2024最新小学奥数抽屉原理

2024-11-11 版权声明 我要投稿

2024最新小学奥数抽屉原理(精选2篇)

2024最新小学奥数抽屉原理 篇1

姓名:

班別:

日期:

得分:

抽屉原理

这一讲我们讲抽屉原理的另一种情况。先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子。道理很简单。如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。这个例子所体现的数学思想,就是下面的抽屉原理2。

抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

说明这一原理是不难的。假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件。这与多于m×n件物品的假设相矛盾。这说明一开始的假定不能成立。所以至少有一个抽屉中物品的件数不少于m+1。

从最不利原则也可以说明抽屉原理2。为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n个抽屉中每个都放入m件物品,共放入(m×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品。这就说明了抽屉原理2。

不难看出,当m=1时,抽屉原理2就转化为抽屉原理1。即抽屉原理2是抽屉原理1的推广。例1某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?

分析与解:将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。例2一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块? 分析与解:将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。

例3六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同?

分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况。

订一种杂志有:订甲、订乙、订丙3种情况;

订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;

订三种杂志有:订甲乙丙1种情况。

总共有3+3+1=7(种)订阅方法。我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品。因为100=14×7+2。根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相同的。例4篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?

分析与解:首先应弄清不同的水果搭配有多少种。两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子。所以不同的水果搭配共有4+6=10(种)。将这10种搭配作为10个“抽屉”。

81÷10=8……1(个)。

根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同。

例5学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同?

分析与解:首先要弄清参加学习班有多少种不同情况。不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况。共有1+3+3=7(种)情况。将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证不少于5名同学参加学习班的情况相同,要有学生

7×(5-1)+1=29(名)。

练习

1.礼堂里有253人开会,这253人中至少有多少人的属相相同?

2.一兴趣小组有10名学生,他们都订阅甲、乙两种杂志中的一种或两种。问:至少有多少名学生订阅的杂志种类相同?

3.把130件玩具分给幼儿园小朋友,如果不管怎样分,都至少有一位小朋友分得4件或4件以上的玩具,那么这个幼儿园最多有多少个小朋友?

4.体育组有足球、篮球和排球,上体育课前,老师让一班的41名同学往操场拿球,每人最多拿两个。问:至少有几名同学拿球的情况完全一样?

5.口袋里放有足够多的红、白两种颜色的球,有若干人轮流从袋中取球,每人取三个球。要保证有4人取出的球的颜色完全相同,至少应有多少人取球?

6.10个足球队之间共赛了11场,赛得最多的球队至少赛了几场?

答案与提示练习

1.22人。2.4人。

3.43人。提示:130÷(4-1)=43……1。

4.5名。提示:一个球不拿、拿一个球、拿两个球共有10种不同情况。

5.13人。

提示:三个球中根据红球的个数可分为4种不同情况。

小学抽屉原理 篇2

【教学目标】

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。

3、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

4、通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

【教学重、难点】经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教学准备】

1、教学ppt课件

2、铅笔120支(小棒代替),笔盒100个(杯子代替),每个小组3个杯子,5支小棒;扑克牌1副,凳子4把。

【教学流程】

一、问题引入。

师:在上课前,老师特别想和同学们做个游戏,谁愿来?老师准备了4把椅子,请5位同学上来。1.游戏要求:老师喊“准备”,你们5位同学围着椅子走动,等老师喊“开始”后请你们5个都坐在椅子上,每个人都必须坐下。

2.师:“准备”,“开始”,他们都坐好了吗?老师不用看就知道总有一把椅子上至少坐着两名同学,是这样的吗?如果反复再做,还会是这样的结果吗?

(游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。)

3、引入:看来,不管怎么坐,总有一把椅子上至少坐两个同学。你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

4、明确学习目标与任务:

师:看到这个课题,你能想到这节课我们将要学习哪些知识吗?(学生表达想法)课件出示学习目标与要求

1)、了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2)通过实验操作、自主探究、小组合作发现抽屉原理。3)感受数学文化的魅力,提高对数学的兴趣。

二、探究新知

(一)教学例1

为了研究这个原理,我们做一组实验。

1、观察猜测

课件出示例1:把4支铅笔放进3个文具盒中,不管怎么放总有一个文具盒至少放进 ____支铅笔。

猜一猜:不管怎么放,总有一个文具盒至少放进 ____支铅笔。师:你会用实验证明你的猜想吗?

2、小组合作:

课件出示:把4支铅笔放进3个文具中盒中,可以怎样放? 有几种不同的放法? 提出实验要求:我们以小组为单位实际放放看,一人负责操作,其他人用笔将不同的放法记录下来。(师巡视,了解情况,个别指导)

3、交流汇报

师:你们摆好了吗?共有几种摆法?(学生说)

学生汇报:小组代表汇报,老师利用电脑进行了模拟实验演示,课件出示各种摆法:(4,0,0)(3,1,0)(2,2,0)(2,1,1),师:还有不同的放法吗? 生:没有了。

4、说结论:

师:观察这四种分法,在每一种放法中,有几支铅笔放进了同一个文具盒?

生:答:第一种摆法有4支铅笔放进同一个文具盒中;第二种摆法有3支铅笔放进同一个文具盒中;第三种摆法有2支铅笔放进同一个文具盒中;第四种摆法有2支铅笔放进同一个文具盒中;

师:: 我们综合这4种摆法,你们能发现什么规律?(学生说)师:谁能再说一遍?谁还想说?

引导学生说:不管怎么放,总有一个盒子里至少有2枝铅笔。(课件出示)教师板书:老师把同学们的发现记录下来,(板书): 铅笔 文具盒 总有一个文具盒至少放进 4 3 2 5、教师重点强调:“总有、至少”

师:老师为什么要强调“总有、至少”呢?“总有”是什么意思? 生:一定有,总会有(强调存在性)师:“至少”有2枝什么意思?

生:不少于两只,可能是2枝,也可能是多于2枝?

师:就是不能少于2枝。(通过4种摆法让学生充分体验感受)

师小结:看来,不管怎么放,总有一个文具盒至少放进2枝铅笔。这是我们通过实际操作,采用一一列举的方法得到的结论。

6、教学平均分方法

A、老师提出质疑:假如是6支铅笔放进5个文具盒,或者是10支铅笔放进9个文具盒,甚至是100支铅笔放进99个文具盒,结果会怎么样?你还会用一一列举的方法去证明吗?(学生思考)那有没有一种既简单又快捷的方法呢?

B 引导观察:师:请同学们观察这4种分法,哪种摆法最能体现“至少有2支铅笔放进同一个文具盒”这个结论呢?(摆法4)

师:它是怎样分的呢?我们再看一遍摆的过程。C 课件演示平均分的过程并引导学生思考:

1、它是怎样分的?(平均分)

为什么只用平均分一种方法就能证明“总有1个文具盒至少放入2支铅笔”?

2、你能用平均分的方法解释刚才的结论吗? 学生思考——组内交流-----汇报.引导学生说:如果每个文具盒放进1支,最多放进3支.剩下的1支不管放在哪个文具盒里.总有1个文具盒至少放进2支铅笔。(或那个文具盒就至少有2支笔)师:谁能再说一遍?谁还想说?(课件出示)

D 谁会用算术表示刚才平均分的过程?教师板书:4÷3=1„„1

7、引导发现原理1:

刚才我们学习了一一列举的方法,而且还学习了用平均分的方法证明了“把4支铅笔放进3个文具盒中,总有一个文具盒至少放进2支铅笔”这个结论。下面我们看到一组练习。①尝试练习(课件)如果把6支铅笔放到5个文具盒中,总有一个文具盒至少放进()支笔? 如果把10支铅笔放到9个文具盒中,总有一个文具盒至少放进()支笔? 如果把100支铅笔放到99个文具盒中,总有一个文具盒至少放进()支笔? 你会用算术解释吗?教师板书 ÷ 5 = 1„„ 1 2 100 ÷ 99 = 1„„1 2 ②课堂小结:通过刚才的学习你发现什么规律?(多指几名学生回答)

引导学生归纳出:只要放的铅笔数比文具盒的盒数多1,总有一个文具盒里至少放进2支铅笔。

师:你同意他的说法吗?谁还想说?

③师:如果把文具盒看做抽屉,铅笔看做被分配的物体,那刚才的规律还可以另外一种表达(课件出示):如果物体数比抽屉数大1,不管怎么放,总有一个抽屉至少放入2个物体。(学生读一遍)

8、师:你能用抽屉原理解释刚才的抢凳子游戏吗?什么是被分物体?什么是抽屉?

(二)教学例2

如果物体数比抽屉数多

2、多

3、多4„„又会出现什么结果呢?

1、出示例题(PPT):把5支铅笔放进3个文具盒,不管怎么放总有1个文具盒里至少放多少支铅笔?为什么?

2、学生猜想结论:

3、师:你们猜想的对吗?我们看看电脑模拟实验的过程,(电脑演示平均分的过程)师:你能解释为什么吗?

4、汇报(演示)并解释发现的结论。

A解释并汇报:如果每个文具盒放进1支,最多放进3支.剩下的2支不管放在哪个文具盒里.总有1个文具盒至少放进2支铅笔。(或那个文具盒就至少有2支铅笔)

B教师板书:老师把同学们的发现记录下来,板书:5 3 2

5、算术怎样列?5÷3=1———2

6、尝试练习

1、如果7支铅笔放进4个文具盒中,至少有()支铅笔放进同一个文具盒中?

2、如果9支铅笔放进4个文具盒中,会有什么结果? 3、15支呢?

4、你能用算术表示吗?

7、学生做题汇报,教师板书 ÷ 4 = 1„„3 2 9 ÷ 4 = 2 „„1 3 15 ÷ 4 = 3„„3 4

8、总结规律,发现原理2 师:我们研究到这了,看看有什么规律? 学生汇报:

学情预设①:“商+余数”和“商+1”两种情况:师:验证一下,看看到底是商+1还是+余数?

学情预设②:意见统一为“商+1”:师:为什么不管余几都是商+1呢?)

总结:课件出示:如果物体数比抽屉数 大一些,不管怎么放,总有一个抽屉至少放入(商+1)个物体。

(如果有学生提出没有余数的情况,可以让学生举例子验证,说明这个结论的前提是“有余数”)

三、巩固运用解决问题

应用原理能不能解决一些实际问题?下面准备了一组闯关练习,如果闯关成功,那同学们就会得到一个神秘礼物哦!想不想试试?有信心吗?

1、闯关1:7只鸽子飞回5 个鸽舍,至少有()只鸽子要飞进同一个鸽舍里。为什么?

2、神秘礼物:机器猫小叮当

3、闯关2:8只鸽子飞回3个鸽舍里,至少有()只鸽子要飞进同一个鸽舍里?为什么?

4神秘礼物:扑克牌游戏

一幅扑克,拿走大、小王后还有52张牌,请你任意抽出其中的5张牌,那么你可以发现什么?为什么? ①师与生配合做

教师洗牌学生抽其中的任意5张,教师猜其中至少有2张是同花色的。②学生试着解释。5闯关3:智慧城堡

在我们班的任意13人中,总有至少()人的属相相同,想一想,为什么?

1.学生猜想 2.学生试着说理

3.式子表示:13÷12 = 1„„1 1+1 = 2(名)

6、神秘礼物:名言警句“聪明出于勤奋,天才在于积累”。

——华罗庚

7、闯关4:智慧城堡

1.会昌小学在“感恩教师,送祝福”活动中,为每位过生日教师订了一份生日蛋糕。请问154名教师中至少有()名教师的生日是在同一个月份? 2.学生猜想 3.学生试着说理

4.式子表示154÷12=12„„10 12+1=13(人)

8、神秘礼物:喜羊羊与灰太狼

9、闯关5思维拓展

如果要保证至少有2名教师生日是在同一天,那至少要有()名教师?

10、介绍数学知识:(课件出示“你知道吗“)

四、课堂小结:通过今天的学习你有什么收获?

五、作业训练

要求学生完成练习册练习。

六、板书设计: 抽屉原理

(物体数)(抽屉数)至少数 铅笔 文具盒 总有一个文具盒至少放进(商+1)÷ 3 = 1„„ 1 2 6 ÷ 5 = 1„„ 1 2 100 ÷ 99 = 1„„1 2 5 ÷ 3 = 1„„2 2 7 ÷ 4 = 1„„3 2 9 ÷ 4 = 2 „„1 3 15 ÷ 4 = 3„„3 4

+余数)(商 用式子表示为:

物体数÷抽屉数=商„ „余数

至少数=商+1(注意:不是商+余数)

七、设计思路

数学课程标准指出,数学课堂教学是师生互动与发展的过程,学生是数学学习的主人,教师是课堂的组织者,引导者和合作者。本节课的教学注重为学生提供自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,学会用“抽屉原理”解决简单的实际问题。

1、经历“数学化”的过程。

“创设情境——建立模型——解释应用”是新课程倡导的课堂教学模式,本节课运用这一模式,设计了丰富多彩的数学活动,让学生经历“抽屉原理”的探究过程,从探究具体问题到类推得出一般结论,初步了解“抽屉原理”,再到实际生活中加以应用,找到实际问题和“抽屉原理”之间的联系,灵活地解决实际问题。让学生经历“数学化”的过程,学会思考数学问题的方法,培养学生的数学思维能力。

2、用具体的操作,将抽象变为直观。

“总有一个文具盒中至少放进2支铅笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”,二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个文具盒中至少放进2支铅笔”这种现象,让学生理解这句话。

3、注重建模思想的渗透。

本节课的教学,有意识地培养学生的“模型”思想,让学生理解“抽屉问题”的“一般化模型”。在学生自主探索的基础上,教师引导学生对两种方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题;在学生解决了“4枝铅笔放进3个文具盒”的问题后,继续思考,类推,得出一般性的结论。这样设计,提升了学生的思维,发展了学生的能力。

4、注重调动学生的积极性。

兴趣是最好的老师,是调动学生积极探究知识的动力,学生感兴趣就会很积极地参与到学习中来,反之他们则会不予理睬。对于“抽屉原理”的学习,学生以前并没有接触过,学生以前理解数学问题全都是由数量和数量关系组成,解决问题时基本上是用算术和几何知识,极少用到推理的知识。所以,教学中激发学生学习的兴趣犹为重要。本节课中,教师从学生已有的知识经验出发,从简单的物体入手,鼓励学生大胆思考,积极交流、讨论等,给学生创设了一个和谐的学习环境,使学生在轻松愉快中学习数学,并在数学学习中享受着快乐。

5、体现“学生为主体,教师为主导”的新教学理念。

教师不是学生学习的指挥者,而是学生学习活动的伙伴。教学中学生是学习的主体,教师只是与学生共同探索、共同研究,与学生一起解决问题、构建模型,让学生在问题中 “学”和“悟”。

6、精选学生身边感兴趣的素材。

上一篇:违法青少年教育转化工作职责下一篇:双十一口号创意