九年级数学《相似三角形》说课稿(精选10篇)
相似三角形说课稿
今天,我的说课将分三大部分进行:
一、说教材;
二、说教学策略;
三、说教学程序。
一、说教材
从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述
1、本课内容在教材中的地位
本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。
从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。
2.学习目标
知识与技能方面:
探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
过程与方法方面:
培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。
情感态度与价值观方面:
让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
3.教学重点、难点
立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。
教学重点:相似三角形、相似多边形的性质及其应用
教学难点:①相似三角形性质的应用;
②促进学生有条理的思考及有条理的表达。
4.学情分析
从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。
对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。
大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。
5.教学准备
教师:直尺、多媒体课件
学生:必要的学习用具
二、说教学策略
从设计的指导思想、教学方法、学习方法三方面阐述
新课程标准指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现学生主体教师主导的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。
采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。
有一位教育家说过:教给学生良好的学习方法比直接教给学生知识更重要。本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由被动学会变成主动会学。
三、说教学程序
(一)类比研究,明确目标
师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的研究呢?
生:已经研究了相似三角形的定义、判别条件。
师:那么我们今天该研究什么了?
生:相似三角形的性质。
设计意图:
从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。
(二)提出问题,感受价值,探究解决
师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。
生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。
师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?
设计意图:
我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。
师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。
师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:
给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?
师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?
生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。
设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。
师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。
情境一:如图,ABC∽DEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ABC的周长(学生只能用相似三角形对应边成比例求出ABC的三边长,然后求其周长)
(2)如果DEF的周长为20,则ABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)
(3)如果ABC∽DEF,相似比为k:1,且DEF三边长分别用d、e、f表示,求ABC与DEF的周长之比。
结论:相似三角形的周长之比等于相似比。
情境二:
师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?
生:面积比问题。
师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。
设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。
(师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到相似三角形的对应高之比等于相似比的结论。进而解决相似三角形的面积比等于相似比的平方的问题。体现教材整合。
(三)拓展研究,形成策略,回归生活
拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)
拓展研究二:由相似三角形研究拓展到相似多边形研究
师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。
情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/,相似比为k,求其周长比与面积之比。
说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略转化为三角形来研究。然后通过师生活动合作研究得结论。
拓展结论1:相似多边形的周长之比等于相似比;
相似多边形的面积之比等于相似比的平方。
(结合相似五边形研究过程)
拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;
相似多边形中对应对角线之比等于相似比;
进而拓展到:相似多边形中对应线段之比等于相似比等。回归生活一:
师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的相似形你还能解决吗?
回归生活二:(以师生聊天的方式进行)
其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?
生:相似比的立方。
设计意图:新课程标准指出数学教学活动要建立在学生已有生活经验的基础上---;教育心理学认为:源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果;于新华老师在一些教研活动中曾经说过:源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。
而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。
(四)操作应用,形成技能
课内检测:
1.已知两上三角形相似,请完成下面表格:
相似比 2
对应高之比 0.5
周长之比 3 k
面积之比 100
2.在一张比例尺为1:2000的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。
设计意图:落实双基,形成技能
(五)习题拓展,发展能力
已知,如图,ABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。
(1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?
(2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?
答: 最大值,最小值(填有或没有)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。
(3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:
①当点P为AB中点时,矩形PMNQ的面积最大;
②当PM=PQ时,矩形PMNQ的面积最大。
你认为哪一个猜想较为合理?为什么?
(4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。
设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。
(六)作业(略)
一、填空题
1.已知xy=mn,则把它改写成比例式后,错误的是
A. B. C. D.
2.一个运动场的实际面积是6 400m2,那么它在比例尺1:1000的地图上的面积是()
A.6.4cm2 B.640cm2 C.64cm2 D.8cm2
3.下列四组线段中,不是成比例线段的是()
A.a=3,b=6,c=2,d=4 B.a= ,b= ,c= ,d=
C.a=4,b=6,c=5,d=10 D.a= ,b= ,c= ,d=
4.如图1,在正方形网格上有6个三角形:
①△ABC,②△BCD,③△BDE,④△BFG,⑤△FGH,⑥△EFK.
其中②~⑥中,与三角形①相似的是()
A.②③④ B.③④⑤ C.④⑤⑥ D.②③⑥
5.两个相似多边形面积之比为5∶1,周长之比为 m∶1,则 ()
A. B. C. D.
6.如图2,在△ABC中,如果AB=30cm,BC=24cm,CA=27cm,AE=EF=FB,EG∥DF∥BC,FM∥EN∥AC,图中阴影部分三个三角形周长的和为()
A.70cm B.75cm C.80cm D.81cm
7.下列说法正确的是()
A.分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则△ADE是△ABC放大后的图形
B.两位似图形的面积比等于位似比
C.位似图形的周长之比等于位似比的平方
D.位似多边形中对应对角线之比等于位似比
8.如图3,已知DE∥BC,EF∥AB,则下列比例式中错误的是()
A. B. C. D.
9.如图4,将一个矩形纸片ABCD沿边AD和BC的中点连线EF对折,要使矩形AEFB与原矩形相似,则原矩形的`长与宽的比应为()
A. B. C. D.
10.某校有两块相似的多边形草坪,其面积比为9∶4,其中一块草坪的周长是36米,则另一块草坪的周长是()
A.24米 B.54米 C.24米或54米 D.36米或54米
二、选择题
11.把一个长为2的矩形剪去一个正方形后,所剩下的矩形与原矩形相似,则原矩形的宽为 .
12.已知 ,则 .
13.已知两个数4和8,则两数的比例中项是
14.已知线段d是线段a、b、c的第四比例项,其中a=2 cm,b=4 cm,c=5 cm,则d等于
15.△ABC的三边长分别为 , , ,△A′B′C′的两边长分别为 和 ,如果△ABC∽△A′B′C′,那么△A′B′C′的第三边长为 .
16.把一个多边形的面积扩大为原来的3倍,且与原来的多边形相似,则其周长扩大为原来的 倍.
17.有同一个地块的甲、乙两张地图,比例尺分别为1∶3 000和1∶5 000,则甲地图和乙地图的相似比是 .
18.在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,AD=9,则AB2∶AC2= .
19.如图5,Rt△ABC中,有三个正方形,DF=9cm,GK=6cm,则第三个正方形的边长PQ= .
20.电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB长为20m,试计算主持人应走到离A点至少 m处?如果她向B点再走 m,也处在比较得体的位置?(5≈2.236,结果精确到0.1m)
21.已知:如图7, 中,AE∶EB=1∶2,如果S△AEF=6cm2,则S△CDF= .
三、平心静气,展示智慧
22.8.如图,在Rt△ABC中,CD是斜边AB上的高,
1.如AC=8,BC=6,求AD,CD
2.如AD=6,BD=4,求CD
23.已知:如图8,在△ABC中,AD⊥BC于D,BC=24,AD=18,矩形EFGH内接于△ABC,且EH=2EF,求矩形EFGH的周长.
24.如图9,一人拿着一支刻有厘米分划的小尺,他站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分划恰好遮住电线杆,已知臂长约60厘米.求电线杆的高.
四、拓广探索,游刃有余
25.在△ABC中,AB=4.
(1)如图11(1)所示,DE∥BC,DE把△ABC分成面积相等的两部分,即SⅠ=SⅡ,求AD的长.
(2)如图11(2)所示,DE∥FG∥BC,DE、FG把△ABC分成面积相等的三部分,即SⅠ=SⅡ=SⅢ,求AD的长.
(3)如图11(3)所示,DE∥FG∥HK∥…∥BC,DE、FG、HK、…把△ABC分成面积相等的n部分,SⅠ=SⅡ=SⅢ=…,请直接写出AD的长.
26.如图12,在矩形ABCD中,AB=12厘米,BC=6厘米.点P沿AB边从A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么:
(1)当t为何值时,△QAP为等腰直角三角形?
(2)求四边形QAPC的面积;提出一个与计算结果有关的结论;
(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?
27.将△ABC按下列要求画出它的位似图形。
①在三角形内部任找一个点,作△ABC的位似图形,使它的位似比为2:1
②在三角形外部任找一个点,作△ABC的位似图形,使它的位似比为1:2
在此之前,学生已经直观地认识了三角形,生活中也积累了对三角形认识的丰富经验。但学生还不能用准确简洁的语言描述三角形的定义。因此,这节课的重点就是让学生从比较抽象的水平上再次探索三角形的特征,形成一个比较清晰概念。同时在活动中渗透方法,让学生感受“概念——形状特征——图形特性——应用”的探究图形的一般方法,提高学生的分析、推理和抽象概括的能力,为接下来学习其他的图形特点的打下基础。
在本节课的教学中,运用动手实践、自主探索、合作交流的学习方式,通过实践操作、讨论、交流等活动,让学生经历“从已有经验为基础——动手实验发现规律——体会应用”的认识全过程,做到“以思考指导实践,实践验证思考”的科学态度,学生从探索实践中得到的不仅是知识,更有思考的和解决问题的方法。我设计了以下五个环节:
第一环节:“找一找——引入课题”。
从欣赏生活中漂亮的图片入手,在让学生感受三角形所创造的美丽世界的同时,从整体上抽象和感知了三角形,激起学生主动探究的欲望,也使学生感受到数学与生活的密切相关。
第二环节:“摸一摸——发现特征”。
让学生尝试从不同的图形中摸出三角形,是在整体感知三角形的基础上,引导学生从特征入手,在与其他图形的对比中,将学生对三角形较直观的感知上升为理性的思考,从而深刻地感受三角形的特征。
第三环节:“画一画——形成概念”。
在看、摸的基础上,尝试画一个规范的三角形,在互相评价、指正的过程中,找到规范的画法“直的线段和封闭图形”,并让学生结合画的方法概括“什么样的图形是三角形”,如何判定某一种说法(词语)是准确的,如何用准确地词语来描述三角形,是本课的重点难点所在。在学生出现疑惑时,我引导学生找到形成概念的标准“如果按照这个概括画出的可能是其他的图形,说明这种概括不够准确”,请小组四人合作,画一画,在画的过程中体验“组成”等一类词语的问题所在,突出对“围成”含义的理解。并在小结中,指出“三条线段——说清了边的特征”,“围成——画三角形的方法”,与前面画三角形时的“直的线段”和“封闭图形”形成对应。整个环节都是围绕概念中的这两个要素,利用画图的方法体验概念形成的全过程。
第四环节:“摆一摆——理解特性”。
“先猜——再拉——最后摆”,“拉”是教材中所呈现的方法,目的是让学生体会三角形的稳定性。拉一拉后不容易变形并不是三角形稳定性的实质。因此,教学中增加了稳定性实质的教学——“摆”,通过动手操作,尝试用长度确定的三根小棒能否摆出形状、大小不同的三角形,在讨论、对比、演示中体会三角形稳定性的实质:只要三角形的三边长度确定了,摆出的三角形就是唯一的。并通过与四边形学具的对比演示,反衬三角形的这一特性。
第五环节:“想一想——解决问题”。
加强数学与实际生活的联系,体会数学的价值。
设计中突出了以下几点:
1、注重数学学习和现实生活的联系,体验数学学习的价值。
课始,请学生欣赏生活中三角形,让学生体会到处处有数学,唤起学生研究三角形的兴趣,在三角形稳定性的教学中,把对问题的研究自然的的融入生活之中,充分的把数学学习与现实生活联系在一起,让学生切实的感悟到“数学源于生活,服务于生活”的理念。
2、以实践活动贯穿全课,注重体验感受,并体现一定的层次性。
利用学生已有的知识经验,让学生“找一找”,抽象出三角形,从整体上感知了三角形;“摸一摸”,由直观感知上升为理性的思考,在对比中深刻地感受三角形的特征;“画一画”,在思考的基础上,动手实践,在画中感悟规范的画法,在画中体验概括的准确性,在画中形成概念;“摆一摆”,在与“拉”的对比中,在摆成的三角形和四边形的边的长短和形状的对比中,突出稳定性的实质,深刻的理解了特性。各环节层层深入,在活动中逐步将学生的认识引向深入,让学生经历了“直观感知——深入思考——理解本质”的认知过程,体验了概念形成的方法。
3、创设交流的氛围,加强语言概括能力的培养。
一、选择题
1.如图1,若DE∥FG,且AD=DF,则△ADE与△AFG的相似比为
()
图1
A.1∶2
B.1∶3
C.2∶3
D.2∶5
2.如图2,在△ABC中,DE∥BC,ADDB=12,DE=3,则BC的长是
()
图2
A.6
B.8
C.9
D.12
3.若△ABC∽△A'B'C',∠C=∠C'=90°,AB=5,AC=3,A'B'=10,则B'C'的长为
()
A.8
B.10
C.6
D.无法确定
4.若三角形的三边长之比为3∶5∶7,与它相似的三角形的最长边长是21,则另两边长之和是
()
A.15
B.18
C.21
D.24
5.如图3,F是▱ABCD的对角线BD上的一点,BF∶DF=1∶3,则BE∶EC的值为()
图3
A.12
B.13
C.23
D.14
二、填空题
6.如图4,已知AB∥EF∥DC,则△AOB∽ ∽△COD.图4
7.如图5,直线l1,l2,…,l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3,l6相交于点B,E和点C,F.若BC=2,则EF的长是.图5
8.如图6,E是▱ABCD的边CB延长线上一点,EA分别交CD,BD的延长线于点F,G,则图中相似三角形共有 对.图6
9.如图7,在▱ABCD中,点E在AB上,CE,BD交于点F.若AE∶BE=4∶3,且BF=2,则DF=.图7
10.如图8,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F.若AD=1,BD=2,BC=4,则EF=.图8
三、解答题
11.如图9,已知△ABC∽△ADE,AE=5,EC=2.5,BC=4.77,∠BAC=∠C=40°.(1)求∠AED与∠ADE的大小;
(2)求DE的长度.图9
12.如图10,在△ABC中,点D在边AB上,点F,E在边AC上,DE∥BC,DF∥BE.求证:DFDE=BEBC.图10
13.如图11,在▱ABCD中,E,F分别是边BC,CD上的点,且EF∥BD,AE,AF分别交BD于点G和点H,BD=12,EF=8.求:
(1)DFAB的值;(2)线段GH的长.图11
14.如图12,AD是△ABC的中线,点E在AC上,BE交AD于点F.某数学兴趣小组在研究这个图形时得到如下结论:
(1)当AFAD=12时,AEAC=13;
(2)当AFAD=13时,AEAC=15;
(3)当AFAD=14时,AEAC=17;
……
当AFAD=1n+1时,求AEAC的值,并说明理由.图12
答案
1.A
2.[解析]
C ∵DE∥BC,∴△ADE∽△ABC,∴DEBC=ADAB=ADAD+DB=13,∴BC=3DE=3×3=9.3.[解析]
A ∵△ABC∽△A'B'C',∴ABA'B'=BCB'C'.∵∠C=90°,∴BC=AB2-AC2=52-32=4,∴510=4B'C',解得B'C'=8.故选A.4.[解析]
D ∵相似三角形的对应边成比例,∴与已知三角形相似的三角形的三边长之比也为3∶5∶7,∴另两边长分别为9和15,∴另两边长之和为24,故选D.5.[解析]
A ∵四边形ABCD是平行四边形,∴AD=BC,BE∥AD,∴△BEF∽△DAF,∴BE∶DA=BF∶DF=1∶3,∴BE∶BC=1∶3,∴BE∶EC=1∶2.6.[答案]
△FOE
[解析]
∵AB∥EF,∴△AOB∽△FOE.∵EF∥DC,∴△FOE∽△COD.7.[答案]
[解析]
∵l3∥l6,∴BC∥EF,∴△ABC∽△AEF,∴BCEF=ABAE=25.∵BC=2,∴EF=5.8.[答案]
[解析]
∵四边形ABCD为平行四边形,∴BC∥AD,AB∥CD,△ABD∽△CDB.∵AB∥CF,∴△EAB∽△EFC.∵AD∥EC,∴△AFD∽△EFC,∴△EAB∽△AFD.∵AD∥BE,∴△ADG∽△EBG.∵DF∥AB,∴△GDF∽△GBA.∴总共有6对.9.[答案]
143
[解析]
∵在▱ABCD中,AB∥CD,AB=CD,∴△BEF∽△DCF,∴BEDC=BFDF.∵AE∶BE=4∶3,∴BEDC=37=BFDF.∵BF=2,∴DF=143.10.[答案]
[解析]
∵DE∥BC,∴∠F=∠FBC.∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DF=BD=2.∵DE∥BC,∴△ADE∽△ABC,∴ADAD+BD=DEBC,即11+2=DE4,解得DE=43,∴EF=DF-DE=2-43=23.故答案为23.11.解:(1)由△ABC∽△ADE可知,∠AED=∠C.∵∠BAC=∠C=40°,∴∠AED=∠C=∠BAC=40°,∴∠ADE=180°-∠BAC-∠AED=100°.(2)由△ABC∽△ADE可知AEAC=DEBC,∴57.5=DE4.77,∴DE=3.18.12.证明:∵DE∥BC,∴△ADE∽△ABC,∴ADAB=DEBC.∵DF∥BE,∴△ADF∽△ABE,∴ADAB=DFBE,∴DFBE=DEBC,∴DFDE=BEBC.13.解:(1)∵EF∥BD,∴△CFE∽△CDB,∴FCDC=EFBD=812=23,∴DFDC=13.又∵DC=AB,∴DFAB=13.(2)∵DC∥AB,∴△DFH∽△BAH,∴FHAH=DFBA=13,∴AHAF=34.∵EF∥BD,∴△AHG∽△AFE,∴GHEF=AHAF=34,∴GH=34EF=34×8=6.[素养提升]
1. 教材内容:
本课是九年义务教育课程标准实验教科书七年级(下)等腰三角形,本课内容在初中数学教学中起着比较重要的作用。通过等腰三角形的特征反映在一个三角形中等边对等角关系,并且对轴对称图形特征的直观反映(三线合一),对以后直角三角形和相似三角形学习起到相当重要的作用。
2、教学目标:
(1)认知目标:
要求学生掌握等腰三角形的特征和三线合一的特征,使学生会用等腰三角形的特征进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法;
(2)能力目标:培养观察能力、分析能力、联想能力、表达能力;使学生初步学会分析几何证明题的思路,从而提高学生的逻辑思维能力及分析问题、解决问题的能力;
(3)情感目标:通过亲自动手,发现“等腰三角形两底角相等”和“三线合一”特征,对学生进行数学美育教育。
3、教学重难点:
(1)教学重点:
等腰三角形两底角相等的特征是本课的重点。
(2)教学难点:
等腰三角形“三线合一”特征的运用是本课的难点。
4、教具准备:
为了使学生了解这堂课,本节课要求学生自制若干个不同等腰三角形和一般性三角形纸片模型。
二、说教学方法:
由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习轴对称图形,对轴对称图形的分析相对比较好,再加上七年级学生思维的感官性,所以本课由学生通过翻折等腰三角形纸片去发现等腰三角形的两个特征,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,我通过实验观察,采用教具直观教学法,启发式教学法和师生互动式教学模式进行教学。
教学过程中注意师生之间的情感交流,培养学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习模式,培养学生的数形结合的思想。对于等腰三角形的“两底角相等”和“三线合一”这两个特征,通过让学生动手操作,让学生翻折不同的等腰三角形,如顶角是锐角、钝角或直角的等腰三角形,以及一般三角形的模版,从而让学生逐步通过等腰三角形的轴对称变换探索出相关的特征。针对“三线合一”这一特征,学生不容易引起重视,而它又是本课的难点和今后的广泛应用,故在教学中适当补充例题进行教学,重在引起学生对这一特征的巩固和掌握。
为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计了七个教学环节:
(一)、温故知新,激发情趣
(二)、构设悬念,创设情境
(三)、目标导向,自然引入
(四)、设问质疑,探究尝试
(五)、启发诱导,初步运用
(六)、归纳小结,强化思想
(七)、布置作业,引导预习
三、说学生学法:
⑴知识掌握上,七年级学生在小学阶段已经接触了三角形和等腰三角形的相关知识以及刚刚学习轴对称图形和三角形内容,再加上七年级学生对于图形的直观性容易接受,所以本课安排学生通过翻折等腰三角形去发现等腰三角形的两个特征不存在太大的问题。
⑵学生学习本节课的知识障碍:学习等腰三角形的两底角相等和三线合一的应用有难度,学生不易灵活应用,容易造成应用中的掉三落四的现象,所以教学中灵活结合学生练习中可能存在的问题,进行简单明了、深入浅出的分析讲解。
⑶七年级学生的理解能力和思维特征以及生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中灵活抓住学生这一生理心理特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。
⑷在心理上,老师抓住学生对数学课兴趣这有利因素,引导学生认识到数学的科学性和应用性,学好数学有利于其他学科的学习以及学科知识的渗透性。
四、说教学程序设计:
(一)、温故知新,激发情趣:
1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?
2、指出等腰三角形的腰、底边、顶角、底角。
(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。)
(二) 、构设悬念,创设情境:
3、一般三角形有哪些特征? (三条边、三个内角、高、中线、角平分线)
4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?
一、教材分析
1、教材的地位与作用:
本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察———发现———猜想———论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
2、教学目标:
知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。
过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。
解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。
情感态度:通过引导学生对图形的.观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)
3、教学重点与难点:
重点:等腰三角形的性质的探索和应用。
难点:等腰三角形性质的推理证明。
二、教法设计:
教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,组织学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。
三、学法设计:
在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。
四、教学过程:
根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程
1、创设情景:
首先向同学们出示精美的建筑物图片,并提出问题串:
(1)什么是轴对称图形?这些图片中有轴对称图形吗?
(2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:
(3)a、等腰三角形是轴对称图形吗?b、等腰三角形具备哪些性质呢?引出本节课的课题—我们这节课来探究等腰三角形的性质。
①拿出课下制作的等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)
③分组讨论。(看哪一组气氛最活跃,结论又对又多。)
然后小组代表发言,交流讨论结果。
④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?
(教师引导学生进行总结归纳得出性质1,2)
性质1:等腰三角形的两底角相等。(简写成“等边对等角”)
性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)
说教材:
今天我说课的内容是苏教版第9册的“三角形面积的计算”。
在学这课之前,学生已经有的知识基础有:长方形、正方形、平行四边形的面积计算;一些简单多边形的特征等。学习方法方面的基础有:在学习习近平行四边形面积计算的时候,学生已经初步感受了可以用剪拼、平移、旋转等操作活动,使图形等积变形。事实上,在学这课之前,部分学生对三角形面积计算的公式并不是一无所知,但那只是一种机械记忆,知道公式,说不清所以来。
说教法、学法:
这课我会采用分组学习的方式,事先给每组一些操作材料,让大家在操作中交流,在交流中丰富感知,并逐步形成正确的认识。
教学目标:
1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确计算三角形的面积,并应用公式解决简单的实际问题。
2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。
教学重点:
三角形面积计算公式的推导
教学难点:
帮助学生认识到为什么要“÷2”
说教学过程及相关意图:
一、复习
我们已经学习过哪些平面图形的面积计算?请你用字母公式来说一说。
老师随学生回答板书:S长=ab,S正=a²,S平=ah
能说说这些公式是分别用什么方法得到的呢?
[复习中的这两问,第一个问题是帮助学生回忆相关的知识基础,这是学习新知的一个重要前提。后一问,主要是从学习方法上考虑的。数面积单位的方块数或是用等积变形,这两种方法将是我们这课学习三角形面积计算的重要方法。
二、探索三角形面积计算的公式
1、学习例4
将刚才复习中的三种图形,利用课件的演示,添上一条对角线。
问:现在我们看到的图形是什么?(三角形)
课件继续演示:添上方格图,并把其中一个三角形变色。[page]
S 表示三角形的面积,a和h分别表示三角形的底和高,谁能用字母来表示上面的公式?
板书:S=ah÷2
3、学生在小组交流的时候,可能会有不同的意见,比如就只用一个三角形,通过剪、拼,也可以得到一个平行四边形。如图:
这个三角形的面积就等于平行四边形的面积。平行四边形的底就是三角形的底,平行四边形的高是三角形高的一半,所以平行四边形的面积=底×(高÷2)
4、学生阅读第16页的“你知道吗?”,通过阅读,再与上面的方法做一比较。
师:这几种方法都正确地算出了三角形的面积。它们之间有什么相同的地方呢?
[例5的教学,是本课的重点。书上的例题,我着重让学生通过分组探究的方式去学习,在交流中把应掌握的知识有层次地一一呈现。这些知识是本节课的关键。
估计到学生在操作的时候,有可能会出现只用一个三角形拼平行四边形的方法,这种方法与例题方法以及与“你知道吗?”的对比,可以从多角度来强化“÷2”的理由,我觉得花一些时间还是有必要的。而且这样的做法,也是基于学生的学习实际和对传统的数学文化了解。]
三、计算公式的应用
1、完成“练一练”
电脑分别演示这两题。在交流答案的时候,引导学生说清楚什么时候要“×2”,什么时候要“÷2”,为什么?以进一步加深对三角形面积公式与平行四边形面积公式之间联系的理解。
继续完成p.17想想做做的第1题。
2、完成“试一试”,算出这块三角形交通标志牌的面积。
在交流的时候,要给学生正确解答这类题书写格式的示范,培养学生规范地应用计算公式完成练习。
学生练习,完成想想做做的第2题
指名板演,讲评的时候注意发现学生练习中的问题。比如书写的格式、计算中的问题、“÷2”的遗漏、单位名称等,都要一一指出并纠正。[page]
一个特例:第一张图画的是一个直角三角形,它的一组直角边就分别是它的底和高。
3、画一画,比一比:在方格图上画出面积是6平方厘米的三角形,你能有几种画法?
比如:
汇总学生的各种画法之后,指名说说自己在画的时候是怎么想的?通过交流,使学生进一步认识到“6平方厘米”先要考虑“12平方厘米”(对应的平行四边形面积),进而考虑只要底和高相乘得“12”就可以了;这样画出的三角形虽然形状各不相同,但面积都是6平方厘米。
[练习的设计主要分这几个环节:第一个环节重点是放在“÷2”和“×2”的区别上。主要是因为从以往学生练习来看,这是错误中的主流,一定要引起学生的重视。
第二个环节的练习,主要是让学生能正确地应用三角形面积公式计算各个三角形的面积。在应用的过程中,规范学生的书写,培养良好的作业习惯。
第三个环节是我自己修改的练习,数据具有更多的可能性,有一定的开放性,主要还是激发学生的探索欲望。通过这个开放练习,使学生又一次地认识到三角形与对应的平行四边形面积之间的联系。]
四、全课总结:
这节课我们学习的是三角形面积的计算,说说你知道了哪些具体的知识?怎么得到这些知识的?
[整节课的设计,我比较注重让学生用“旧”的方法来获取“新”的知识——用拼的方法得到平行四边形的面积,进而得到三角形的面积计算公式。这种方法同时也是后面学习梯形面积计算的方法,所以说这样的教学是为学生的后续学习做了充分的准备,对学生学习能力的获得是有帮助的。
2、教材简析“三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生学习三
一、说教材
1、教学内容
九年义务教育六年制小学数学教科书(北师大版)四年级下册第24至25页的内容及相关练习题。
2、教材简析
“三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生学习三角形的特征从角和边的不同角度对三角形进行分类做好了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下基础。
3、教学目标
根据教材内容及学生的知识水平和心理年龄特点,制定了以下教学目标:
(1)让学生通过学习活动,发现三角形和边的特征会给三角形的分类,理解并掌握各种三角形的特征。
(2)培养学生观察,操作和抽象概括能力。
(3)激发学生的主动参与意识,自我探索意识和创新精神。
4、教学重点、难点的确定
根据《三角形分类》这一知识的地位和作用,本课设计的“观察、操作、比较、小组讨论”等教学环节都是为了使学生能近角和边的特点给三角形分类,因此这是教学重点。
根据学生的认识水平和年龄特点,如何引导学生归纳出各种三角形的特征,这是学生掌握本课知识的一个质的飞跃。
因而,“能理解并掌握各种三角形的特征”是本课教学的难点。
5、教学准备
除了准备彩色卡纸,三角形平面图等,课前布置学生把课本P113图2的三角形剪下来。
二、说教法、学法
根据新课标的要求和学生的实际,以直观教学为主,运用观察动手操作,小组讨论等多种方法,结合教材,让学生在“看一看”,“量一量”,“比一比”,“分一分”,“说一说”的自主探索过程中发挥学生相互之间的作用,让学生自己在动脑、动手、动口中促进思维的发展,培养学生的动手操作能力,语言表达能力和自学能力。
在教学中,首先把握新旧知识的衔接点,利用教材12个三角形组成的图案,让学生说说自己对三角形的认识,引出课题“三角形的分类”。放手让学生动手操作,小组讨论交流,寻找三角形分类的方法,最后让学生说说自己归类的依据,归纳出各种三角形的特征,培养学生的抽象概括能力。
三、说教学过程
为了完成本课的教学目标,设计了以下的教学过程。
(一)创设情景,揭示课题
1、出示图案(采用直观教具吸引学生的注意力)
这个图案像什么?由什么图形拼成的?
2、考考你的眼力,这几个三角形的形状一样吗?什么不一样?(让学生具体说一说)
在三角形这个大兵营里,它们的角和边各有特点。这节课我们就根据三角形角和边的特点给它们分类。板书课题:三角形的分类
由学生对三角形的认识引入课题,即为学生接受新知识做好铺垫,也让学生明确学习内容直奔放主题。
(二)动手操作,探讨三角形分类方法
1、根据角的特点,对三角形进行分类。
新课标倡导学生主动参与,乐于探究,勤于动手,培养学生搜集和处理信息的能力,分析解决问题的能力,以及交流与合作的能力,把学习变成人的主动性、能动性、独立性不断生成、张扬、发展、提升的过程。
我设计了如下环节:
(1)学生先是独立思考、独立操作,独立探索分类。(事先给每个学生准备一个学袋:一张表格和一张彩色卡纸)
①学生根据表格对这12个三角形进行观察,再填表。填完表格,再对表格中的数据进行观察,就能容易地进行分类。
②把分类的结果贴在彩色卡纸上。
①②③④⑤⑥⑦⑧⑨⑩1112
锐角个数
直角个数
钝角个数
(2)小组交流
学生在小组内分别展示自己的劳动成果,说说自己的分类依据。
(3)展示学生代表作品,学生互评。
(4)师小结归纳(边把分类依据板书出来)
(5)鼓励学生给自己分类的三角形取个名字。
让学生感受到自己就是学习的主人,体验劳动成果的喜悦心情,增强学习的信心。
(6)引导学生对三类的三角形进行比较,得出相同点:每个三角形至少有两个锐角。
2、游戏巩固
利用教材第25页猜猜来个教学游戏:
猜出被信封遮住的可能是什么三角形,答对者,就把里面的三角形送给他。
通过数学游戏,可以激发学生学习兴趣,还可以巩固新知、形成技能。并对直角三角形、锐角三角形、钝角三角形的相同点、不同点有了进一步的了解。
3、指导学生根据边的特点,对三角形进行分类。
由于让学生观察的三角形个数较多,要逐个测量边的长度再进行比较,总结归纳比较费时。所以这一环节安排以小组为单位,利用老师发放的学袋,由小组长来安排分工测量,填好研究报告单,然后一起观察,一起讨论,一起分类。师再依据小组代表发言后引导归纳,从而引出不等边三角形和等腰三角形,等边三角形。
(三)小小辩论会
为了帮助学生理解“等边三角形也是等腰三角形”设计了这么一个环节。
由正、反两方充分阐述自己的观点,师再适时点拨,让学生在热烈的学习氛围中,巩固所学知识并更上一台阶。
(四)全课总结
今天你学得开心吗?什么事让你开心?让学生学会自我评价,体现了新课标评价的多样性,还可以训练学生的语言发展能力。
四、说板书设计
本课的板书意在突出重点,解决知识难点,有学生分类的作品展示,有教师板书的知识点。教学内容一目了然,也便于学生观察、比较。
板书设计:
三角形分类
(学生三个锐角锐角三角形(学生三边不相等不等边三角形
作品一个直角直角三角形作品两边相等等腰三角形
九年级《囚绿记》的说课稿
一、说教材
《囚绿记》是苏教版九年级上册第六单元的一篇课文。它是我国现代作家、翻译家陆蠡在抗日战争爆发后写成的一篇咏物抒情的散文。本文讲述了作者在北平公寓囚禁常春藤的故事,描述了绿枝条的生命状态和“性格特点”,也写出了作者的生存状态和真挚心愿,含蓄的揭示了华北地区人民面临日本帝国主义侵略的苦难命运,象征作者和广大人民坚贞不屈的民族气节。《囚绿记》其写景状物新颖独特、含蓄蕴藉,感情真挚,具有很强的感染力,适合中学生朗读、赏析,所以,教师应指导学生对其进行鉴赏评价,充分发挥文本的示范作用,实现新课标所规定的教学目标。
二、说教学目标
新课标表明,语文老师在设计教学目标时必须落实语言素养训练方面的目标,在教学中要摆正篇章分析与学生感悟的关系,把分析当成帮助学生领悟的手段,而非目的。本文的意思有两个层面,一个是叙事层面,表现了作者对绿枝条的无比喜爱,一个是象征层面,即本文的深层寓意。前者意思浅显,学生通过阅读可以理解,后者比较含蓄,学生不易把握,因此我把本文的教学目标设定为如下3点,并把其中第2、3点作为教学的重点和难点:
1、熟读文本,把握文章的结构及作者感情脉络。
2、品味重要语句,体会作者在文中寄托的对绿的情感,理解绿的内涵,把握文章主旨。
3、学习本文借物抒情和托物寄意的象征手法。
三、说学习方法
1、自主、合作、探究。这是新课程的核心学习观念,本教学设计为了切实落实这一理念,将采用尽可能少要甚至不要老师提示的“非指示性教学”。其做法就是强调学生“用自己的心灵去感悟,用自己的观点去判断,用自己的思维去创新,用自己的语言去表达”。
2、指导学生在课前做好预习,用圈点批注的阅读方法进行个性化的阅读;利用导学案深入研读课文;利用网络、图书等渠道搜集、整理信息,以拓展视野,激发读书兴趣,拓宽学习渠道。
四、说教学方法
本文篇幅不长,且文字不深,学生基本能读懂,所以本文的教学时间拟定为一课时。
1、做好学生课前预习。首先指导学生采取圈点批注法阅读,利用导学案把本课一些问题提示性前置给学生参考,便于学生深入预习。其次要求学生利用网络、图书等渠道搜集、整理信息。如作者介绍、背景资料,以及常春藤的图片和常春藤的生长特点。
2利用多媒体辅助教学。本课我试图用多媒体手段来增加我的课堂容量以及课堂美感。我在课堂教学中利用班班通各项功能和资源,强化了学生对文本的认知。我还在课前精心制做了课件,链接一些视频创设情境,激发学生的学习兴趣,拓展视野,丰富阅历,扩大知识容量,拓宽学习渠道,力求做到把信息技术和教学深度融合。因此,在教学过程中,我设计了一系列问题,配合多媒体引领学生去读书,去理解,去思考,最大限度的让学生参与、探究、合作,让学生成为课堂的主人。
五、说教学过程:
(一)、导入
多媒体播放《常春藤》诗歌朗诵视频,创设情境,导入新课。
(二)、自主学习
课前预习
(三)、初读课文 整体感知
阅读记叙性散文,首先要了解文章的对事件前因后果的叙述过程,抓住文章的关键句子,在此基础之上理清文章的结构,体会作者的思想情感。
(四)、走近那一抹绿
1.绿是什么?“我”为什么如此热爱这抹绿?
2.为什么要“囚”绿?
3.我“囚”住了那抹绿吗?
4、找出文中描写“囚绿”后“常春藤”的形象的语句。从中你感受到作者笔下的常春藤有怎样的特点呢?
5、人绿对对碰。在“囚绿”的过程中,“绿”与“我”在对峙中进行了怎样的心理对话?
老师先对学生提出读书要求:《囚绿记》一文重点描写的情节是“囚绿”,要把握作者囚绿的原因,应注意文中哪些语言信息?请找出来并做批注。学生自主阅读、思考、批注,必要时小组讨论。整个过程先由学生练习、活动,然后老师发现问题,指导总结。体现以学生为主体和老师的指导作用。
(五)、认识那一抹绿
知人论世:联系当时的社会背景,说说“绿”的象征意义,解释文章的主题。
小结:
作者通过赞美常春藤“永不屈服于黑暗”的精神,颂扬了向往光明、自由、坚强不屈的广大中国人忠贞不屈的民族气节,抒发了自己忠于祖国的情怀。
(六)、感悟那一抹绿
本文给你什么样的深刻人生启示?
这个问题设置是为了引导学生对本课内容进行一个课堂总结,引导学生对主题进一步个性化拓展,引导学生思考人生问题,突显作品的现实意义。
(七)、抒写那一抹绿色
课文采用象征手法来描写景物,试着借鉴本文的写法,调动你的情感和想象,描写一种景物,力求写出景物的象征意义。
学有所获,学以致用,以片段写作方式训练学生读写结合能力,巩固本课写景状物艺术手法的运用能力,提高学生语言表达能力。
六、说板书
本课是九年级第六单元第一课,本单元以music(音乐)为中心话题,让学生学会用定语从句谈论自己所喜爱或偏好的艺术,学习表达自己的爱好。从结构内容上说,定语从句是初中阶段必需了解的一种句法结构。本单元将通过一系列的练习(句型结构练习、听力练习、精读写作练习、自我检测、泛读练习)来达到学习目的,完成学习任务。本单元共需要七个课时。本课时所进行的是基本的句型结构和部分听力练习,是整个单元学习的双基——基本和基础。
知识目标:
The key word: prefer,lyric
Language goals: what kind of music do you like? Why?
2. What kind of singers do you like? Why?
Teaching goals:
To learn to use Relative clause with that and who
I like music that I can dance to.
I like music that has great liyrics.
I like music that I can sing along with.
I like music that isn’t too loud.
过程与方法, 在听说读写的教学环节中,采用看图说话和编造对话方式进行授课。
情感态度与价值观,让学生学会用定语从句谈论自己所喜爱或偏好的艺术,学习表达自己的爱好。
二、说教法
这一节课我分为两个部分:第一部分引入定语从句的学习;第二部分围绕I like music that I can dance to.这一话题展开思维(1a)、听力(1b)、 口语 (1c) 训练进行授课,最终完成本课时的教学任务。采用情景教学、看图说话、小组对话以及听力训练的方法进行教学。
三、说学法
虽然学生在以前所学的内容当中已经有所接触定语从句,但仅仅是了解而已,对于定语从句地系统地掌握需要一定地强化,因此,本课地目标语言就变为本课地难点了。在解决这一问题上,让学生通过“情景教学、看图说话、小组对话以及听力训练”的方法、经过反复练习的.方法,让其达到掌握并运用的目的。
四、说过程
首先,我将采用音乐视频片段导入新课,引出这一单元地主题:I like music that I can dance to , 然后再运用幻灯片来展现以前在课文和听力中出现地定语从句,从而加强对定语从句的理解与掌握。同时运用幻灯片,将学生对定语从句地认识从音乐扩展到更大地层面,比如人物、衣服动物等方面;其次,运用幻灯片将本课出现地目标语言让学生加以练习(1a),在掌握目标语言地基础上完成听力训练,并完成对听力(1b)习题的处理,让学生在听力中对目标语言加以应用,达到巩固地目的。
同时利用本课地目标语言和幻灯片,进行口语训练,同时加以拓展练习,让学生对所学内容进行“消化、吸收”,达到应用地目的。
【九年级数学《相似三角形》说课稿】推荐阅读:
数学二年级《三角形认识》说课稿02-28
九年级下册相似三角形02-28
四年级数学《认识三角形》评课稿06-03
《三角形的内角和》数学说课稿02-02
一年级数学《左右》说课稿10-24
七年级数学说课稿《数轴》06-18
一年级数学下册说课稿07-28
初中数学七年级说课稿10-15
小学一年级数学《统计》说课稿10-18
三年级上册数学《周长》说课稿12-13