八年级数学下册《分式方程的应用》的教学反思

2024-11-27 版权声明 我要投稿

八年级数学下册《分式方程的应用》的教学反思(精选10篇)

八年级数学下册《分式方程的应用》的教学反思 篇1

问题还是出现在审题上,其实方法也类似,找已知的未知的量,找描述等量关系的语句,可以列表分析,还可以直接将文字转化为数学式子,我经常在启发时说,某某同学刚才回答时为什么能很快找到等量关系呢,是因为他知道要关注那些重要的东西,比如数据,比如题中出现的量,等等,就想语文阅读时弄清楚时间,人物,事情一样。

于是在课堂上例题的分析,我总是把大量的时间放在启发学生理解题意上,老实说就算是语文的课外阅读,学生多读几遍也总读点味道出来了,可对于数学问题,有些学生读了一遍题目愣是一点感觉没有,对数字稍微敏感一点的也能找到相应的量吧,但就是这些,让学生最头疼的,最郁闷,想得抓狂了还是找不到等量关系。

八年级数学下册《分式方程的应用》的教学反思 篇2

一、教学目标

(1)知识与技能

1.进一步掌握分式方程的解法、增根及应用。(2)过程与方法

1.通过“合作、交流、展示、点评、质疑”等方式促进学生对知识的掌握。

2.体会“转化”、“方程”的数学思想解决问题。

(3)情感与态度

1.进一步体会数学与生活的联系,了解数学的价值。

2.增强学生合作与交流的意识,培养学习的兴趣。

二、教学重点和难点

重点:进一步掌握分式方程的定义、解法、增根及应用。

难点:进一步理解增根的条件,灵活应用分式方程解决实际问题。

三、三、教学方法: 讲练结合,以练为主.

四、教具 教学设计、幻灯片若干张、五、教学过程: 一.例题讲解: 例1.解下列分式方程:

212x1; 21; x4xx11x124x61324x1x1x1; x3x29x3。

例2若a11有增根,则a的值为x2。

二.巩固练习:

1.解下列分式方程:211.;x1x2 314(3).2;x2xx2x212.1;13x6x221(4).21x1x1;.三.课堂小结: 1kx12.(1).若2有增根,则kx22x2mx2(2).若1有增根,则mx3x1.解分式方程的思路及步骤; 2.解分式方程应注意的细节; 3.分式方程中的增根问题。四.课后作业: 1.解下列分式方程:

13(2).1;x1(x2)(x1)1221x1m(4).无解,求m的值。;若关于x的方程2x5102xx93xx3x23(6).212xx431(1).;2xx1100603.;20m20mx21(5).0x1

2.五.板书设计:

复习课——解分式方程 1.解分式方程的步骤:

(1)化,(2)解,2.分式方程的增根:

八年级数学下册《分式方程的应用》的教学反思 篇3

本节课由一次函数讨论了三个已书法家对象:一元一次方程、一元一冷饮不等式和二元一次方程组,这些不是新知识,但对其认识还有待于进一步深入,本节用函数的观点对它们进行分析,这种再认识不是简单的回顾复习,而是居高临下的进行动态分析。因此,教学中,一定要把握内容的要求尺度。通过 本节课的教学,应加强知识间横向和纵向的联系。发挥函数对相关内容的统作用,能用一冷饮函数的观点把以前学习的方程与不等式进行整合。

本节课的教学发现:有一小部分的学生还是不懂得看函数不理解函数值大于0、小于0进所对应的自变量的值应如何看,如何写出满足条件的答案。因此,建议在教学过程中增加看图的练习题:知道函数值的范围求自变量的取值范围,知道自变量的取舍范围求函数值 的范围等类型的题目。

另外,运用所学知识解决实际问题是学生学习的目的,是重点,但也是学生的难点。尽管学生难接受,介是在教学的过程 中不要回避,要慢慢引导,加强训练,争取让学生能理解题目,掌握解题方法与技巧,从而提高技能。

八年级数学下册《分式方程的应用》的教学反思 篇4

教学内容

分式方程.

教学过程

一、导入新课

3解方程 x1.

x1x1x2

二、探究新知

1.解分式方程

学生独立思考,写出此方程的解答过程,师及时点评. 提示:整数别忘同乘最简公分母. 练习:解方程答案:无解

2.解含字母的分式方程 解方程x1421. x1x1ab1(b1). xa学生独立思考,写出此方程的解答过程,师及时点评. 解:方程两边同乘 x-a,得

a+b(x-a)=(x-a).

去括号,得 a+bx-ab=x-a. 移项、合并同类项,得(b-1)x=ab-2a. ∵b≠1, ∴b-1≠0.

ab2a. b1ab2a时,x-a≠0,所以x=ab2a是原分式方程的解. 当x=b1b1∴x=3.分式方程的应用

例3 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?

让学生由题意填写下题:甲队1个月完成总工程的_____,设乙队单独施工1个月能完成总工程的 ,那么甲队半个月完成总工程的____,乙队半个月完成总工程的____,两队半个月完成总工程的 .

让学生找出问题中的哪个等量关系,列出方程.学生独立思考,写出此方程的解答过程,师及时点评.

三、课堂小结

1.会解较复杂的分式方程和较简单的含有字母系数的分式方程. 2.能够列分式方程解决简单的实际问题.

四、课后作业

习题15.3第2、3题.

列分式方程解应用题的教学反思 篇5

本节课我们学习的是分式方程应用题,教学重点是要学生们建立分式方程应用题的思维模型,会根据题中的条件找出等量关系,同时列出分式方程,并解答。我主要借助导学案,让学生通过小组合作的方式合作完成本节课的内容,同时教师进一步规范列分式方程解应用题的步骤和思路。本节课不足之处如下:

一、学生们对于检验的过程总是容易丢失,说明还是对检验这个必要的步骤理解的不是很深刻,所以会出现易遗忘的现象,也暴露了我在教学时强调的力度还是不够,以后应着重强调。

二、对于等量关系的寻找,很多学生有困难,尤其是对题中条件比较多,或是等量关系比较隐含的应用题,如何准确找出题目中的等量关系是教学中的难点,我主要借助关键数字来降低这一难度,我觉得这是应用题教学的重中之重。

三、学生们还很习惯于用整式方程的思考方式来分析应用题,总是很难以直接建立分式方程的模型,难以直接接受新的事物,所以在教学时要多引导学生对这种模型的认识,让他们明白建立分式方程解应用题的模型对今后解这类应用题有很大的帮助。

八年级数学下册《分式方程的应用》的教学反思 篇6

这一周第十七章分式结束了。原以为本章内容较易理解,经过适度的训练,学生会掌握得很好。可是经过一次小考及平时的观察,发现学生的运算能力很差,运算的准确率太低;应变能力就更不用说了,稍微变一变题型,学生就不会做。其实,造成这种现状的原因不仅与学生自身有极大关系,与教师的教学也有一定的关系。反思自己这一个月的教学行为,我觉得自己身上或多或少还存在以下几方面的问题:

1、教学过程中还存在着“不敢放手”的现象。

课堂教学中,我确实很注意运用学案式教学,精心设计问题引发学生思考,组织学生进行讨论。但问题提出后没给学生留有足够的思维空间,小组讨论时间也不够总担心学生想不周全或课堂教学内容完不成,因此对于某些问题,不等学生思考完善就急于给出答案。导致学生对问题的片面理解,不能引发学生深思,也就不能给学生留下深刻印象,因此造成很多学生对于做过的题一点印象都没有。

2、课堂教学中注意培养学生的发散思维,但有时却“贪多而嚼不烂”,忽略了学生的接受能力。

在平时的授课过程中,特别是讲解例、习题时,我非常注意培养学生的`发散思维,通过“一题多解,一题多变”的反复训练,开拓学生视野,不断总结方法,并进行相关联系,培养学生多角度思考问题,多途径解决问题的能力。但有时却忽略了学生的接受能力,特别是中、下等生的理解接受能力。因此,部分学生的应变能力没能得到提高,反而有个别学生将几种方法混为一谈记作一锅粥。

3、课堂教学中缺乏必要的耐心关注中下等生,使他们学习缺乏信心,导致两极分化。

课堂教学中,往往将精力集中在中上等生的身上,大多而忽略了更需要关心的中下等生。致使他们越落越远,最终失去学习信心而加重两极分化。

针对以上问题,下阶段准备采取以下补救措施:

1、还给学生一片思维的空间,要充分相信学生,给小组更多的讨论时间。

2、对过多的习题进行适当筛选,精讲精练,在45分钟内进行有效学习

3、课堂上注意教学节奏,关注中下等生的学习,让他们跟上老师的步伐,尽量缩小两极分化

八年级数学下册《分式方程的应用》的教学反思 篇7

(二)》回顾与思考 北师大版

总体说明

本节是第二章《分式》的最后一节,占两个课时,这是第二课时,它主要让学生回顾在分式方程解法的基本步骤与解分式方程应用题的基本步骤,让学生能从具体的情境中抽象出数量关系和变化规律,并用符号表示,发展学生的符号感.通过螺旋式上升的认识,让学生逐步了解怎样解决现实生活中的实际问题,培养学生的代数表达能力,使学生对实际问题的解决能有更深的认识和更强的数学能力及数学素养.

一、学生知识状况分析

学生的技能基础:学生已经学习了分式方程及分式方程应用题等有关概念,对解决与分式方程相关的实际问题有了一定的基础与认识.

学生活动经验基础: 在学习解方程及解决方程的应用题等实际问题的过程中,学生已经经历了观察、探究、讨论等活动方法,获得了解决实际问题所必须的一些数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.

二、教学任务分析

在本章的学习中,学生已经掌握了分式方程和它的应用,本课时安排让学生对本部分内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对就的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的目标是: 知识与技能:

(1)能熟练地解分式方程;

(2)能从具体的情境中抽象出数量关系和变化规律,并用符号表示.

数学能力:

(1)通过解分式方程,使学生了解转化的思想方法;

(2)关注对算理的理解,发展学生的代数表达能力,运算能力和有条理地思考问题的能力;

(2)提高学生解决实际问题的能力,发展学生的符号感,提高分析问题和解决问题的能力.

情感与态度:

(1)让学生了解数学与生活是不可分离的,生活是数学的载体;

(2)通过经历观察、归纳、类比、猜想等思维过程,进而学会反思自己的思维过程.

三、教学过程分析

本节课设计了六个教学环节:回顾——做一做——试一试——想一想——反馈练习——课后练习.

第一环节回顾

活动内容:

1、解分式方程有哪些步骤?

2、解分式方程应用题有哪些步骤?

活动目的:

通过学生的回顾与思考,加深学生对解分式方程的步骤及解应用题的步骤的认识. 教学效果:

有了前几节课的学习,学生对解分式方程的步骤及解应用题的步骤有了较清楚的认识与理解.

第二环节做一做

活动内容:

解下列分式方程:

(1)1253x22(2)x1x1x11x

5x12361(4)2 x44xx11xx1(3)

活动目的:

通过对分式方程的解答,使学生明白解分式方程的关键是把分式方程转化为整式方程. 教学效果:

学生能够理解解分式方程的步骤,但有部分学生在去分母时,会出现整数不乘公分母,如第(2)(3)两小题.

第三环节试一试

活动内容:

1、在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.

(1)求乙工程队单独完成这项工程所需的天数;

(2)求两队合做完成这项工程所需的天数.

2、A、B两地相距80千米,甲骑车从A地出发1小时后,乙也从A地出发,用相当于甲1.5倍的速度追赶,当追到B地时,甲比乙先到20分钟,求甲、乙的速度.

活动目的:

(1)让学生能从具体的情境中抽象出数量关系和变化规律,并用符号表示,发展学生的符号感.

(2)通过解决生活中的实际问题,提高分析问题和解决问题的能力.

教学效果:

由于在前一阶段学生已经有了一些解决实际问题的基础,学生在解决比较简单的问题时较好,但也有少数学生很难把生活中的实际问题与数学结合到一起,思维上有一定的障碍.

第四环节想一想

活动内容:

某顾客第一次在商店买了若干件小商品花去了5元,第二次再去买该小商品时,发现每一打(12件)降价0.8元,他这一次购买该小商品的数量是第一次的两倍,这样,第二次共花去2元,问他第一次买的小商品是多少件?

活动目的:

通过螺旋式上升的认识,进一步发展学生的符号感,提高解决实际问题的能力. 教学效果:

学生对抽象思维较难理解,但可以进行现场模拟这个情景,使学生从感性认识中发展到抽象思维,让大多数学生能够找到解决问题的钥匙.

第五环节反馈练习

活动内容:

1、选择题:

(1)一个工人生产零件,计划30天完成,若每天多生产5个,则在26天里完成且多生产10个,若设原计划每天生产x个,则这个工人原计划每天生产多少个零件?根据题意可列方程()

30x1018018030x1030x26C3 26B2610DAx5x2xx5x5

(2)几名同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设参加旅游的学生共有x人,则根据题意可列方程()

***033B、A、x2xxx2

***033C、D、xx2x2x2、解下列方程:

3x2x14 2(2)(1)x22xx1x3、某厂第一车间加工一批毛衣,4天完成了任务的一半,这时,第二车间加入,两车间共同工作两天后就完成了任务并超额完成任务的数.

活动目的:

通过设置恰当的、有一定梯度的题目,关注学生知识技能的发展和不同层次的需求.教学效果:

部分学生能举一反三,较好地掌握分式方程及其应用题的有关知识与解决生活中的实际问题等基本技能.

第六环节课后练习

课本第96页复习题第4、9、10、11题; 1,求第二车间单独加工这批毛衣所用的天1

2四、教学反思

数学来源于生活,并应用于生活,让学生用数学的眼光观察生活,除了用所学的数学知识解决一些生活问题外,还可以从数学的角度来解释生活中的一些现象,面向生活是学生发展的“源头活水”.

八年级数学下册《分式方程的应用》的教学反思 篇8

龙王庙初级中学 赵雷鸣

上完这节课,从学生上课情况、作业等多方面发现,本节课所取得的教学效果是值得肯定的,但也有需要改进的地方.为此,本人针对本节课的教学,从内容设计、新课标理念、教法等几个方面作了如下的反思:

1、流畅的教学设计、精心的内容编排、巧妙的时间运用是上好一节新课标理念下的新授课的大前提.

要开展多元化的探究活动,要学生在合作探索中体现和发现新知识,就必须在有限的40分钟时间里尽可能挤出时间和空间,让学生有更多的动手、动口、思考和尝试的机会.因此,整个新授课的教学设计必须很流畅,教学内容与练习的选取必须衔接连贯,不允许有任何时间上的点滴浪费.在教学过程中,本人通过创设情景、引入课题,引导学生探究新知等教学环节.既培养学生的合作意识,又重视学生数学思想方法的学习,合理调整教学内容,使学生的学习目标更加明确,让学生在动中学.

2、能否以探究活动的形式,让学生通过自主探索、合作交流去发现和体验新知识是上好一节新课标理念下的新授课的关键.

数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动.教师要改变以例题、示范、讲解为主的教学方式,引导学生投入到探索与交流的学习活动中去.这一节课学生已通过旋转操作的探究方式发现平行四边形是一个中心对称图形,进而探索得出“平行四边形的对边相等,对角相等,邻角互补”等特征,对平行四边形有关边和角方面的性质有较深的理解.与此同时,学生也对旋转操作的步骤和要领有了一定的认识,以此为基础,既能体现新课标教学理念,又能提高学生的学习兴趣和实际操作能力,取得较好的学习效果.

学生的合作探究要取得成效,离不开教师的正确引导和促进.在探究活动中,教师应扮演一个参与者与促进者相结合的角色,加入学生中去,与学生们一起共同去探求和发现新知识,但这个参与者并不能只为参与而参与,他必须在参与者们产生误解或迷惑的时候提供正确的指引,促进参与者们朝着同一的、正确的方向迈进.而在练习过程中,教师此时就要摇身一变,成为一个新课标理念下知识

传授者的角色,检查每一位学生的练习质量,对不足者及时辅导,较大问题及时在课堂上反馈,好让全班同学加以注意,提高警惕.

学生获得新知识后,接下来当然是要巩固了,我安排了一组灵活应用:安排顺序:练一练,例1,做一做,试一试,巩固与提高,拓展与延伸.

《分式方程的解法》教学反思 篇9

本节课是北师大版数学八年级下册第三章《分式》的第四节“分式方程”的第二课时,本节课作为分式方程的第二节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是对前一节内容的深化,又为以后学习“分式方程的应用”打下了良好的基础,因而在教材中具有承上启下的作用。

课程标准要求:会解可化为一元一次方程的分式方程(方程中的 分式不超过两个)。根据新课标、教师用书及学生的学习情况,将本节课的学习目标细化为:

1、通过自学课本88-89页例1,例2,会归纳出解分式方程的基本思路及方法,并会模仿例题解简单的分式方程。

2、通过合作交流,会归纳出解分式方程的一般步骤。

3、通过自学课本89页议一议及90页,知道增根产生的原因及验根的必要性,并会归纳出验根的方法。

4、会熟练解分式方程,并会检验根的合理性

解分式方程的基本思路是--把分式方程转化为整式方程,方法是去掉分式方程的分母,即方程两边同乘以最简公分母,这是分式方程求解的关键。因此确定本节课的学习重点为

1、解分式方程的基本思路及方法

2、会熟练解分式方程 解分式方程学生容易出错,关键不能理解在方程变形的过程中产生增根的原因,可以结合实例让学生了解方程两边同乘的是整式,整式可能为零不能满足方程同解变换的原则,因此本节课的学习难点为

1、增根产生的原因及验根的必要性

2、验根的方法

本节课前,学生已熟悉等式的性质,并能熟练地解一元一次方程,能理解去分母、去括号、移项、系数化为1的依据。所以,在上一节课学习分式方程概念的基础上,本节课运用观察、类比的方法,探索解分式方程的方法及各步骤的依据。因此,本节课主要采用问题设计的模式,通过观察、类比、讨论、交流的形式展开教学,特别注重 “精讲多练 ”,真正体现以学生为主体。课堂上主要采用了启发、引导式并针对学生的回答所出现的一些问题给出及时的纠正。在上课做练习时,除了让尽可能多的学生板演外,自己还在下面及时的发现其他学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。

在学习过程中,首先复习找最简公分母的方法,为新课中去分母做铺垫,进而引导学生类比解一元一次方程的一般步骤解分式方程,既引出了本节课题,又使学生能积极投入到新知探究环节。

在新知探究过程中,我设置了四个探究环节。通过预习,独立完成探究

(一)提出的问题,让学生明确解分式方程的基本思路及方法,并能模仿例题完成体验练习(其中练习2要让学生注意解分式方程去分母时,方程的各项都要乘以最简公分母。)。在探究

(二)归纳出解分式方程的一般步骤后,引得学生观察方程

3x13xx1,思考求得的x值是方程的解吗?学生在完成体验练习和归纳出解分式方程的一般步骤时,会觉得只要解方程时细心,计算不出错,检验没必要,因此,我设计这道思考题,让学生发现求得的x值代入原方程左右两边均无意义,引发学生思考求得的x值是不是方程的解,从而引出增根。进而思考:增根是什么?是如何产生的?如何检验?带着这些问题,自然进入探究

(三)。增根是本节的难点,学生通过看课本很难深入理解,因此我在探究

(三)中设计了3个问题分散这个难点,让学生通过预习、合作交流完成,理解增根产生的原因和体会验根的必要性,从而会检验根的合理性,顺利突破难点。在探究

(三)完成后,为巩固检验增根的方法,也为再次强化解分式方程的一般步骤,又设计了一道巩固练习。学生正确完成后引导学生观察这几道练习,思考“你发现分式方程有哪些验根的方法?各有何特点?(即探究四)”让学生通过合作交流,归纳出分式方程验根的方法。最后通过一组巩固训练强化本节所学知识。至此,本节课通过由浅入深的练习和诱导,使学生在不知不觉中强化了重点,突破了难点。

1、通过探究

(一)及体验练习,检测目标1的达成--达成度98%。

2、通过探究

(二),检测目标2的达成达成度100%。

3、通过探究

(三)及巩固练习,检测目标3的达成--达成度95%。

4、通过探究

(四)及巩固训练,检测目标4的达成--达成度95%。为了帮助学生从整体上理解本节课所学的知识,构建知识结构,对所学知识及融于其中的思想和方法进行小结,设计了第三个环节 “谈谈你的收获”。学生可以谈本节课的收获,也可以谈在本节课中的疑惑,或对本节课提出意见或建议,给予学生充分的鼓励和正确的评价。

为了检测本节课学生掌握知识的程度,设计了两道检测题,既检验了解分式方程的能力,又巩固了验根的方法,同时检测了目标的达成度。

本节设计了必做和选做两项作业,把作业分为必做题和选做题两种,这样做既可以使学生掌握基础知识,又可以使学有余力的学生有所提高,从而达到拔尖和“减负”的目的。

本节课的设计力求体现:

 培养学生观察、交流、分析、归纳的能力  让学生充分经历知识形成的全过程

八年级数学下册《分式方程的应用》的教学反思 篇10

反思一:可以化成一元一次方程的分式方程>教学反思

12月8日第五节在七(6)班开了一节教研课:“可以化成一元一次方程的分式方程”,可化为一元一次方程的分式方程,既是分式方程的应用,也是整式方程的延伸与扩展,教材通过实际问题的解决,让学生体会分式方程的意义,领会把分式方程整式化的转化思想,掌握分式方程的解法,知道分式方程出现增根的原因,理解验根的必要性。学生在六年级就学习了一元一次方程的解法及应用,时隔一年,估计部分同学遗忘,而本节课的关键在把分式方程整式化后,主要是解一元一次方程,所以在讲新课前我通过解一道具体的一元一次方程让学生回顾解一元一次方程的步骤和怎样验根,很好地为本节课做好了铺垫。接着引入安排了实际生活中的例子,更贴近学生的实际,在学生讨论时,注意结合分析、解决实际问题的逐步深入。在讨论分式方程的解法时,从分析分式方程的特点入手,引出解分式方程的基本思路,即通过去分母使分式方程化为整式方程,再解出未知数。这里解分式方程的基本思路是很自然、很合理地产生的,这种处理既突出了分式方程解法上的特点及其算理,又反映了整式方程与分式方程在解法上的内在联系。

在讨论增根问题时,通过具体例子展现了解分式方程时可能出现增根的现象,并结合例子分析了什么情况下产生增根,然后归纳出验根的方法。

我认为这堂课上的还是很成功的,比较满意的地方有:

(1)从教学设计到学案,课件的制作都是非常用心,精心设计,(2)课堂节奏把握得较好,教学设计意图,教学目标在课堂上得到较好的落实,(3)学生的积极性也调动起来,课上能够积极思维,具体表现在课的引入我没有用书上的例子,而是安排了实际生活中的另一例子,学生能根据题意列出两个不同的方程,其次是,积极发言的不全是成绩好的同学,例如杨益磊平时就是及格边缘,但这节课上表现好,上来做例二板书工整。

不足的地方有:

(1)在讨论为什么分式方程会产生增根的时候,看学生有畏难情绪,确实考虑到七年级的学生也讨论不出什么名堂,就替代了思维,也不敢深讲,(2)小组没有按异质分组,而是按座位排的,所以有些小组的讨论没起到应有的作用。

反思二:可以化成一元一次方程的分式方程教学反思

首先是学生如何顺利的找到题目中的等量关系,书本给出两个例子较难,按照书本的引入,一开始课堂就可能处以一种安静的思维,处于很难打开的状态,不能有效地激发学生学习兴趣与激情,所以才在学案中搭梯子降低难度,让学生体会到成功的喜悦,这样学生才会愿意继续探索与学习;实际问题的难度设置上是层层深入,问题也是分层次性,能够让不同层面的学生都有不同的体会与感受。

其次在教学过程中应提高教师自身的随机应变的能力和预设问题能力,课前充分备好学生。例如:以前学过整式方程,我们以前只是说一次方程之类的,没有系统的归类它是整式方程。如果不事先详细解释清楚整式方程这个词时,合作探究二进行的就不会很顺利。

最后,我们应让恰到好处的鼓励语和评价贯穿于教学过程中,只有这样,学生才能不断增强自信,在愉悦中探究新知,解决问题。

在教学过程中,由于种种原因,存在着不少的不足:

1、在复习整式方程时,学生并不像想象中对整式方程解题过程很了解,我就引导大家一起复习了一下,在这里,如果再临时出几个题目巩固一下,效果也许更好些。

2、对学生理解消化能力过于相信,在看例一的过程中,每一步的依据都进行了讲解,而分式方程的难点就是第一步,即将分式方程转化成整式方程。在这里,需要特别强化这个过程,应该对其进行专项训练或重点分析,就学生的不同做法进行分析,让他们明白课本的这种方法最简单最方便,同时,通过板书示范分式方程的解题。

3、时间掌握不够。备学生不够充分,导致突发事件过多,时间被浪费了,以致>总结过于匆忙。

反思三:可以化成一元一次方程的分式方程教学反思

1、解可化为一元一次方程的分式方程的基础是会解一元一次方程,综合知识运用点多,难点在于要正确地把分式方程化为一元一次方程,问题的关键是在去分母,包括正确乘于各分母的最简公分母、正确去括号、合并同类项等,学生在做题时要很小心才行,如果其中有一步走错了,特别是去分母这一步错了,后面的功夫便白费了,所以在教学中教师要引导学生耐心地攻克每一个难点,千万不要在去分母时忘记把没有分母的项也乘于它们的最简公分母。

2、对于一些分母需要变形的分式方程,强调要通过因式分解才能找出它们的最简公分母,在找公分母时还要注意互为相反数的情况,千万不要把问题复杂化,如果能够正确地找出最简公分母并去括号,就接近了成功了。要鼓励学生耐心一些,每一步要细心、细心再细心。任何一步错了都会导致后面的劳动白费。

上一篇:形象单词记忆法下一篇:残联党组成员、副理事长民主生活会发言材料