在新教材当中,比如北京的金融街、中关村科技园和鸟巢等。与此同时,新教材的图像也体现了地方民族特色,比如展现京剧、秦腔、锅庄舞等图像的运用。

新版教材与旧版教材相比,在很多方面存在优势是毋庸置疑的,因为它毕竟蕴含十年来无数教师无数次课堂实践的经验总结。就如同不可能有十全十美的人一样,新版教材也肯定存在着许多不足,它是“十年磨一剑”的成果,现在又正返回实践中去接受实践的检验。人的认识是无限的,总能不厌其烦地一次又一次地去改进和完善,“最好的总是在下一次”,怀抱着这样的期望,教育才能不断地向前发展。

(责任编辑 周侯辰)

八年级下册历史知识点 篇9

一.第一个五年计划(1953—1957年)

1.原因:工业水平很低,基础薄弱,门类不全

2.目的:为了有计划地进行社会主义建设。

3.基本任务:

(1)集中主要力量发展重工业,建立国家工业化和国防现代化的初步基础;

(2)相应地发展交通运输业、轻工业、农业和商业;

(3)相应地培养建设人才。

4.特点:集中力量发展重工业

5.重要成就:

①鞍山钢铁公司无缝纲管厂等三大工程

②长春第一汽车制造厂

③沈阳第一机床厂和飞机制造厂

(2)交通运输建设也取得很大成就:宝成铁路、鹰厦铁路、川藏公路、青藏公路、新藏公路、武汉长江大桥

6.结果:到1957年底,第一个五年计划的各项指标大幅度超额完成。

7.意义:我国开始改变工业落后的面貌,向社会主义工业化迈进。

二.1954年第一届全国人民代表大会

1.时间:1954年9月

2.地点:北京

3.内容:

①大会制定了《中华人民共和国宪法》。

A.宪法规定,中华人民共和国全国人民代表大会是最高国家权力机关。

B.性质地位:这是我国第一部社会主义类型的宪法,也是我国有史以来真正反映人民利益的宪法。

C.意义:这就是以国家根本大法的形式确定了人民代表大会制度。

上一篇:协和医院讲座下一篇:本科市场营销专业特点