怎样证明面面平行(精选10篇)
求证:四边形EGFH为平行四边形;
3如图,∥∥,直线a与b分别交,,于点A,B,C和点D,E,F,求证:
ABDE. BCEF第 7 页
4如图所示,在棱长为a的正方体ABCDA1B1C1D1中,Q分别是BC,C1D1,E,F,P,AD1,BD的中点.
(1)求证:PQ//平面DCC1D1.(2)求PQ的长.
(3)求证:EF//平面BB1D1D.如图,在正方体ABCDA1B1C1D1中,E,F,G,H分别棱是CC1,C1D1,D1D,CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足
时,有MN//平面B1BDD1.如图,M、N、P分别为空间四边形ABCD的边AB,BC,CD上的点,且AM∶MBCN∶NBCP∶PD.
求证:(1)AC//平面MNP,BD//平面MNP;(2)平面MNP与平面ACD的交线//AC.
第 8 页
7如图,在正方体ABCDA1B1C1D1中,求证:平面A1BD//平面CD1B1.图,在四棱锥PABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点. 求证:MN//平面PAD.
9如图,正三棱柱ABCA1B1C1的底面边长是2,3,D是AC的中点.求证:B1C//平面A1BD..如图,在正四棱锥PABCD中,PAABa,点E在棱PC上. 问点E在何处时,PA//平面EBD,并加以证明.A
P
AE
C
B
课题:线面平行、面面平行
教学目标:掌握线面平行、面面平行的判定方法,并能熟练解决线面平行、面面平行的判定问题.(一)主要知识及主要方法:
1.线面平行的证明1判定定理:如果平面外一条直线与这个平面内一条直线平行,那么这
a,条直线与这个平面平行;ba∥,2两平面平行的性质定理:
ABnABn0∥b.3向量法.方法1;AB∥ ABàABàA AB∥CD方法2;AB∥ABà C CDÔ
方法3;C
即利用平面向量基本定理进行证明.如图,CDxACyABCD∥(其中x,yCDà
BCA
2.面面平行的证明:1判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.2垂直于同一条直线的两个平面平行;3平行于同一个平面的两个平面平行.3设n1、n2分别是平面、的法向量,若n1∥n2,则∥
(二)典例分析:
问题1.(06北京)如图,在底面为平行四边形的四棱锥PABCD中,ABAC,PA平面ABCD,且 PAAB,点E是PD的中点.1略; 2求证:PB∥平面AEC;3略.EA B D 437
问题
2008届高三理科数学第一轮复习讲义第60课时
S2.如图,在正三棱锥SABC中,E
D、E、F分别是棱AC、BC、SC上的点,且CD2DA,CE2ES,CF2FB,G是AB的中点.1求证:平面SAB∥平面DEF;
2求证:SG∥平面DEF
(三)走向高考:
AD
C
GS
E
AD
G
1.(07全国Ⅱ)如图,在四棱锥SABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD, E、F分别为AB,SC的中点. 1证明EF∥平面SAD;2略.S
F
C
A
E
B
一、复习引入:
问题1:空间两个平面有几种位置关系?
问题2:如何来定义两个平面相交和平行?
二、探索学习:
探究
(一):平面与平面平行的背景分析
思考:假定平面//,那么对于平面内的任意一条直线m,它同平面有什么关系? 反过来,我们能否用线和面的平行关系来判定面与面的关系呢?
探究(二):平面与平面平行的判断定理
问题1:若平面内有一条直线m//,能否判定//?为什么?
问题2:若平面内有两条直线m、n,m//,n//,能否判定//?为什么?(画出反例图)
问题3:将平面内有两条直线m、n限制为两条相交直线,情况又怎样?
写出面面平行的判定定理的三种语言。即:
文字语言:图形语言
符号语言:
三、理论应用:
例1:课本P57 例题
2变式
如图,在长方体ABCDA1B1C1D1 中,求证:面AC//面A1C1。D11 A 1
1AB
四、自主学习
1.下列说法正确的是().A.一条直线和一个平面平行,它就和这个平面内的任一条直线平行
B.平行于同一平面的两条直线平行
C.如果一个平面内的无数条直线平行于另一个平面,则这两个平面平行
D.如果一个平面内任何一条直线都平行于另一个平面,则这两个平面平行
2.在下列条件中,可判断平面α与β平行的是().A.α、β都平行于直线l
B.α内存在不共线的三点到β的距离相等
C.l、m是α内两条直线,且l∥β,m∥β
D.l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β
3.下列说法正确的是().A.垂直于同一条直线的两条直线平行B.平行于同一个平面的两条直线平行
C.平行于同一条直线的两个平面平行D.平行于同一个平面的两个平面平行
4.经过平面外的两点作该平面的平行平面可以作().A.0个 B.1个C.0个或1个 D.1个或2个
5.不在同一直线上的三点A,B,C到平面α的距离相等,且Aα,则().A.α∥平面ABCB.△ABC中至少有一边平行于α
C.△ABC中至多有两边平行于αD.△ABC中只可能有一条边与α平行
6.已知直线a、b,平面α、β, 且a// b,a//α,α//β,则直线b与平面β的位置关系为.7.已知a、b、c是三条不重合直线,、、是三个不重合的平面,下列说法中: ⑴ a∥c,b∥ca∥b;⑵ a∥,b∥a∥b; ⑶ c∥,c∥∥;⑷ ∥,∥∥; ⑸ a∥c,∥ca∥; ⑹ a∥,∥a∥.其中正确的说法依次是.五、小结:
1.证明平面与平面平行的方法
2.数学思想方法
(2)当∠PDA=45°时,求证:MN⊥平面PCD;
2、如图,正三棱柱ABC—A1B1C1中,AB=2,AA1=1,D是BC的中点,点P在平面BCC1B1内,PB1=PC1=2.(I)求证:PA1⊥BC;
(II)求证:PB1//平面AC1D;
3、(本题满分14分)如图,平行四边形ABCD中,BDCD,正方形ADEF所在的平面和平面ABCD垂直,H是BE的中点,G是AE,DF的交点.⑴求证: GH//平面CDE;⑵求证: BD平面CDE.4、如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,ABAE,FAFE,AEF45
(I)求证:EF平面BCE;
(II)设线段CD、AE的中点分别为P、M,求证: PM∥平面
BCE5、(本小题满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。(I)求证:AF//平面BCE;(II)求证:平面BCE⊥平面CDE;
6、直棱柱ABCDA1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB2AD2CD2.
(Ⅰ)求证:AC⊥平面BB1C1C;(Ⅱ)在A1B1上是否存一点P,使得DP
与平面BCB1与平面ACB1都平行?证明你的结论. B1CD
B
D C
变题:求证:(1)A1B⊥B1D;(2)试在棱AB上确定一点E,使A1E∥平面ACD1,并说明理由.
7、如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PABC1AD.(1)求证:平面PAC⊥平面PCD;(2)在棱PD上是否存在一点E,使CE//平面PAB?
2若存在,请确定E点的位置;若不存在,请说明理由.8、已知直角梯形ABCD中, AB//CD,ABBC,AB1,BC2,CD1过A 作AECD,垂
足为E,G、F分别为AD、CE的中点,现将ADE沿AE折叠,使得DEEC.(1)求证:
BC面CDE;(2)求证:FG//面BCD;(Ⅲ)在线段AE上找一点R,使得面BDR面DCB,并说明理由.D D C G E A B 2F C
1.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,E、F分别是棱AD、PB的中点,求证:直线EF∥平面PCD
P
D
F
C
E
A
B
2.如下图,在正方体ABCD—A1B1C1D1中,E、F、G分别是AA1、AD、B1C1、的中点。求证:平面EFG∥平面ACB1
C1
D1
1G
B1
D
F
A
B
3.如图,在底面为平行四边形的四棱锥PABCD中,E是PD的中点.求证:PB∥平面AEC
E
A B D
4.如图,已知正三棱柱ABC-A1B1C1中,点D为A1C1的中点。求证:
(1)BC1∥平面AB1D;
(2)若D1为AC的中点,求证平面B1DA∥平面BC1D1.AB1
1.已知正方体ABCD—A1B1C1D1,O是底ABCD对角线的交点. 求证:(1)C1O//平面AB1D1;(2)A1C⊥平面AB1D1.
ADBC
1D
B
C
2.如图,在长方体ABCDA1B1C1D1中,ADAA11,AB1,点E在棱AB上移动。求证:D1E⊥A1D;
3.如图平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且AF
A
E
B
C
AD2,G是EF的中点,2(1)求证平面AGC⊥平面BGC;(2)求空间四边形AGBC的体积。
4.如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABCA1B1C1中,AB8,AC6,BC10,D是BC边的中点.(Ⅰ)求证:
5.如图组合体中,三棱柱ABCA1B1C1的侧面ABB1A1 是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合一个点.(Ⅰ)求证:无论点C如何运动,平面A1BC平面A1AC;
(Ⅱ)当点C是弧AB的中点时,求四棱锥A1BCC1B1与圆柱的体积比.
6.如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F 为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=2MB,试在线段CE
上确定一点N,使得MN∥平面DAE.7.如图,在棱长为1的正方体ABCDA1B1C1D1中:(1)求异面直线BC1与AA1所成的角的大小;(2)求三棱锥B
1A1C
1B的体积。(3)求证:B1D
平面A1C1B
ABA1C;(Ⅱ)求证:AC1∥ 面AB1D;
8. 如图:S是平行四边形ABCD平面外一点,M,N分别是
SA,BD上的点,且
AMBN
=,求证:MN//平面SBC SMND
P
9. 如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,点E是PD的中点.
(Ⅰ)求证:AC⊥PB;(Ⅱ)求证:PB∥平面AEC.
E
A
B
D C
10.在多面体ABCDEF中,点O是矩形ABCD的对角线的交点,平面CDE是等边三角形,棱EF//BC且EF=
BC.
2(I)证明:FO∥平面CDE;
(II)设BC=CD,证明EO⊥平面CDF.
11. 如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱 PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(Ⅰ)证明PA//平面EDB;(Ⅱ)证明PB⊥平面EFD.
12.如图,四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点.
(1)求证:CDAE;(2)求证:PD面ABE.
13.如图在三棱锥PABC中,PA平面ABC,C E
C
P
B
A
DB
_P
ABBCCA3,M为AB的中点,四点P、A、M、C
都在球O的球面上。
(1)证明:平面PAB平面PCM;(2)证明:线段PC的中点为球O的球心;
14.如图,在四棱锥SABCD中,SAAB2,SBSD ABCD是菱形,且ABC60,E为CD的中点.
(1)证明:CD平面SAE;
(2)侧棱SB上是否存在点F,使得CF//平面SAE?并证明你的结论.
_A_C
_M
_B
D
C
课后练习
1.如图所示,在直三棱柱ABC—A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。(I)求证:B1C//平面A1BD;(II)求证:B1C1⊥平面ABB1A
(III)设E是CC1上一点,试确定E的位置,使平面A1BD⊥平面 BDE,并说明理由。
2.如图,已知AB平面ACD,DE平面ACD,三角形ACD 为等边三角形,ADDE2AB,F为CD的中点(1)求证:AF//平面BCE;
(2)求证:平面BCE平面CDE;
1. 如图,四棱锥P—ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直 角梯形,∠ABC=∠BAD=90°,PA=BC=
AD.2
(I)求证:平面PAC⊥平面PCD;
(II)在棱PD上是否存在一点E,使CE∥平面PAB?若 存在,请确定E点的位置;若不存在,请说明理由.5.如图,在四棱锥SABCD中,SAAB
2,SBSD底面ABCD是菱形,且ABC60,E为CD的中点.
(1)证明:CD平面SAE;
(2)侧棱SB上是否存在点F,使得CF//平面SAE?并证明你的结论.
D
C
【课后记】 1.设计思路(1)两课时;
(2)认识棱柱与棱锥之间的内在联系;(3)掌握探寻几何证明的思路和方法;(4)强调书写的规范性 2.实际效果:
(1)用时两节半课;
证明题练习如图所示,若∠1=52°,问∠C为多少度时,能使直线AB∥CD? 2 如图所示,∠1=45°,∠2=135°,l1∥l2吗?为什么?如图所示,∠1=120°,∠2=60°,问直线a与b有什么关系?
E
A
B
l1 2 l
3C
1题图
D
a3题图
4 如图,已知直线AB、CD被直线EF所截且∠AGE=46°,∠EHD=134°,那么AB∥
CD吗?说明理由。如图,已知∠1和∠D互余,CF⊥DF,问AB与CD平行吗?如图所示,∠EFB=∠GHD=53°,∠IGA=127°,由这些条件你能找到几对平行线?说说你的理由。
E
4题图
F
F
I
B
D 6题图 F
E B
C
5题图
C D如图,∠BAF=46°,∠ACE=136°,CE⊥CD,问CD∥AD吗?为什么? 8 如图,∠1=∠2,能判断AB∥CD吗?为什么?
若不能判断AB∥DF,你认为还需要再添加一个条件是什么?写出这个条件,并说明你的理由?如图,AB∥CD,EF∥GH,CD与EF相交于点I,试探究∠1与∠2的关系,并说明理由。
F C E 7题图
C
D
D F
C
证明:∵EF∥AD,(已知)
∴∠2=.()
又∵∠1=∠2,(已知)
∴∠1=∠3.(等量代换)
∴AB∥()
∴∠BAC+=180 o.(∵∠BAC=70 o
∴∠AGD=.6、如图,a∥b,c∥d,∠1=113°,求∠
2、∠3的度数.
3、如下图:∠3+∠4=180°,∠1=108°。求∠2的度数
4、已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.
.)
7、如图,AB∥CD,∠1=45°,∠D=∠C,求∠D、∠C、∠B的度数.
5、如图所示,已知∠B=∠C,AD∥BC,试说明:AD平分∠CAE2、如图,AB∥CD,AC⊥BC,∠BAC =65°,求∠BCD的度数.参考答案
一、简答题
1、∠3(两直线平行,同位角相等);
DG(内错角相等,两直线平行,)
∠DGC(两直线平行,同旁内角相等)
110度
2、解
:------------------------------1分
------------------------------3分
-------------------5分
------------------------------6分
3、图为∠3+∠4=180°(已知)
所以AB∥CD(同旁内角互补,两直线平行)
因为AB∥CD
所以∠1=∠2(两直线平行,同位角相等)
因为∠1=108°(已知)
所以∠2=108°(等量代换)
4、解:∵∠ADE=∠B
∴DE∥BC
∴∠DEC+∠C=180°
∴∠C=180°-∠DEC =180°-115°=65°
5、∵AD∥BC,∴∠2=∠B,∠1=∠C。又∵∠B=∠C,∴∠1=∠2即AD平分∠CAE6、∠2=113°.∠3=67°.
∵ a∥b(已知).
∴ ∠2=∠1=113°(两直线平行,内错角相等). ∵ c∥d(已知).
∴ ∠4=∠2=113°(两直线平行,同位角相等). ∵ ∠3+∠4=180°(邻补角定义),∴ ∠3=67°(等式性质).
练习
1、已知,如图AB∥CD,直线EF分别截AB、CD于点M、N,MG、NH分别是∠EMB与 ∠END的平分线,试说明MG∥NH.。证明:∵AB∥CD(已知),∴________=________().∵MG平分∠EMB(已知),∴________=________=1________().∵NH平分∠END(已知),∴________=________=1________().∴________=________().∴_______∥________().2、已知,如图,∠1=∠2,∠C=∠D, 试说明∠A=∠F.证明:∵AF与DB相交(已知)
∴________=________().∵∠1=∠2(已知),∴________=________().∴_______∥________().∴________=∠D().∵∠C=∠D(已知),∴________=________().∴________∥________().∴________=________().3、已知,如图,AB∥EF, ∠ABC=∠DEF,试判断BC和DE的位置关系,并说明 理由.证明:连接BE, 交CD于点G.∵AB∥EF(已知),∴________=________().∵∠ABC=∠DEF(已知),∴_______-_______=_______-______()∴________=________().∴________∥________().
如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。已知∠BAC=30?,EF⊥AB,垂足为F,连结DF。
求证:四边形ADFE是平行四边形。
设BC=a,则依题意可得:AB=2a,AC=√3a,
等边△ABE ,EF⊥AB=>AF=1/2AB=a,AE=2a,EF=√3a
∵∠DAF=∠DAC+∠CAB=60°+30°=90°,AD=AC=√3a,∴ DF=√(AD?+AF?)=2a
∴AE=DF=2a,EF=AD=√3a =>四边形ADFE是平行四边形
1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形
1、两组对边分别平行的四边形是平行四边形2、一组对边平行且相等的四边形是平行四边形3、两组对边分别相等的四边形是平行四边形4、对角线互相平分的四边形是平行四边形
2
1.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形..
3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;
(2)一组对边平行且相等的四边形是平行四边形; (3)两组对边分别平行的四边形是平行四边形; (4)两条对角线互相平分的四边形是平行四边形 (5)两组对角分别相等的四边形为平行四边形 (注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。) (第五条对,如果对角相等,那么邻角之和的二倍等于360°,那么邻角之和等与180°,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形) 编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。) (1)平行四边形对边平行且相等。 (2)平行四边形两条对角线互相平分。 (3)平行四边形的对角相等,两邻角互补。 (4)连接任意四边形各边的中点所得图形是平行四边形。(推论) (5)平行四边形的面积等于底和高的积。(可视为矩形) (6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。 (7)对称中心是两对角线的交点。
平行四边形性质定义
(矩形(长方形)、菱形、正方形都是特殊的平行四边形。)
性质:
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等”)
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等”)
( 3)如果一个四边形是平行四边形,那么这个四边形的邻角互补
(简述为“平行四边形的邻角互补”)
(4)夹在两条平行线间的平行的高相等。(平行线间的高距离处处相等)
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分”)
(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(7)平行四边形的面积等于底和高的积。(可视为矩形).
(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.
(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
平行四边形性质判定
已知四边形ABCD中,AB=BC=CD=DA,因为AB=CD,AD=BC。所以四边形ABCD为平行四边形,又因为AB=BC。根据菱形的定义:有一组邻边相等的平行四边形是菱形,可得平行四边形ABCD为菱形。所以四条边相等的四边形是菱形。
平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
平行四边形对角线把平行四边形面积分成四等份。
平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
【怎样证明面面平行】推荐阅读:
证明面面平行01-16
怎样证明怀孕了11-28
怎样办户籍证明01-16
面面垂直证明例题10-26
证明直线平行07-13
平行四边形性质证明题06-23
立体几何证明平行垂直09-08
平行四边形的应用证明01-01
特殊平行四边形证明题02-16
平行线与相交线证明题05-28