《条件语句》的高中数学说课稿(精选6篇)
1.教材所处的地位和作用
在此之前,学生已学习了算法的概念、程序框图与算法的基本逻辑结构、输入语句、输出语句和赋值语句,这为过渡到本节的学习起着铺垫作用。这一节课主要的内容为条件语句表示方法、结构以及用法。条件语句与程序图中的条件结构相对应,它是五种基本算法语句中的一种,。通过本节课的学习,学生将更加了解算法语句,并能用更全面的眼光看待前面学过的语句,并为以后的学习作好必要的准备。本节课对学生算法语言能力、有条理的思考与清晰地表达的能力,逻辑思维能力的综合提升具有重要作用。
2.教学的重点和难点
重点:条件语句的.表示方法、结构和用法;用条件语句表示算法。
难点:理解条件语句的表示方法、结构和用法。
二、教学目标分析
1.知识与技能目标:
⑴正确理解条件语句的概念,并掌握其结构。
⑵会应用条件语句编写程序。
2.过程与方法目标:
⑴通过实例,发展对解决具体问题的过程与步骤进行分析的能力。
⑵通过模仿,操作、探索、经历设计算法、设计框图、编写程序以解决具体问题的过程,发展应用算法的能力。
⑶在解决具体问题的过程中学习条件语句,感受算法的重要意义。
3.情感,态度和价值观目标
⑴能通过具体实例,感受和体会算法思想在解决具体问题中的意义,进一步体会算法思想的重要性,体验算法的有效性,增进对数学的了解,形成良好的数学学习情感,增强学习数学的乐趣。
⑵通过感受和认识现代信息技术在解决数学问题中的重要作用和威力,形成自觉地将数学理论和现代信息技术结合的思想。
⑶在编写程序解决问题的过程中,逐步养成扎实严谨的科学态度。
三、教学方法与手段分析
1.教学方法:根据本节内容逻辑性强,学生不易理解的特点,本节教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这种方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。
2.教学手段:运用计算机、图形计算器辅助教学
四、教学过程分析
1.创设情境(约4分钟)
首先,我要求学生们编写程序,输入一元二次方程的系数,输出它的实数根。这样可以把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,因为要解决这一问题,根据我们之前所学的三种算法语句是无法解决的,这样就引出今天我们所要学习的内容。
2.探究新知(约8分钟)
为了引入概念,我首先给出了一个基本的应用条件语句能够解决的例题:
例1 编写一个程序,求实数x的绝对值。
整个过程由师生共同分析完成。老师要引导学生分析、研究例题中的两个程序,既要让学生们看到已知的三种语句,更要注意到未知的语句,即条件语句。总结上述例题的程序可得出条件语句的两种一般格式,接下来由师生共同对这两种格式进行研究.
3.知识应用(约15分钟)
此环节有两个例题
例2 编写程序,写出输入两个数a和b,将较大的数打印出来
例3 编写程序,使任意输入的3个整数按从大到小的顺序输出.
先把解决问题的思路用程序框图表示出来,然后再根据程序框图给出的算法步骤,逐步把算法用对应的程序语句表达出来。(程序框图先由学生讨论,再统一,然后利用图形计算器演示,学生会惊喜的发现:自己也是个编程高手了!这样可以激发学生们的学习兴趣)
4.练习巩固(约4分钟)
课本第30页第3题
练习可巩固学生对知识的理解,也可在练习中发现问题,使问题得到及时的解决。
5.课堂小结(约5分钟)
条件语句的步骤、结构及功能.
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用
6.布置作业
课本练习第3、4题
上午好! (敬礼)
我的说课题目是《分数的基本性质》。
教材分析:《分数的基本性质》是小学数学第十册第一单元第四节内容 (例1、例2) 。它是学生在已经掌握了分数的意义、分数大小的比较的基础上进行教学的。并对今后进一步学习约分、通分, 分数的四则运算, 分数的应用题起着十分重要的作用。
根据新课标要求以及本课在教材中的地位和作用, 并结合五年级学生的认知水平, 我制订了以下的三维教学目标:
1.知识与技能:通过课堂学习活动, 让学生理解并掌握分数的基本性质;能用分数的基本性质把一个分数化成指定分母的分数, 大小不变。正确认识和理解变与不变的辩证关系;培养学生观察能力、抽象思维能力。
2.过程与方法:用猜测和情境引入的方式, 以及用实验、对比归纳的方式教学, 让学生合作交流, 逐步探索式学习。
3.情感、态度与价值观:通过对分数基本性质的学习, 知道数学的重要性, 让学生看见事物的一些本质, 体验数学给我们带来的乐趣。
重点:掌握分数的基本性质。
难点:对分数基本性质的理解, 把一个分数化成为指定分母的分数。
教具、学具准备:多媒体课件, 学生每人准备4张完全一样的纸条和一支彩笔。
数学教学的灵魂在于主体探究, 教学要重视学法指导, 让学生亲身体验知识形成的过程。因此, 我设计了这样一个教学流程:
一、创设情境, 激趣导入
学生的学习动机和求知欲取决于教师所创设的学习情境, 而兴趣是最好的老师, 因此开课前, 我设计了这样一个情境:先通过商不变规律的复习与新知识的联系, 用猜测的方式激发学生的学习兴趣, 通过妈妈分苹果故事情境引入, 增强解决问题的现实性。从而使教材与学生之间建立相互包容、相互激发的关系, 让学生大胆自然地提出猜想, 并引出课题。 (板书:分数的基本性质)
二、感悟理解, 尝试探究
新课标强调, 课堂应以学生为主体, 自主探究。我让学生自学课本第15页例1的内容 (板书:例1) , 然后让学生用准备的学具自己做实验, 通过“分一分”“涂一涂”“比一比”“议一议”, 然后在实验中寻找答案, 引导学生初步领悟分数基本性质的规律。这样的学习, 既体现了学生在课堂教学中的主体地位和作用, 又培养了学生独立思考及自学能力。
三、合作交流, 自主探究
四、强化应用, 巩固提高
学习数学的目的在于应用。因此, 本环节我主要围绕如何让学生突出重点、突破难点, 设计了三个层次的练习, 并让学生根据自己的能力自由选择题目解答, 使学生在解答问题中享受到成功和快乐。
1. 基础题 (课本练习四:1, 2) :以基础为主, 主要激发中下层学生的兴趣。
2. 联系生活实际题 (多媒体课件展示) :以生活实例为主, 体现了“数学来源于生活, 又应用于生活”的特点。
3. 提高题 (多媒体课件展示) :为中上层学生设计, 以达培优效果, 并激发学生竞争意识, 使学生的知识、能力、智力同步发展。
以上练习我采用的是开放评价, 不仅有教师对学生的评价, 还放手让学生自评、互评, 引起共鸣与争论。
五、总结回顾, 拓展延伸
在这一环节, 让学生说出自己在这节课的收获, 并让学生联系生活实际, 深刻体会所学知识的实用价值。
在板书设计上, 我力求简洁、明朗, 突出重点, 抓住特点, 使学生很容易理解并掌握分数的基本性质, 达到概括、巩固、提高的教学目的。
【关键词】 说课;手持技术;催化剂;浓度;新课程理念
【中图分类号】G64.23【文献标识码】A【文章编号】2095-3089(2016)15-0-02
各位老师:
大家好,我今天要说课的题目是《催化剂、浓度等条件对反应速率的影响》,下面我将从教材分析、学情分析、教学目标和教学重难点、教法学法、教学过程、板书设计和教学反思这七个方面来谈谈我的教学思路。
1、教材分析
本课时主要是以人民教育出版社出版的化学九年级上册第二单元课题3制取氧气为背景;课题3中介绍了制取氧气的过氧化氢制法和氯酸钾制法,并初步介绍了催化剂,但没有过多地深入探究;而在高中化学必修二、选修四中将更加深入地学习影响反应速率的因素。总的来说,本课时处于两部分内容的中,既是对上一课题制取氧气的补充延伸,又是为接下来更深入地学习影响反应速率的内容做铺垫,为前后内容搭起了桥梁。
2、学情分析
因材施教是伟大教育家孔子的重要教育理念之一,在现代教学仍是一个很重要的教学原则,了解学生的特点是教好课的关键步骤之一。我所教授的对象是普通中学九年级的学生。
·知识储备:了解氯酸钾法和过氧化氢法能制取氧气,初步认识催化剂,仅仅知道二氧化锰能加快氧气的生成;
·思维特点:逻辑思维开始占主导地位,思维活跃。好奇心强。但是大程度上仍停在感性经验上,如仅根据宏观上观察气泡来判断快慢,无法定量描述反应速率。
·能力储备:具备一定的实验操作能力,能简单组装气体生成装置,且能通过观察实验现象,分析得出实验结论的能力,但是部分学生的自学能力和意志力不强。所以本教学注重培养学生自主学习和合作学习。
3、教学目的和教学重难点
根据新课程理念及学生的特点,我确立了以下的三维目标:
·知识与技能:了解不同催化剂、浓度对反应速率的影响;了解气压传感器、数据采集器以及配套软件的使用方法。
·过程与方法:使用控制变量法比较不同的催化剂对反应速率影响的差异,提高在实验中使用控制变量法的应用能力;尝试用比较法来寻找实验的最佳方案,通过实验提高处理实验数据和分析实验结果的能力。
·情感态度与价值观:初步学会从化学视角去观察生活、生产和社会中有关化学反应速率的问题;通过动手做实验,体验科学探究的乐趣,提高学习化学的兴趣。
由于学生刚接触手持技术实验,对其操作不了解,结合学生的实际情况,因此我将以下内容设为教学重难点:
重点:二氧化锰、马铃薯、过氧化氢浓度对过氧化氢的催化分解速率的影响;
难点:手持技术的掌握以及实验数据的分析处理。
4、教法学法
针对教学目标和教学理念,我将情境导入法、实验探究法、同時与讲授法和演示法有机结合,学生自身的发展通过学法来落实,引导学生进行自主、合作、探究学习。目的是实现以教为主导、学为主体的教学理念,积极发挥学生的主体性。
5、教学过程
教与学是有机结合而又对立统一的,良好的设想必须通过教学实践来实现,对于本节课,我将花一个课时,四个环节完成新课教学。
[创设情境入主题]
展示图片,从学生生活体验入手,平地行车比爬坡行车更轻松。相当于降低坡度,增大反应速率。展示过氧化氢溶液在常温常压下分解很慢的事实,思考在化学反应中改变因素增大反应速率。学生通过回顾旧知,回答用二氧化锰作催化剂能增大反应速率。我解释二氧化锰是降低活化能来达到催化效果。根据生活类比,更好地理解;趁热打铁,抛出问题,有哪些因素还能影响反应速率。引导学生观察实验用品,结合生活经验,大胆猜想。
[设计意图]通过生活经验入手,学生在已有认知上加深对催化剂的认识,激发学生的学习兴趣,培养学生从生活经验类比迁移知识点的能力。
[教师演示仪器操作]
引入手持技术,之前制取氧气判断快慢仅通过感性认知气泡产生的快慢来判断,今天借助手持技术装置来更准确地定量反应速率。手持技术集数据采集、分析于一体,具有便携、直观、实时、定量等特点。因此,可采用手持技术来学习催化剂、浓度等条件对反应速率的影响,重点介绍本次实验目的、原理,仪器和用品。我将详细解说操作步骤,强调装置安装的注意事项,引导学生发现问题、思考问题(可能测不出压力变化的原因等等),从而突破难点。
[分组实验探究]
通过观察实验用品,结合生活经验,学生可能会提出催化剂种类、催化剂用量、过氧化氢浓度对反应速率有影响?我将提问,那二氧化锰和马铃薯哪个的催化效率会比较好呢?学生积极讨论,可能会给出三种假设。除了催化剂种类的因素外,还有什么因素会影响?反应物的浓度可能会有影响,学生可能也会做出三种假设。
[设计意图]将不同因素分开引导,知识点清晰,引导学生运用控制变量法来进行探究,学习实验的常用方法。
将学生分成4大组,分组分别探究不同催化剂、不同反应浓度对反应速率的影响,观察实验现象,记录实验数据,填写实验报告表。实验完毕后,各小组交换实验数据,组与组之间进行讨论交流,根据所得到的图表,分析结果,得出结论。此过程中是学生的探究性活动,开放性比较强,我注意观察学生的实验情况,及时纠正实验不规范操作。同时,注意观察学生的闪光点,方便更好地因材施教。学生出现问题时,我一般不正面回应,不包办,而是从侧面去引导学生解决问题。
[设计意图]根据最近发展区理论,我事先按照学生的综合能力分为4组,希望学生在小组间能发挥自身优势,互帮互助,彼此学习,获取更多的经验信息。学生充分发挥自己的自主学习能力和实验能力,得出结论,从而突出重点;同时也培养学生的团队协作意识,加强集体意识概念。
[成果汇报,经验交流]
小组派代表汇报本组的实验结果,并判断与先前的假设是否正确,谈谈实验中可能出现的问题,分析原因。各小组相互帮助,提出解决问题的方法。最后我针对学生出现的问题(装置漏气导致曲线比较陡,而我们应该选择直线部分的斜率来计算反应速率),引导学生思考对装置的改进愿望。让学生课后分析装置的缺点,并尝试自己查找资料,改进装置。接着进行评价反馈环节,学生畅所欲言对本节课的感受,我将对学生本节课的合作学习进行评价,评价的标准主要以学生的参与度来衡量。
[设计意图]交流活动,激发学生的积极性,活跃气氛。同时及时地对教学活动评价和反馈,对学生的合作学习进行评价,表扬积极地同学,鼓励不够积极同学,加强集体观念,积极地参与活动。
6、板书设计
我采用提纲式的板书设计,主板书列举本节课实验的主要内容以帮助梳理知识点,副板书主要记录实验过程的一些现象及问题,进一步达到教学目标。
7、教学反思
①本节课利用手持技术清晰直观地反应气压的变化量。比起传统的观察气泡的速度判断反应速率更具准确性,且操作简便,利于学生自主实验。
②注重学生的主体地位,注重交流环节。(生生互动、师生互动)课堂末注重及时反馈。
以上是我说课的全部内容,如有不足之处,请批评指正。
参考文献:
大家好!
我叫xxx,来自xx。我说课的题目是《用样本的数字特征估计总体的数字特征》,内容选自于高中教材新课程人教A版必修3第二章第二节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1、教材所处的地位和作用
在上一节我们已经学习了用图、表来组织样本数据,并且学习了如何通过图、表所提供的信息,用样本的频率分布估计总体的分布情况。本节课是在前面所学内容的基础上,进一步学习如何通过样本的情况来估计总体,从而使我们能从整体上更好地把握总体的规律,为现实问题的解决提供更多的帮助。
2教学的重点和难点
重点:⑴能利用频率颁布直方图估计总体的众数,中位数,平均数。
⑵体会样本数字特征具有随机性
难点:能应用相关知识解决简单的实际问题。
二、教学目标分析
1、知识与技能目标
(1)能利用频率颁布直方图估计总体的众数,中位数,平均数。
(2)能用样本的众数,中位数,平均数估计总体的众数,中位数,平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法。
2、过程与方法目标:
通过对本节课知识的学习,初步体会、领悟“用数据说话”的统计思想方法。
3、情感态度与价值观目标:
通过对有关数据的搜集、整理、分析、判断培养学生“实事求是”的科学态度和严谨的工作作风。
三、教学方法与手段分析
1、教学方法:结合本节课的教学内容和学生的认知水平,在教法上,我采用“问答探究”式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。
2、教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。
四、教学过程分析
1、复习回顾,问题引入
「屏幕显示」
〈问题1〉在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了。于是,需要通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征。
提出问题:什么是平均数,众数,中位数?
(教师提问,铺垫复习,学生思考、积极回答。根据学生回答,给出补充总结,借助用多媒体分别给出他们的定义)
「设计意图」使学生对本节课的学习做好知识准备。
(进一步提出实例、导入新课。)
「屏幕显示」
〈问题2〉选择薪水高的职业是人之常情,假如你大学毕业有两个工作相当的单位可供选择,现各从甲乙两单位分别随机抽取了50名员工的月工资资料如下(单位:元)
分组计算这两组50名员工的月工资平均数,众数,中位数并估计这两个公司员工的平均工资。你选择哪一个公司,并说明你的理由。
(学生分组分别求两组数据的平均工资。
学生:甲、乙平均工资分别为:甲:1320元,乙:1530元。
所以我选乙公司。
学生乙:甲、乙两公司的众数分别为甲:1200,乙:1000,所以我选择甲公司。
学生丙:我要根据我的能力选择。)
「设计意图」学生按“常理”做出选择,教师指出只凭平均工资做出判断的依据并不可靠,从而引导学生进一步深入问题。
2讲授新课,深入认识
⑴「屏幕显示」
例如,在上一节抽样调查的100位居民的月均用水量的数据中,我们画出了这组数据的频率分布直方图。现在,观察这组数据的频率分布直方图,能否得出这组数据的众数、中位数和平均数?
(把学生分成若干小组,分别计算平均数、中位数、众数,或估计平均数、中位数、众数。然后比较结果,会发现通过计算的结果和通过估计的结果出现了一定的误差。引导学生分析产生误差的原因。原因是由于样本数据的频率分布直方图把原始的一些数据给遗失了。让学生明白产生这样的误差对总体的估计没有大的影响,因为样本本身也有随机性。)
「设计意图」让学生懂得如何根据频率分布直方图估计样本的平均数、中位数和众数。使学生明白从直方图中估计样本的数字特征虽然会有一些误差,但直观、快速、可避免繁琐的计算和阅读数据的过程。
⑵〈提出问题〉根据样本的众数、中位数、平均数估计总体平均数的基本数据,并对上一节的探究问题制定一个合理平价用水量的的标准。
(师生通过共同交流探讨得知仅以平均数或只使用中位数或众数制定出平价用水标准都是不合理的,必须综合考虑才能做出合理的选择)
「设计意图」使学生会依据众数、中位数、平均数对数据进行综合判断,并做出合理选择。也为接下来对他们优缺点的总结打下基础。
⑶总结出众数、中位数、平均数三种数字特征的优缺点。
(先由学生思考,然后再老师的引导下做出总结)
「设计意图」使学生能更准确更全面地依据样本的众数、中位数、平均数对数据进行综合判断,并做出合理选择,使实际问题得到正确的解决。
3、反思小结、培养能力
①学习利用频率直方图估计总体的众数、中位数和平均数的方法。
②介绍众数、中位数和平均数这三个特征数的优点和缺点。
③学习如何利用众数、中位数和平均数的特征去分析解决实际问题。
「设计意图」小节是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力
4、课后作业,自主学习
课本练习
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
大家好!我叫张西元。我说课的题目是《系统抽样》,内容选自于苏教版必修3第二章第一节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等五大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
学生已初步了解掌握了简单随机抽样的两种方法,即抽签法与随机数表法,在此基础上进一步学习系统抽样,它也是“统计学”的重要组成部分,通过对系统抽样的学习,更加突出统计在日常生活中的应用,体现它在中学数学中的地位。
2 教学的重点和难点
重点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。难点:当 不是整数时的处理办法,个体编号具有某种周期性时,“坏样本”的理解。
二、教学目标分析
1.知识与技能目标:
(1)正确理解系统抽样的概念;
(2)掌握系统抽样的一般步骤;
(3)正确理解系统抽样与简单随机抽样的关系;
2、过程与方法目标:
通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法高考资源
3、情感态度与价值观目标:
通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系
三、教学方法与手段分析
1.教学方法:为了充分让学生自己分析、判断、自主学习、合作交流。因此,我采用讨论发现法教学。
2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。
四、教学过程分析
(一)新课引入
1、复习提问:
(1)什么是简单随机抽样?有哪两种方法?
(2)抽签法与随机数表法的一般步骤是什么?
(3)简单随机抽样应注意哪两个原则?
(4)什么样的总体适合简单随机抽样?为什么?
[设计意图]通过复习提问进一步理解掌握简单随机抽样的概念方法和步骤?为新课学习打基础
2、实例探究
实例:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?
当总体数量较多时,应当如何抽取?结合具体事例探究问题,设计你的抽取样本的方法。抽取的样本公平性与代表性如何?学生自主探究后小组讨论回答。
[设计意图]通过设置问题情境,让学生参与问题解决的全过程,引导学生探究发现新知识新方法,完成从总体中抽取样本,并发现“等距抽样”的特性,从而形成感性的系统抽样的概念与方法。这样做既充分体现学生的主体地位和教师的主导作用,同时也较好地贯彻新课程所倡导“自主探究、合作交流”的学习方式。
(二)新课讲授
1、系统抽样的概念方法步骤
(学生阅读课本上的内容,教师引导学生总结归纳得出“系统抽样”的概念,并点明课题)
[设计意图]经历实例探究过程,学生对系统抽样的概念方法步骤应有大致了解,辅以教师引导,从具体到一般,本节新课题的学习便水到渠成。
2、典型例题精析
例1、某校高中三年级的300名学生已经编号为1,2,……,300,为了了解学生的学习情况,要按10%的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程。
(教师题意分析,引导学生应用新知识新方法,学生分析思考,探究解题,小组讨论后口述解题过程)
[设计意图]实例巩固,在得出新课的有关知识之后,再次让学生在解决实际问题的过程中,进一步理解掌握系统抽样的方法步骤,达到学以致用的技能,培养“学数学,用数学”的意识。
例2、某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本。
[设计意图]当 不是整数时,设置本题让学生尝试回答,并形成一般思路与方法。
(三) 练习巩固
1、将全班学生按男女生交替排成一路纵队,用掷骰的方法在前6名学生中任选一名,用 表示该名学生在队列中的序号,将队列中序号为 ,(k=1,2,3,…)的学生抽出作为样本,这种抽样方法叫做系统抽样吗?为什么?其样本的代表性与公平性如何?
2、若按体重大小次序排成一路纵队呢?
[设计意图]配合课本第60页“边空”问题:“请将这种抽样方法与简单随机抽样做一个比较,你认为系统抽样能提高样本的代表性吗?为什么?”,帮助理解个体编号具有某种周期性时,样本代表性较差的特点。同时分析系统抽样的优点与缺点。
(四)回顾小结
1、师生共同回顾系统抽样的概念方法与步骤
2、与简单随机抽样比较,系统抽样适合怎样的总体情况?
3、当 不是整数时,一般步骤是什么?此时样本的公平性与代表性如何?
(五)布置作业
课本第61页的练习第1,2,3题
课题《数列的概念与简单表示方法
(一)》选自普通高中课程标准试验教科书人教版A版数学必修5第二章第一节的第一课时.我将从教材分析、学情分析、教学目标分析、教法分析、教学过程这五个方面来汇报我对这节课的教学设想。
一、教材分析
1、教材的地位和作用
数列是高中数学的重要内容之一,它的地位作用可以从三个方面来看:
(1)数列有着广泛的实际应用.如堆放的物品的总数计算要用到数列的前n项和,又如分期储蓄、付款公式的有关计算也要用到数列的一些知识.(2)数列起着承前启后的作用.一方面,初中数学的许多内容在解决数列的某些问题中得到了充分运用,数列是前面函数知识的延伸及应用,可以使学生加深对函数概念的理解;另一方面,学习数列又为进一步学习数列的极限,等差数列、等比数列的前n项和以及通项公式打好了铺垫.因此就有必要讲好、学好数列.(3)数列是培养学生数学能力的良好题材.是进行计算,推理等基本训练,综合训练的重要教材.学习数列,要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有助于学生数学能力的提高.二、学情分析
从学生知识层面看:学生对数列已有初步的认识,对方程、函数、数学公式的运用已有一定的基础,对方程、函数思想的体会也逐渐深刻。
从学生素质层面看:从高一新生入学开始,我就很注意学生自主探究习惯的养成。现阶段我的学生思维活跃,课堂参与意识较强,而且已经具有一定的分析、推理能力。
三、教学目标分析
根据上面的教材分析以及学情分析,确定了本节课的教学目标:(1)知识目标:认识数列的特点,掌握数列的概念及表示方法,并明白数列与集合的不同点.了解数列通项公式的意义及数列分类.能由数列的通项公式求出数列的各项,反之,又能由数列的前几项写出数列的一个通项公式.(2)能力目标:通过对数列概念以及通项公式的探究、推导、应用等过程,锻炼了学生的观察、归纳、类比等分析问题的能力.同时更深层次的理解了数学知识之间的相互渗透性思想.(3)情感目标:在教学中使学生体会教学知识与现实世界的联系,并且利用各种有趣的,贴近学生生活的素材激发学生的学习兴趣,培养热爱生活的情感..
3、教学重点与难点
根据教学目标以及学生的理解能力与认知水平,我确定了如下的教学重难点 重点:理解数列的概念,能由函数的观点去认识数列,以及对通项公式的理解.
难点:根据数列的前几项的特点,通过多角度、多层次的观察分析归纳出数列的一个通项公式 .
四、教法分析
根据本节课的内容和学生的实际情况,结合波利亚的先猜后证理论,本节课主要以讲解法为主,引导发现为辅,由老师带领同学们发现问题,分析问题,并解决问题.考虑到学生的认知过程,本节课会采用由易到难的教学进程以及实例给出与练习设置,让学生们充分体会到事物的发展规律.同时为了增大课堂容量,提高教学效率,更吸引同学们的眼光,提高学习热情,本节课还会采用常规手段与现代手段相结合的办法,充分利用多媒体,将引例、例题具体呈现. 五、教学过程分析
为了突出重点,突破难点,探究新知,强化认识,激发兴趣,把本节课的教学流程分为了创设情境,引入课题;师生互动,形成概念;启发引导,演绎结论;实践应用,开放思考;归纳小结,提炼精华;课后作业 运用巩固。具体过程如下:
1、创设情境引入课题
有人说,大自然都是懂数学的,不知道你注意过没有,树木的分叉、花瓣的数量、植物种子的排列等等都遵循了某种数学规律,你能发现这种规律与这列数的关系吗?1,1,2,3,5,8,13,21,34,55,89,其实很多花瓣的数目都满足这列数,兔子生育问题,树发枝丫的数目也满足这列数.你看出这几个数字的特点了吗?是不是前面两个数之和等于后面两个数.这个规律是不是很有趣啊?这就是我们今天要学习的数列.旁边还会以多媒体呈现出满足这个数列的许多自然规律比如许多植物的花瓣,树木的枝丫等. 这样创设的有趣的问题情境可以吸引学生的注意力.情景中提出了两个问题是为了启发学生观察图形特征,从而得到这些数有一定的关系,而且是一列数且按照一定的顺序,为数列概念的引出做好准备.
2、师生互动,形成概念 给出5个引例:
引例1 我们班的同学的学号从小到大排列构成一列数1,2,3,4,5,„,64 引例2 正奇数1,3,5,7,„的倒数构成一列数
引例3 某人的工资1月到12月按月排序分别是(元)2500,2500,„,2500 引例4 当x取正整数时候构成的一列数为-1,1,-1,„ 引例5 一列数2,4,8,16,„
问题1 上述的这些情景的共同特点是什么?
问题2 这些数字能否调换顺序?顺序变了之后所表达的意思变化了吗? 定义:按照一定的顺序排列着的一列数
问题
3、相同的一组数按不同的顺序排列时,是否为同一个数列? 问题
4、一个数列中的数可以重复吗? 这就是数列与集合的异同.
问题
5、你能举出身边的数列的例子吗?
给出五个情景,有现实生活中的一些实例,也有与前面学过的一些知识相关的例子,这样既可以吸引同学们的注意,增加他们的学习兴趣,又可以让同学们消除陌生感,更好的接受新知识.更为后面的数列分类给出了实例. 问题1,2的设置是让学生充分观察,猜想,然后得出这些都是按照一定顺序排列的数的结果,从而就可以总结出数列的定义,这样既可以锻炼学生的观察归纳能力,又可以让学生体会知识的得出过程,体会数学美.
而问题3,4是得出定义后对定义的辨析,通过回答者两个问题得出数列与集合的不同点,更深层次的理解数列的含义.
最后一个问题的提出主要是让学生通过举例,进行辨析,明白数列与实际生活中的紧密联系,从而增加学生主动学习数学的热情.并且可以结合学生所举的例子的以及前面给出的情景归纳出数列的分类.
3、启发引导,演绎结论
提出问题:引例5中给出的数列中的某一项的值与它的序号间有什么关系?哪个是变动的量,哪个是随之变对的量?而且这是定义在数集上的关系,那么你能联想到以前学过的哪些相关的内容?
旁边可以写出这个数列,并且分别对应着它们各自的序数. 得出结论:数列就是一列特殊的函数,它的定义域为正整数 那么我们是不是可以像函数一样用一个解析式来表示数列呢?
通项公式:用来表述数列的项与序号之间的关系的公式叫做通项公式. 问题1 是不是每个数列都有自己的通项公式?
问题2 一个数列的通项公式唯一吗?这里可以给出数列1,0,1,0,„的两个通项公式加以说明
问题3 通项公式有什么用途呢? 意图:对数列序号写在上面,下面相应的位置写上数列的各项,通过几个问题引导学生说出上,下两行是两组变量,然后分析这两组变量之间的关系使学生联想到函数间的变量依赖关系,认识到数列是一种特殊的函数(突破本节课的重点),从而可以由函数的解析式引出,某些特殊的数列可以写出其通项,即通项公式 问题引发学生们得深思,从而巧妙的把函数与数列结合起来了,通过函数解析式类比得出数列的通项公式
这三个问题可以引出通项公式的应用以及应该注意的,从而加深同学们对数列理解.而给出的两个通项公式不仅对那个问题给出了佐证,也为后面的联系题做下了铺垫.
4、实践应用,开放思考
例
求数列1,3,5,7,„的通向公式 练习求下列数列的通项公式 1、2,0,2,0,„ 2、9,99,999,9999,„ 本例很简单,旨在教会学生分析问题,并且明白规范的解题格式. 后面的两个练习题都关系求数列的通项这一问题,让学生明白求通向公式的方法与技巧. 这几个例题与练习题紧扣本节课的重点与难点,通过练习使同学们更深刻的理解掌握了本节课的知识,同时练习1是前面数列1,0,1,0,„的变式,练习2是后面思考题的基础.
5、归纳小结,提炼精华(1)数列的概念以及分类
(2)数列的通项公式以及与函数的关系
6、课后作业 运用巩固 作业:(1)复习本节课的知识(2)预习下节课的知识
(3)A组1,3 B组3题(选)(4)思考题:
求数列7,77,777,7777,„的通项公式 1分钟回忆法:
下课前1分钟让同学们快速浏览黑板今天老师所讲的内容,然后闭上眼睛头脑里再现一遍今天所讲的内容。
小结的这2点设置主要是为了巩固本堂课的知识,再次突出重点与难点.
4个作业题,由易到难,体现了学生接受事物的客观规律,孔子说:温故而知新所以我让同学们复习今天所讲的内容,预习是为了让同学们下节课效率上课做准备.必做题和选做题更区分了难度,让不同了学生得到不同的锻炼,更体现了层次性.两个思考题紧紧结合本节课的重难点,让同学们更深的理解掌握运用这节课的知识,其中思考题是对练习的加深,是对学有余力的同学的一种吸引与肯定.更能激发学生们得学习热情.
六、板书设计:
根据这节课的内容,我把黑板分为了四个板块.第一个板块给出引入的情景,第二个和第三个板块推出定义,以及定义的辨析.第四个板块为例题讲解和练习题得给出,以及作业的布置.这样设计直观大方,把情景放在第一板块更能吸引同学们得目光.把最重要的知识放在2,3板块更照顾全体同学.更引起同学们的注意.
2.2《等差数列》说课稿
我说课的内容是高二数学人教版新课标必修五第二章第2节,等差数列第一课时。我将从教材分析、学情分析、教学目标分析、教法分析、教学过程这五个方面来汇报我对这节课的教学设想。
一、教材分析
1.教材的地位与作用
数列是高中数学的重要内容,是历年高考的热点与重点之一。数列作为离散型函数有着承前启后的作用,它是必修一《函数》内容的延伸。它不仅有着广泛的实际应用,而且对学生观察能力与应用能力的培养是不可或缺的。
从教学大纲和教材看:本节教材先在具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据这个公式去进行有关计算。由此可见本安排旨在培养学生的观察分析、归纳猜想、应用能力。
等差数列是这章两大核心内容之一,其第一课时是学生探究特殊数列的开始,是继续研究等差数列的基础,它为等比数列概念的学习、通项公式的推导与应用,给出了“示范”提供了“模式”。
二、学情分析
从学生知识层面看:学生对数列已有初步的认识,对方程、函数、数学公式的运用已有一定的基础,对方程、函数思想的体会也逐渐深刻。
从学生素质层面看:从高一新生入学开始,我就很注意学生自主探究习惯的养成。现阶段我的学生思维活跃,课堂参与意识较强,而且已经具有一定的分析、推理能力。
三、教学目标分析
根据上面的教材分析以及学情分析,确定了本节课的教学目标:
1、知识目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。
2、能力目标:让学生亲身体验“从特殊入手,研究对象的性质,再逐步扩大到一般”的研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。
3、重点难点
重 点:等差数列的概念的理解,通项公式的推导与应用。难 点:(1)对等差数列中“等差”特点的理解;
(2)对等差数列函数特征的理解;
(3)用不完全归纳法推导等差数列的通项公式。
四、教法分析 1.教法
⑴启发式、讨论式:通过问题激发学生求知欲,使学生主动参与活动,以独立思考和相互交流的形式,在教师的指导下发现问题、分析问题和解决问题。
(2)讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
(3)引导学生联想、探索,鼓励学生大胆质疑,学会探究。2.教学手段
教学中使用了多媒体投影和计算机来辅助教学.目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,而且有助于适当增加课堂容量,提高课堂效率。
五、教学过程分析
为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为六个阶段:创设情境,引入课题;师生互动,形成概念;启发引导,演绎结论;实践应用,开放思考;归纳小结,提炼精华;课后作业 运用巩固。具体过程如下:(一)创设情境,引入课题
1.复习回顾:从函数的观点看,数列可看成是定义域为N﹡(或它的子集)的函数,当自变量从小到大的依次取值时,所对应的一列函数值。数列的通项公式是该函数的解析式。
[设计意图]:为本节课用函数思想研究等差数列通项公式作准备 2.引例 :
1)德国数学家高斯八岁计算1+2+3+···+100=? 时,所用到的数列:1,2,3,4,···,100①
2)姚明刚进NBA一周里每天训练发球的个数依次是:6000,6500,7000,7500,8000,8500,9000②
引导学生观察:数列①、②、有何共同点?
引导学生得出“从第2项起,每一项与前一项的差都是同一个常数”,我们把这样的数列叫做等差数列.(板书课题)
(三个引例引出三个具体的等差数列,为后面的概念学习建立基础,为学习新知识创设问题情境,激发他们的求知欲。由学生观察三个数列特点,引出等差数列的概念,以此培养学生由具体到抽象、特殊到一般的认知能力。使学生认识到生活离不开数学,同样数学也是离不开生活的。请看引入的教学片断)
(二)师生互动,形成概念
(本环节将由学生通过数列的共同点归纳出等差数列的概念,在理解概念的基础上,将等差数列的文字语言转化为数学语言,归纳出数学表达。)1.(由学生归纳出)等差数列的概念.
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。(教师引导学生抓住定义中有关键词并强调)
强调:①“从第二项起”(这是为了使每一项与它的前一项都存在);
②每一项与它的前一项的差必须是同一个常数(因为“同一个常数”体现了等差数列的本质特征);
2.等差数列的定义的数学表达式:
[设计意图]:在学生理解等差数列概念的文字语言的基础上,进一步让学生掌握等差数列定义的符号语言表达式,为学生今后应用等差数列的定义解决问题打下基础。
试一试:(通过此练习加深对概念的理解)-为配合概念的理解而设计
①9,6,3,0,-3,„„是等差数列吗?
②数列3,3,„,3,„是等差数列吗?
③数列1,4,7,11,15,19是等差数列吗? ④若数列满足:,则数列是等差数列吗?
①②及引例目的在于强调公差可以是正数、负数,也可以是0; ③再一次强调:“同一个常数”④目的在于强调定义中“从第二项起,每一项与它的前一项的差都要是同一个常数”。
(三)启发引导,演绎结论(本环节是这节课的第二个重点内容,我充分发挥学生主体作用完成通项公式的推导.)1.公式推导—探究活动一:
在不完全归纳法导出等差数列通项公式中,我采用讨论式的教学方法。给出等差数列首项是,公差是,由学生分组讨论出,并猜想出。步步为营,层层推进的整个过程由学生完成,通过这种互相讨论的方式既培养了学生的协作意识又化解了教学难点。为了培养学生严谨的学习态度,体现“注重方法,凸现思想” 的教学要求,我在这里采用启发式教学方法向学生介绍求等差数列通项公式的另外一种方法—叠加法。请看教学片断。2.为帮助学生从方程角度理解通项公式,培养学生用运动变化的观点看问题的能力,我引导学生观察通项公式发现: 通项公式含有这4个量,只要知道其中任何三个量,通项公式就变成关于第4个量的一元方程,解方程就可实现“知三得一”。
4、实践应用,开放思考
这一环节是使学生通过例题和练习和探究活动,增强对等差数列定义及通项公式的理解运用,提高解决问题的能力。1.公式的简单应用
例1:已知等差数列18,15,12,9„„,①请写出
②-279是否是这个数列中的项,如果是,是第几项?(整个求解由学生完成,教师只强调②的实质上是求方程的正整数解,也是通项公式中已知,求项数的问题。)[设计意图]:通过此例使学生熟悉通项公式,完成基本技能训练。2.公式的深化
例2:已知等差数列中,求的值。
[设计意图]将例2作为对通项公式的巩固及深化,已知等差数列中任意两项能利用通项公式熟练求出第三项,并引导发现:—是一种巧合,还是对任意的两项差都满足?从而引出探究活动二
3.通项公式的推广—变通式
思考:在公差为的等差数列中,是否成立?
学生通过分组讨论方式很容易得到,变形成,对照通项公式并指出: 是通项公式的推广,称为通项公式的变通式。
[设计意图]:已知数列中任意两项,可利用求出,再利用变通式求出第三项,这样可避开解方程组。至此要求学生能用此法解例2强化变通式。通过等差数列变形公式的教学培养学生思维的深刻性和灵活性。
4.练习反馈,强化目标
练一练:
(1)在等差数列中,已知,,则
;(2)若,则
(4)在等差数列中,已知,,则的值为
.[设计意图]:为及时巩固所学内容设计4个由浅入深的练习,以此培养学生观察问题,分析问题的能力。
5.研究与探讨--力求引导学生用函数的观点认识通项公式,培养多角度理解问题的能力。(由等差数列通项公式得(是常数),当的时候,通项公式是关于的一次式,一次项的系数是公差。等差数列通项可以写成形式)
反之如果一个数列的通项公式为(其中,是常数),那么这个数列是等差数列吗?引出例3,学生根据等差数列的定义易判断是等差数列。由些得出:数列{an}为等差数列的充要条件是其通项(p、q是常数)。
[设计意图]:强化如何应用定义证明一个数列是等差数列的同时导出判断一个数列是否为等差数列的第二个方法.探究活动三:为研究等差数列的通项公式与一次函数的关系而设计。
(1)在直角坐标系中,画出的图象。这个图象有什么特点?
(2)在同一坐标系下,画出函数的图象。你发现了什么?
(3)等差数列与函数图象间的有什么关系?
(当时,也是关于正整数n 的一次式;其图象是直线 上均匀排开的无穷多个孤立点。)
[设计意图]:通过此环节让学生认识等差数列通项公式的函数特征,并让他们再次体验从特殊到一般,具体到抽象的认知过程。
(五)归纳小结 提炼精华
[设计意图]:老师作适当引导,让学生反思、归纳、总结本节课所学主要内容,培养学生的概括能力、表达能力。本节课主要学习:
一个定义:
两个公式:
两种思想:方程思想、函数的思想
两种方法:不完全归纳法、叠加法
(六)课后作业 运用巩固
必做题:
A.课本P114习题3.2第1,2,6 题
B.补:1.已知等差数列的首项a1=-2,第10项是第一个大于1的项。求公差d的取值范围。
2.我国古代算书《孙子算经》卷中第25题记有:“今有五等诸侯,共分橘子六十颗。人分加三颗。问:五人各得几何?
选做题:在等差数列中,已知,求下列各式的值:
(1);
(2)
[设计意图]:通过分层作业,以满足不同层次学生的需求,同时为下一节课研究等差数列的性质做铺垫。
四、板书设计
在板书中教师必要的板演突出本节重点,同时给学生留有作题的地方,整个板面看上去自然、清晰、美观,还能充分表现出精讲多练的教学方法。§3.2等差数列
1、定义(略)
2、数学表达式
3、等差数列的通项公式
4、变通式 例2(略)练习:
各位专家,以上就是我对这节课的教学设想.不足之处恳请各位专家批评指正.谢谢!
2.3等差数列的前n项和说课稿(1)各位老师,同学们大家好,很高兴能有这次机会与大家一起交流,今天我说课的内容是“等差数列的前N项和”,有不当之处望多多指正
根据新课标中提到的说课标准 下面我将从教材分析,教法分析,学法分析,教学过程这四个部分进行说明。
一、教材分析
1、本节在教材中的地位和作用
“等差数列的前项和” 选自人民教育出版社高二必修五第二章第三节.课时为两个课时,课型为新知课.它是对前面所学的等差数列相关知识的巩固和应用,无论在知识还是能力上,都是进一步学习其他数列知识的基础.同时,在推导等差数列的前项和公式的过程中所采用的“倒序相加法”是今后数列求和的一种常用且重要的方法.因此,掌握等差数列的前项公式及推导为后面将要学习的等比数列的相关知识打下坚实的基础.同时起到了承上启下的重要作用.
2、目标分析
根据上述教材结构与内容分析,考虑到学生已有的认识结构和新课程标准,我从三个方面确定了本节课的教学目标:(1)知识目标:
(a)掌握等差数列的前项和公式及推导过程;
(b)会用等差数列的前项和公式解决一些简单的与前项和有关的问题.(2)能力目标:
(a)培养学生的逻辑推理能力;
(b)培养学生分析问题,解决问题的能力.(3)情感目标:
(a)培养学生的辩证唯物主义思想.(b)提高学生的数学修养.
3、教学重点与难点
为了实现上述三个教学目标,我把本节课的重、难点确定为:(1)教学重点:等差数列前项和公式的推导,理解及应用.(2)教学难点:等差数列前项和公式的推导及应用.
为了突出重点、突破难点,在教学中我采取以下措施:从学生已有的知识出发,精心设计一个符合学生知识水平的具体问题,并通过相关的数学史,逐步引导学生观察,类比推导出等差数列的前项公式,并能灵活应用解决相关的问题.
三、教法分析
为了调动学生积极的非智力因素,同时为了更好的培养学生的自学能力,本节课我将采用自主式探索式教学法,在遵循启发式教学原则的基础上,主要采用以引导发现法,谈话法为主,练习法为辅的教学方法,意在通过特殊等差数列求和问题出发引导学生导出一般等差数列的求和公式,从而调动学生的积极性,同时给学生提供一个广阔的探索空间,一个充分展示创新能力的机会.
四、学法分析 在学法指导上,根据新课程标准理念,学生是学习的主体,教师只是学习的组织者、辅导者、引导者,因此,在本节课的教学中我主要是引导学生通过观察、类比得到等差数列的前项和公式,从而激发学生的求知欲和学习积极性,从而把传授知识和培养能力有机地结合起来.
五、教学过程
2、展示新知
在引出等差数列的求和问题后,我并不是直接给出解决的办法,而是进一步把学生引导到对问题的观察、分析、归纳活动之中,不仅让学生通过自己的尝试活动解决了特殊的等差数列的求和问题,还通过师生互动协作用类比的方法,导出了一般等差数列的求和公式.在采用对特殊数列的求和问题的求解得到了一般等差数列的求和问题.把单纯死记知识改变为让学生积极参与,主动掌握探索的过程,体现了师生的互动性,在的得到了公式后,我并不是直接介绍推导前项和的第二个公式,而是通过一个特殊等差数列的求和问题出发,进而推导的公式.把单纯死记知识改变为让学生积极参与,主动掌握探索的过程,体现了师生的互动性,从而在此过程中不仅获得了新知识,而且能力得到了培养,真正体现了“以培养学生能力为中心”的教学思想.
3、例题讲解
根据教学过程的基本阶段,我将把巩固知识和运用知识两个阶段有机结合,以达到学懂会用,学以致用.因而,当这部分知识讲解完后,我将通过讲解例题来强化学生对 知识的理解.
例1.在等差数列中, ,求这个数列前15项的和? 目的:使学生对所学知识的应用.因为这道题都比较基础,学生很容易完成,这样不但可以增加他们学习的兴趣和自信心,还能够加深对公式的理解和应用. 例2.求等差数列前的和? 目的:让学生巩固所学公式,能对公式进行简单运用. 例3.等差数列前多少项的和为? 目的:该题目主要是让学生来对题目的理解和分析,并能指出题目中的已知量和发现要求的未知量,使学生熟练掌握公式,进一步提高学生的应用能力.
4、课堂练习
根据夸美纽斯的教学巩固性原则,为了培养学生独立解决问题的能力,教师要让学生掌握系统知识的结构,通过归纳总结来提示知识的内在联系,强化知识系统,从而形成牢固的知识结构.因此,分析完例题后,为了加深学生对公式的理解和掌握,我将让学生们做书上的练习题.通过抽个别同学上黑板演算,其余同学在草稿本上完成练习的方式来了解学生的学习情况,从而对讲解内容作适当的补充.
5、课时小结
本节课讲到了这里,就接近了尾声,待对学生的练习指导完成后,先由学生来总结本节课所学的内容,并对学生的回答加以鼓励.学生发表意见完毕后,由我对本节课的内容做一个较为全面的总结,使学生对本节知识结构有一个清晰而系统的认识.
6、作业布置
按照循序渐进的原则,我对作业布置分为三层,这样既让大部分学生对所学知识能加以巩固,同时又为学有余力的学生留有自由发展的空间,以弥补课堂上照顾学生的个别差异,进行因材施教的不足。作业布置如下:
1、作业题:教材P118 的习题3.3的1、2、3题;
2、预习内容:教材P117的例
3、例4;
3、思考题:老师在推导公式过程采用与书上不同的方法,下来请同学们把书上的推导方法看一下.比较这两种方法有什么不同之处.
目的:使学生进一步掌握所学知识,提高学生的思维能力,探索能力.
六、板书设计
板书设计的好坏直接影响这节课的效果,因此它起着举足轻重的作用.为了使整个板面重点突出,层次分明,我将黑板分为四版:第一和第二版是新课的讲解;第三版是用于书写例1和例2;第四版作副版使用,用于旧知识的复习和情景问题的提出,以及书写例3;再借助小黑板展现一部分小结,这样的排版使学生一目了然. §3.3 等差数列的前项和
1、等差数列的前 项和公式一的推导 过程
2、等差数列的前项 和公式二的推导过程
3、等差数列的前项 和的两个公式 例1:
例2:
复习引入
例3:
总之,我这节课的设计充分体现了教师为主导,学生为主体,练习为主线,思维为核心,能力为目标的教学思想.
2.4等比数列说课稿 1.教学任务分析 1.1 学情分析
本节课的授课对象是c班学生,数学水平参差不齐,依赖性强,接受能力一般,灵活性不够。因此本节课采用低起点,由浅到深,由易到难逐步推进,热情地启发学生的思维,让学生在欢愉的气氛中获取知识和运用知识的能力。1.2 教材分析
1.2.1 教材地位和作用
本节课是人教版《必修5》第二章第四节第一课时的内容,是在学生已经系统地学习了一种常用数列,即等差数列的概念、通项公式和前n项和公式的基础上,开始学习另一种常用数列。教材通过日常生活中的实例,讲解等比数列的概念,通过列表,图像,通项公式来表达等比数列,把数列融于函数之中,体现了数列的本质和内涵。等比数列的定义与通项不仅是本章的重点和难点,也是高中阶段培养学生逻辑推理的重要载体之一。1.2.2 教学目标:
知识与技能:理解并掌握等比数列的定义和通项公式,并加以初步应用。
过程与方法:通过概念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,着重培养学生观察、比较、概括、归纳、演绎等方面的思维能力,并进—步培养运算能力,分析问题和解决问题的能力,增强应用意识。
情感态度与价值观:在传授知识培养能力的同时,培养学生勇于探求,敢于创新的精神,同时帮助学生树立克服困难的信心,培养学生良好的学习习惯意志品质。1.2.3教学重点和难点
教学重点:等比数列、等比中项的概念的形成与深化;等比数列通项公式的推导及应用。教学难点是:等比数列概念深化:体现它是一种特殊函数,等比数列的判定、证明及初步应用。
2.教材教法和学法分析
2.1教材的处理
考虑到学生的基础较差,故应稀释、放大、拉长等比数列概念的形成,展示深化过程和通项公式的推导过程,体现过程教学法。本节着重体现等比数列概念形成的过程及通项公式的推导与运用,因此把等比中项的概念安排到第二课时教学。2.2教材的教法
遵循“教为主导,学为主体,练为主线”的教育思想,我所采用的教学方法主要是启发引导探究法,并以讨论法,讲授法相佐。2.3教材的学法
自学——类比——归纳——练习
3.教学过程
具体教学过程分为复习引新、新课教学、练习反馈、总结提高、归纳小结与布置作业六个阶段。3.1、复习引新
等差数列的定义:
等差数列的通项公式; 3.2新课教学
3.2.1等比数列概念的教学 具体分为四个环节 ㈠创设情境,引入概念 引例1:细胞分裂问题
假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,„,一直进行下去,记录下每个单位时间的细胞个数,依次得到了一列数,求这些数所构成的数列。
引例2:某轿车的售价约36万元,年折旧率约为10%(就是说这辆车每年减少它的价值的10%),那么该车从购买当年算起,逐年的价值依次为: 引例3:《庄子·天下篇》曰:“一尺之棰,日取其半,万世不竭.”
如果把“一尺之棰”看成单位”1”,你能用一个数列来表达这句话的含义吗?
意图:由生活中的实例,激发学生学习兴趣,通过类比等差数列的定义,让学生自行给出等比数列的定义,它与等差数列定义仅一个关键字之差。
等比数列:一般的,如果一个数列从第2项起,每一项与它前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。(q≠0且an ≠0)
㈡抓本质,理解概念
试判断下列数列是不是等比数列,如果是求出公比。(1)1,3,9,27,81,243,„(公比为3)(2)2,2,2,2,2,2 „
(公比为1)(3)2, 4, 8, 16, 32, 47,„(不是)(4)a, a, a, a,„(不一定)(5)1, 6, 36, 0,„(不是)㈢破难点
强化概念
举例:数列,3,6,12„ „是否为等比数列,如是,其公比是多少?并给出证明。意图:等比数列的判定和证明是一个难点,因此,通过问题的训练和辨析可以突破难点。㈣强训练,巩固概念
思考:判断下列哪些说法是正确的:
(1)如果—个公比为q等比数列的各项均改为它本身的相反数,所得到的数列是否成等比数列?(2)如果—个等比数列的各项均改为它本身的倒数,所得到的数列是否成等比数列?(3)如果一个等比列的各项均改为它本身的平方,所得到的数列是否成等比数列?(4)如果把二个项数相同的公比不同分别为等比数列的对应项相乘,所得到的数列是否成等比数列? 意图:数学概念只有经过学生的一定练习,不断辨析,反复纠错,才能真正理解,领会、掌握和巩固。
意图:等差列、等比数列,是二个既有区别又有联系的数学概念。通过问题的训练和辩析,可以达到等比数列等概念的进一步强化、深化、活化。3.2等比数列通项公式的推导 3.2.1不完全归纳法
问题:如果一个等比数列的首项为a1,公比为q,请写出这个数列的前4项,且归纳出其通项公式。
类比等差数列通项公式推导方法,得到: 等比数列的通项公式是ana1qn1 意图:让学生从首项起,写出a2,a3,„,让学生进行观察、归纳,猜想出等比数列的通项公式。真正做到授之鱼不如授之以渔。
思考题:以上的方法是不完全归纳法,证法是不严密的,只能适用于探究与猜想,不能作为证明的根据。能否用严密的推理来论证呢? 3.2.2演绎推理论证(累积法)
意图:这时教师要鼓励学生根据问题的起因和内部联系的条件,自由思考,大胆设想别的推导方法,例如,可引导学生围绕等比数列的基本概念,从等比数列的定义出发,运用各式相乘,来导出公式(演绎法),有时学生难以想到的路,教师可以为学生架座桥,当然也可以直接让学生完成。
教师:设a1,a2,a3„是公比为q的等比数列,则由定义得: „„„„„„„„„„„„„„(1)„„„„„„„„„„„„„„(2)„„„„„
„„„„„„„„„„„„„„(n-1)
问:结合求等差数列的通项公式的方法,如何求得等比数列的通项公式?
由定义式得:(n-1)个等式
若将上述n-1个等式相乘,便可得: ××ׄ×=qn1即:an=qn1(n≥2)当n=1时,左=a1,右=a1,所以等式成立,∴等比数列通项公式为:ana1qn1(a1,q≠0)问题拓展:(1)问等比数列中任意两项之间的关系式是什么?能否得到更一般的通项公式? 结论:,所以更一般的通项公式为, 效果:这个过程中教师要放慢教学节奏,不要急于下结论,而让学生充分思考讨论,这样有利于启发学生发散性思维,使学生的思维处于活跃状态,探究;由一个等比数列中的任意两项和是否可以确定这个等比数列的通项公式?为什么? 意图:这个过程教师不要急于下结论,适时点拔,要让学生有充分的展示机会,这样培养学生的独立解决问题的能力大有好处的。
因为,当为奇数时,q唯一解,所以可以确定这个等比数列;当为偶数时,q有两个不同互为相反数的解,所以不可以确定这个等比数列。即只有当已知两项的项数奇偶性不同时,才可以确定这个数列,否则有两个数列满足题意。等比数列的通项公式:
1、,其中首项,为公比
2、,3.3例题讲解 3.3.1精讲例题
例题、在等比数列中,(1)已知求;(2)已知,求
学生讲教师写:第(1)小题只要代入等比数列通项公式即可,即;第(2)题,先求,即,解得,所以。
(引探)本题(2)还有其他解法吗? 先解出,所以通项公式为,即。变式题:一个等比数列的第2项是10,第3项是20,求它的第1项与第4项.解:在等比数列中,∵ a2=10, a3=20.∴ q=2, ∴a1=5, a4=a2q2=40.答:它的第1项为5,第4项为40.3.3.2学生板演
习题2.4,A组题第1题共4个小题
请四位同学板演,其余学生自做,教师通过课堂巡视了解学生做的情况和答疑,板演后老师讲评,修正做题中的错误,强调解题规范格式。3.4总结与作业布置 3.4.1课堂小结:
知识小结:等比数列的定义,其通项公式及推广公式的推导和其应用。思想方法小结:类比思想,函数思想,整体思想。
能力小结:培养观察、归纳,猜想能力,演绎推理能力和计算的技巧能力。
意图:师生共同归纳本节课的主要内容及方法,小结采用提问的形式,让学生思考,这节课主要学习什么知识?解决什么问题?在学生回答的在基础上,老师总结。3.4.2作业布置
(1)阅读课本(目的培养学生的良好习惯)(2)《必修5》第60页习题2.4A组2,3,4,5.4.板书设计
5.教学设计反思
现代数学教学观念要求学生从“学会”向“会学”转变,本课从单调性与导数关系的发现到应用都有意识地营造一个较为自由的空间,让学生能主动地去观察、猜测、发现、验证,积极地动手、动口、动脑,使学生在学知识的同时形成方法。特点:
1、自始至终坚持以学生为主体,体现了学生是课堂中学习的主体。
2、极大地训练了学生思维的全面性与深刻性,突出了对学生的思维训练和思维品质的培养。存在问题:几位落后生接受不了,而一些理解与思维能力好的学生不够吃的现象。
解决方法:抓中间顾两头,设计时尽可能考虑中等水平的学生,选几个比较难问题让一些理解与思维能力好的学生的潜能得以发挥,对落后生多加以启发和爱护,以及加强课后辅导。
6、评价分析:
(1)整个设计依据了建构主义理论,符合学生的认知规律。
(2)用探究的活动形式突破了难点。
(3)教师以引路人的身份,引导学生去探究问题发生发展的过程,把主体地位交还给学生。
(4)学生积极主动地参与探索问题的情景中。
2.5《等比数列的前n项和公式》说课稿
今天我将要为大家讲的课题是等比数列前n项和。对于这个课题,我主要从下面教材分析,教学目标分析,学情分析,教法分析、教学过程、教学小结这六个部分进行说明。
一、教材结构与内容分析:
《等比数列前n项和公式》是高中数学必修五第二章第五节内容。教学对象为高二学生,教学课时为2课时。本节课为第一课时。在此之前,学生已学习了数列的定义、等比数列、等比数列的通项公式等知识内容,这为过渡到本节的学习起着铺垫作用,而本节内容也为后面学习数列求和、数列极限打下基础。本节课既是本章的重点,同时也是教材的重点。从高中数学的整体内容来看,数列在整个高中数学领域里占据着重要地位,也起着作用性的作用。首先:数列有着广泛的实际应用。例如产品的规格设计、储蓄、分期付款的有关计算等。其次:数列有着承前启后的作用。数列是函数的延续,它实质上是一种特殊的函数;学习数列又为进一步学习数列的极限等内容打下基础。再次:数列也是培养提高学生思维能力的好题材。学习数列要经常观察、分析、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有利于学生数学能力的提高。
本节的教学重点是等比数列前n项和公式及应用。教学难点是等比数列前n项和公式的推导。
二、教学目标分析:
作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:
1、知识目标:理解等比数列前n项和公式的推导方法,掌握等比数列前n项和公式及应用。
2、能力目标:培养学生观察问题、思考问题的能力,并能灵活运用基本概念分析问题解决问题的能力,锻炼数学思维能力。
3、情感目标:培养学生学习数学的积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神。
三、学生情况分析:
学生在学习本节内容之前已经学习等差、等比数列的概念和通项公式,等差数列的前N项和的公式,具备一定的数学思想方法,能够就接下来的内容展开思考,而且在情感上也具备了学习新知识的渴求。
四、教学方法分析:
教法:数学是一门培养和发展人的思维的重要学科,因此在教学中不仅要让学生“知其然”,还要“知其所以然”,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进和启发式教学原则,我进行这样的教学设计:在教师的引导下,创设情景,通过开放式问题的设置来启发学生进行思考,在思考中体会数学概念形成过程中蕴涵的数学方法和思想,使之获得内心感受。
本节课将采用“多媒体优化组合—激励—发现”式教学模式进行教学。该模式能够将教学过程中的各要素,如教师、学生、教材、教法等进行积极的整合,使其融为一体,创造最佳的教学氛围。主要包括启发式讲解、互动式讨论、研究式探索、反馈式评价。
学法:根据二期课改的精神,转变学生的学习方式也是本次课改的重要内容,数学作为基础教育的核心学科之一,转变学生的数学学习方式,变学生被动接受式学习为主动参与式学习,不仅有利于提高学生的整体数学素养,也有利于促进学生整体学习方式的转变。在课堂结构上我根据学生的认知层次,设计了(1)创设情景(2)观察归纳(3)讨论研究(4)即时训练(5)总结反思(6)任务延续,六个层次的学法,他们环环相扣,层层深入,从而顺利完成教学目的。自主探索、观察发现、类比猜想、合作交流。教学手段,利用多媒体进行辅助教学。
五、教学程序设计:
1、创设情景:
引例:某公司,由于资金短缺,决定向银行进行贷款,双方约定,在3年内,公司每月向银行借款10万元,为了还本付息,公司第一个月要向银行还款10元,第二个月还款20元,第三个月还款40元,„„。即每月还款的数量是前一个月的2倍,请问,假如你是公司经理或银行主管,你会在这个合约上签字吗?
这是一个悬念式的实例,后面的“假如”又把学生带入了实例创设的情境,让学生直接参与了“市场经济”。根据心理学,情境具有暗示作用,在暗示作用下,学生自觉不自觉地参与了情境中的角色,这样他们的学习积极性和思维活动就会极大的调动起来。这样引入课题有以下几个好处:
(1)利用学生求知好奇心理,以一个实际问题为切入点,便于调动学生学习本节课的趣味性和积极性。
(2)在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。(3)问题内容紧扣本节课教学内容的主题与重点。
(4)有利于知识的迁移,使学生明确知识的现实应用性。
在教师的诱导下,学生根据自己掌握的知识和经验,很快建立起两个等比数列的数学模型。数列{an}是以100000为首项,1为公比的等比数列,即常数列。数列{bn}是以10为首项,2为公比的等比数列。
当学生跃跃欲试要求这两个数列的和的时候,课题的引入已经水到渠成。教师再由特殊到一般、具体到抽象的启示,正式引入课题。
2、讲授新课:
本节课有两项主要内容,等比数列的前n项和公式的推导和等比数列的前n项和公式及应用。等比数列的前n项和公式的推导是本节课的难点。依据如下:
(1)从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。
(2)从学科知识上讲,推导属于学科逻辑中的“瓶颈”,突破这一“瓶颈”则后面的问题迎刃而解。
这里我讲述的主要是怎样利用多媒体激励、启发学生思维,突破教材难点。等比数列有两大类:公比q=1和q1两种情形 当q=1时,Sn=na1 当q1时,Sn=a1+a1q+„„+a1qn-1= q1时,Sn的结果是怎么推导出来的呢?本节课的难点就在于此。预习过课本的学生会知道这个结果以及推导过程,但是他们知其然而不知其所以然,可以说大部分学生根据他们掌握的知识和经验是难以推出这个公式的。这时候我们可以首先让学生们进行思考,如果运用数学中“从特殊到一般”的数学思想方法,能不能向这个结果靠拢呢? 我们不难得到下述结论: S1=a1, S2=a1+a2=a1+a1q=a1(1+q)S3=a1+a2+a3=a1+a1q+a1q2=a1(1+q+q2)„„ Sn=a1+a2+„„+an=a1(1+q+q2+„„+qn-1)不少同学根据这个式子可能会想到
a1(1+q+q2+„„+qn-1)= a1(1+q+q2+„„+qn-1)(1-q)/(1-q)= 这时我要向学生说明,这种从特殊到一般,逐步归纳的思想方法很好,是我们解决数学问题中经常会运用到的方法。然后又要指出在现阶段,我们还无法对这个过程进行证明,因此它的给出是不严密的。这样不仅让学生再一次体会到数学的最基本特点,严密的逻辑性。也为将来学习二项式展开的内容打下了伏笔。此时,仅仅从形式上进行的归纳在现阶段是无法进行系统而严谨的证明的,那我们只能在思想的过程中另辟蹊径,因此,要通过复习等差数列的求和公式,借助推导等差数列求和公式的思想方法,来找到推导等比数列的前n项和公式的方法!让学生们一起回忆一下等差数列的前n项和公式的推导过程。
可以发现当时我们是将a1与an,a2与an-1,所有与首末等距两项交换位置,得到Sn的倒序和的形式。然后两式相加。这样2Sn就是一个有n 项的每一项都是a1+an的常数列。从而导出了Sn的公式。
等差数列的求和方法是根据等差数列的特点和根据学生的知识结构和认知水平产生的,形式上是倒序相加,本质上就是消去数列中项与项之间的差异,构造一个新的各项相同的常数列,然后根据常数列的和导出 Sn的公式来,其本质特征是等差数列从第二项起,每一项都比前一项多了一个d。
那么等比数列是不是也可以用类似的方法,构造出一个常数列或者部分常数列呢?让学生亲自去试一试,结果呢?
这时候学生们很自然的会用倒序相加的方法来进行思考。结果显然是行不通的。此时教师的主要任务是要让学生的思维迅速发散——从倒序相加的定势中解脱出来。抓住学生迫切想解决这个问题的心态,及时地通过媒体进行启发。老师要告诉学生,构造常数列或者部分常数列的思路是正确的。既然倒序行不通,那么还有没有其它的方式构造常数列呢? 接着要引导学生从等比数列的定义出发,进一步认识等比数列从第二项起,每一项都是前一项的q倍,也就是说将每一项乘以q以后就变成了它的后一项,那么将Sn这个和式的两边同时乘以q,在q Sn这个和式中的第一项就是Sn的第二项,也就是Sn和q Sn之间产生了一个错位。由两个和式能否构造常数列或者部分常数列的和式呢?相加行不行?显然不行!相减行不行?显然行。
将Sn和 q Sn相减后,中间就得到了n-1项各项都是0的常数列, 找到了这个常数列,难点就突破了,Sn的导出就容易了,导出了Sn就基本上达到了本节课的认知目标。
为了加深理解,这时还应该对等差、等比两种数列的求和公式的推导过程进行类比和分析: 两种数列求和的基本思路都是构造常数列,构造常数列的思想也是其他一些数列求和的基本思想。等比数列在构造常数列的过程中,采用“错位相减”,等差数列采用的是“倒序相加”,倒序相加本质上也是“错位相加”,是一种大幅度的“错位相加”,等比数列只不过是步幅为1的小幅度的“错位相加”。说明一下,在Sn的和式中,两边同时乘以q是解决问题——构造常数列的关键所在,是推导等比数列求和公式的一把钥匙。
所以,这两种数列的求和公式的推导方法,从数学思想和数学方法上来讲是一致的,但是它们也有差异,即错位的方法不同。正是由于这种差异,教师才有了更大的教学空间。当教师把学生从“倒序相加”的思维定式中引导出来的时候,学生的数学思维的深刻性、广阔性等思维品质就得到了提高,思维品质提高了,思维能力也就提高了。这样,这节课的认知目标和素质目标就基本上都达到了。
推导出公式之后,对公式的特征要加以说明,以便学生记忆。同时还要对公式的另一种表示形式和应用中的注意事项加以说明。帮助学生弄清其形式和本质,明确其内涵和外延,为灵活运用公式打下基础。有了求和公式后,回头让学生亲自计算一下引例中的钱款数量,从计算结果中让学生明确实际问题的解决离不开数学,在市场经济中必须有敏锐的数学头脑才行。3.例题讲解。
我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。本节课设置如下两种类型的例题: 1)等比数列中知三求二的解答题
例:求首项为2,公比为2的等比数列的前8项和以及第5项的值。以及书上的例4 2)实际应用题。
例:某制糖厂第1年制糖5万吨,如果平均每年的产量比上一年增加10%,那么从第1年起,约几年内可使总产量达到30万吨(保留到个位)? 这样设置主要依据:
(1)例题与大纲中规定的教学目标与任务及本节课的重点、难点有相对应的匹配关系。(2)遵循巩固性原则和传授——反馈——再传授的教学系统的思想确立这样的例题。
(3)应用题比较切合对智力技能进行检测,有利于数学能力的提高。同时,它可以使学生在后半程学习中保持兴趣的持续性和学习的主动性。4.形成性练习:
例题处理后,设置一组形成性练习,作为对本节课的实时检测。练习基本上是直接运用公式求和,三个练习是按由易到难、由简单到复杂的认识规律和心理特征设计的,有利于提高学生的积极性。学生练习时,教师巡查,观察学情,及时从中获取反馈信息。对学生练习中出现的独到解法提出表扬和鼓励,对其中偶发性错误进行辨析、指正。通过形成性练习,培养学生的应变和举一反三的能力,逐步形成技能。5.课堂小结
本节课的小结从以下几个方面进行:(1)等比数列的前n项和公式
(2)公式的推导方法——错位相减法
(3)求和思路——构造常数列或部分常数列。
通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。进一步完成认知目标和素质目标。6.布置作业
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到拔尖和“减负”的目的。并可布置相应的研究作业,思考如何用其他方法来推导等比数列的前N项和公式,来加深学生对这一知识点的理解程度。
六、教学评价与反馈:
【《条件语句》的高中数学说课稿】推荐阅读:
高中数学《条件语句》优秀说课稿11-06
到美国高中留学的9个条件05-25
高中生留学澳洲的条件10-09
美国高中留学申请各方面的条件09-28
加拿大留学公立高中申请条件及优势09-19
动物的语句06-01
失恋的语句06-23
农民的语句09-11
悲痛的语句10-24
赞美友情的语句05-25