面面平行判定定理教案(推荐8篇)
教材:普通高中课程标准实验教科书人教A版必修二
教学目标
一、知识与技能
1.理解面面平行判定定理并初步应用;
2.化归与转化思想在解决实际问题中的应用。
二、过程与方法
1.体会“类比”的数学思想;
2.经历面面平行定理的证明过程,体验反证法的过程.三、情感态度与价值观
引导学生反思新旧知识间的联系,促进学生养成善于联系的思考问题,从实
际生活中获知数学知识。
教学重点
面面平行的判定定理及其应用
教学难点
面面平行判定定理的由来及其证明
教辅手段
黑板,PPT
教学过程
一、问题导入:
复习线面平行的判定方法,引入本节课的课题
二、新知探究
1、两平面的位置关系(借助PPT),引导学生发现两平面的位置关系——即平行和相交;
2、教师提问:如何能判别两平面平行呢?显然当一个平面内的所以直线都和另
一个平面不相交时,两平面平行。
教师总结:这个问题告诉我们,判定两平面平行问题,可以证明一个平面内的所有直线与另一个平面平行,即面面平行转化为线面平行,但要证明所有直线
和另一个平面平行是很困难的。
教师提问:同学们思考一下,能否将“所有直线:化为有代表性的”一条“或”
几条直线“呢?
3、学生探究(以长方体模型为例):
(1)平面内有一条直线与平面平行,,平行吗?
(2)平面内有两条直线与平面平行,,平行吗?
4、经过观察讨论解决问题
(PPT)定理:一个平面内有两条相交直线都平行于另一个平面,那么这两个平
面平行.
5、教师分析并书写证明过程。
三、理解应用:
例1:如图,已知正方体ABCD-EFGH,求证:平面AEG平行于平面BDF
证明:ABCDEFGH为正方体
GF//HE,GFHE.又AB//HE,ABHE,GF//AB,GFAB,ABFG是平行四边形.AG//BF.又AG平面BDF,BF平面BDF
由直线与平面平行的判定定理得
AG//平面BDF,同理GE//平面BDF,又AGEGG,平面AEG//平面BDF.四、课堂练习:
必做题:课本58页1、3选做题:课本58页
2五、归纳提升:
1、两个平面的位置关系:相交、平行
2、判定两个平面平行的方法:
1)使用“两个平面互相平行”的定义
2)两平面平行的判定定理
3、数学思想方法:
转化的思想
六、课后延续
1.回顾本课的学习过程,整理学习笔记,正确运用面面平行判定定理;
2.完成书面作业:必做教材61页3;5。
选做教材61页8
知识点1:二面角及其平面角
1)半平面:平面内的一条直线把平面分成两部分,这两部分通常称为半平面.2)二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面.棱为l,两个面分别为、的二面角记为 -l- .
3)二面角的平面角的定义
1定义:在二面角-l-的棱l上任取一点O,如图,在半平面 和 内,从点 O 分别作垂直于棱l的射线OA、OB,射线OA、OB组成∠AOB.则 ∠AOB 叫做二面角 -l- 的平面角.2二面角的大小
二面角的大小可以用它的平面角来度量.即二面角的平面角是多少度,就说这个二面角是多少度. ① 二面角的两个面重合: 0°;
② 二面角的两个面合成一个平面:180°;
③平面角是直角的二面角叫直二面角.
二面角的范围:[ 0°, 180°].
知识点2:两个平面垂直的判定定理
1)两个平面垂直的定义:两个平面互相垂直两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.平面与垂直,记作⊥.2)两个平面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.知识点3:二面角的平面角的做法
第1页
知识点4:面面垂直的性质定理
性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。(面面垂直,则线面垂直)考点1:面面垂直的判定定理的应用
例1.如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A, B的任意一点,求证:平面PAC⊥平面
PBC.考点2:求二面角的大小
例2.在正方体ABCDA1BCD中,找出下列二面角的平面角: 11
1(1)二面角D1ABD和A1ABD;
(2)二面角C1BDC和C1BDA.考点3:线线、线面、面面垂直的相互转化
例3.在正方体ABCDA1BCD中,已知P,Q,R,S分别为棱AD,AB,AB,BB1的中点,求证平面PQS⊥平111111
1面B1RC
.3.已知PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A作AE⊥PC于点E,AF⊥PB 第2页
于点F,求证:
(1)AE⊥平面PBC;(2)平面PAC⊥平面PBC;(3)PB⊥EF
B
C
同步练习:
1.如图,ABCD为正方形,SA平面ABCD,过A且垂直于SC的平面分别交SB,SC,SD于E,F,G.
求证:AESB,AGSD.
2.如图所示,四棱锥PABCD的底面是正方形,PA底面ABCD,AEPD,EF//
CD,AMEF. 求证:MF是异面直线AB与PC的公垂线.
3.如图,直角△ABC所在平面外一点S,且SASBSC,点D为斜边AC的中点.
(1)求证:SD平面ABC;
(2)若ABBC,求证:BD面SAC.
第3页
A
4.如图所示,平面平面,l,在l上取线段AB4,AC,BD分别在平面和平面内,且ACAB,DBAB,AC3,BD12,求CD长.
5.如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明:PA∥平面EDB;(2)证明:PB⊥平面
EFD.16.(2012全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AA1,D是棱AA1的中点
2(1)证明:平面BDC1⊥平面BDC;
(2)平面BDC1分此棱柱为两部分,求这两部分体积的比。
(3)求二面角A1BDC1的大小。
C1
A11
B
第4页 D
7.(2009全国)如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1
(1)证明:AB=AC
(2)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小
8.(2010全国)如图,四棱锥S-ABCD中,AB∥CD,BCCD,侧面SAB为等边三角形,DA E
BA1 C1 AB=BC=2,CD=SD=1
(1)证明:SD平面SAB
(2)求AB与平面SBC所成角的大小.
第1题.如图,直线a、b都与直线c相交,下列条件中,能判断a∥b的条件是()①12②36③28④58180 A.①③ B.①②④ C.①③④ D.②③④ 答案:B.
第2题.如图,DE是过点A的直线,要使DE∥BC,应有()
A.23 B.C3
B
C
D
A 2
E
5784
a
b
C.C1 D.BC 答案:C.
第3题.看图填理由:
∵直线AB,CD相交于O,(已知)∴∠1与∠2是对顶角
∴∠1=∠2(___________________)∵∠3+∠4=180°(已知)
∠1+∠4=180°(__________________)∴∠1=∠3(__________________)∴CD//AB(__________________)
答案:对顶角相等;平角定义;同角的补角相等;同位角相等,两直线平行.
1100,2120,则____.第4题.如图:AB∥CD,AF
B
CB
A
D
E
答案:40.C
教学目标:理解并掌握两组对边分别相等、一组对边平行且相等的四边形是平行四边形
教学重难点;
重点:掌握两组对边分别相等、一组对边平行且相等的四边形是平行四边形 难点:能用平行四边形的判定和性质来解决问题 教学过程: 一.回顾旧识:
1.平行四边形的定义 2.平行四边形具有哪些性质?
思考:平行四边形的对边相等、对角相等、对角线互相平分,那么反过来,对边相等或对角相等或对角线互相平分的四边形是不是平行四边形呢?
二.探究新知:
探究一:利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形(引导:适当的测量、割剪,钉制一个平行四边形框架)
平行四边形判定方法1:两组对边分别相等的四边形是平行四边形。
探究二:取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?
平行四边形判定方法2:一组对边平行且相等的四边形是平行四边形。三.论证:
1.两组对边分别相等的四边形是平行四边形。2.一组对边平行且相等的四边形是平行四边形。
四.例题讲解:
例1:已知:ABCD中,E、F分别是AD、BC的中点,求证:BE=DF 例2 :已知,如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF
五.课堂总结
平行四边形判定方法1:两组对边分别相等的四边形是平行四边形。平行四边形判定方法2:一组对边平行且相等的四边形是平行四边形。
六.课堂检测
1.能判定一个四边形是平行四边形的条件是().
(A)一组对边平行,另一组对边相等
(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补
(D)一组对角相等,另一组对角互补 2.能判定四边形ABCD是平行四边形的题设是().(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB
3.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为().
(A)1∶2∶3∶4(B)1∶4∶2∶3(C)1∶2∶2∶1
(D)1∶2∶1∶2
教材:人教版义务教育课程标准实验教科书八年级下册
一、教学目标:
(1)经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路。
(2)掌握平行四边形的四个判定定理,能根据不同条件灵活选取适当的判定定理进地推理论证。
二、教学重点:平行四边形判定方法的探究、运用以及平行四边形的性质和判定的综合运用。
教学难点:对平行四边形判定方法的证明以及平行四边形的性质和判定的综合运用。
三、教学方法与手段
1、运用类比的方法,通过学生的合作探究,得出平行四边形的三个判定方法。
2、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生的动手能力和推理能力。
3、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。
4、部分平行四边形的问题可转化为三角形的问题,渗透化归思想。
四、教学过程 活动一:情境引入 在实验室有一块平行四边形的玻璃被打破了一角,如何画出原来平行四边形的大小?你们有什么方法。
活动二:课前导入
1.平行四边形的定义是什么?它有什么作用? 2.平行四边形还有哪些性质?
3.上一章,我们学过逆命题,原命题正确,逆命题一定正确吗? 4.在以前的学习经历中,我们学过勾股定理和它的逆定理,还有什么内容是跟互逆命题有关的?
5.下列四边形中你如何判断它是否平行四边形?
活动三:经验类比,提出猜想
用多媒体软件《几何画板》展示平行四边形的一些性质。1.大家观察平行四边形的对角的数据变化,有什么样的猜想? 2.大家观察平行四边形的对边的数据变化,有什么样的猜想? 3.大家观察平行四边形的对角线的数据变化,有什么样的猜想?
(上述猜想过程要通过量度学案上这三个四边形,证实猜想的可能性)4.指出三个逆命题的几何语言。活动四:理性思考,证明定理 1.你们能够证明上述猜想吗? 投影给出三个逆命题的几何语言及图形。各小组同学一起讨论下三种命题的证明过程。
2.展示各小组的证明,针对过程进行评讲。活动五:运用定理,解决问题
1.判断下列四边形是否为平行四边形?并说出你的依据.
B ADA6.8cmDA120D4cmO5cm5cm4cm4.2cmB4.2cm606.8cmCCB120C2.如图,AB=DC=EF,AD=BC,DE=CF,图中有哪些互相平行的线段? 为什么?
AD
E
BCF3.四边形ABCD中,对角线AC,BD相交于点O,下列条件不可以判定这个四边形是平行四边形的是()A.AB//DC,AD//BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.∠A=∠B,∠C=∠B 4.例题讲解
例1 如图,在□ABCD中,E,F分别是AB,CD的中点,求证:四边形AECF是平行四边形。
BEFADC变式1:如图,平行四边形ABCD的对角线AC、BD相交于点O,E、F是AC上的点,且AE=CF,求证:四边形BFDE是平行四边形。
变式2:如图,在□ ABCD中,E,F分别是AB,CD的延长线(或反向延长线)上一点且AE=CF,求证:四边形AECF是平行四边形。
例2 如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F为AO,CO的中点,求证:四边形BFDE是平行四边形.
BAEDOFC变式1:由例题中的特殊点E、F推广到较一般的,若AE=CF,结论有改变吗?为什么?
BAEDOF变式 1 图C变式2:若E、F移至OA、OC的延长线上,且AE=CF,结论有改变吗?为什么?
BEADOCF变式 2 图变式3:若E、F、G、H分别为AO、CO、BO、DO的中点,四边形EGFH为
ADE平行四边形吗?为什么?
GBOHF变式 3 图C5.例1和例2中哪一种证法会更轻松?为什么?
结论:在证明平行四边形时,若条件集中在对角线上,运用与对角线相关的判定定理解决问题相对简便。若条件集中在边上,则运用与边相关的判定法更简单。活动六:实践真知
1.如图,平行四边形ABCD的对角线AC、BD相交于点O,E、F分别是OA,OC的中点,求证:BE=DF
2.如图,已知□ABCD中,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.3.课前问题:在实验室有一块平行四边形的玻璃被打破了一角,如何画出原来平行四边形的大小?你们有什么方法。(小组讨论)可选工具:刻度尺,量角器 活动七:本课小结
1. 通过本节的学习,我们一共得到了四种判定平行四边形的方法。2. 证法小结:给出平行四边形四种判定方法的表达及几何语言,总结其使用环境。
3. 还有第5种方法留待下节课去掌握,大家可以先预习。活动八:布置作业
知识结构
重难点分析
本节的重点是平行线分线段成比例定理.平行线分线段成比例定理是研究相似形的最重要和最基本的理论,它一方面可以直接判定线段成比例,另一方面,当不能直接证明要证的比例成立时,常用这个定理把两条线段的比“转移”成另两条线段的比.
本节的难点也是平行线分线段成比例定理.平行线分线段成比例定理变式较多,学生在找对应线段时常常出现错误;另外在研究平行线分线段成比例时,常用到代数中列方程度方法,利用已知比例式或等式列出关于未知数的方程,求出未知数,这种运用代数方法研究几何问题,学生接触不多,也常常出现错误.
教法建议
1.平行线分线段成比例定理的引入可考虑从旧知识引入,先复习近平行线等分线段定理,再改变其中的条件引出平行线分线段成比例定理
2.也可考虑探究式引入,对给定几组图形由学生测量得出各直线与线段的关系,从而得到平行线分线段成比例定理,并加以证明,较附和学生的认知规律
(第一课时)
一、教学目标
1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.
2.使学生掌握三角形一边平行线的判定定理.
3.已知线的成已知比的作图问题.
4.通过应用,培养识图能力和推理论证能力.
5.通过定理的教学,进一步培养学生类比的数学思想.
二、教学设计
观察、猜想、归纳、讲解
三、重点、难点
l.教学重点:是平行线分线段成比例定理和推论及其应用.
2.教学难点:是平行线分线段成比例定理的`正确性的说明及推论应用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
【复习提问】
找学生叙述平行线等分线段定理.
【讲解新课】
在四边形一章里,我们学过平行线等分线段定理,今天,在此基础上,我们来研究平行线平分线段成比例定理.首先复习一下平行线等分线段定理,如图:
,且 ,
∴
由于
问题:如果 ,那么 是否还与 相等呢?
教师可带领学生阅读教材P211的说明,然后强调:
(该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的知识,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它)
因此:对于 是任何正实数,当 时,都可得到:
由比例性质,还可得到:
为了便于记忆,上述6个比例可使用一些简单的形象化的语言
“ ”.
另外,根据比例性质,还可得到 ,即同一比中的两条线段不在同一直线上,也就是“ ”,这里不要让学生死记硬背,要让学生会看图,达到根据图作出正确的比例即可,可多找几个同学口答练习.
平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行线等分线段定理可看作是这个定理的特例.
根据此定理,我们可以写出六个比例,为了便于应用,在以后的论证和计算中,可根据情况选用其中任何一个,参见下图.
,
∴ .
其中后两种情况,为下一节学习推论作了准备.
例1 已知:如图所示, .
求:BC.
解:让学生来完成.
注:在列比例式求某线段长时,尽可能将要求的线段写成比例的第一项,以减少错误,如例1可列比例式为:
例2 已知:如图所示,
求证: .
有了5.1节例4的教学,学生作此例题不会有困难,建议让学生来完成.
【小结】
1.平行线分线段成比例定理正确性的的说明.
2.熟练掌握由定理得出的六个比例式.(对照图形,并注意变化)
七、布置作业
教材P221中3(训练学生克服图形中各线段的干扰).
一、教学目标:
知识与技能:正确理解并掌握相似三角形的判定定理的证明方法
过程与态度: 让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。情感态度与价值观:让学生在演绎推理的过程中体验成功的快乐
二、教学重难点:
重点:相似三角形的判定定理的证明过程 难点:相似三角形的判定定理的运用
三、教学过程:
(一)提出问题,导入新课
在上节课中,我们通过类比两个三角形全等的条件,寻找并探究判定两个三角形相似的条件,我们得出的结论是怎样的?您能证明它们一定成立吗?
目的:通过学生回顾复习已得结论入手,激发学生学习兴趣。
(二)合作探究,学习新知:
命题
1、两角分别相等的两个三角形相似。如何对文字命题进行证明?与同伴进行交流.目的:通过学生回顾证明文字命题的步骤入手,引导学生进行画图,写出已知,求证。第一步:引导学生根据文字命题画图,第二步:根据图形和文字命题写出已知,求证。
已知:如图,在△ABC和△A’B’C’中,∠A=∠A’,∠B=∠B’。求证: △ABC∽△A’B’C’。
第三步:写出证明过程。(分析现在能说明两个三角形相似的方法只有相似三角形的定义,我们可以利用这一线索进行探索,已知两角对应相等,根据三角形内角和定理可以推出第三个角也相等,从而可得三角对应相等,下一步,我们只要再证明三边对应成比例即可。根据平行线分线段成比例的推论,我们可以在△ABC内部或外部构造平行线,从而构造出与△A’B’C’全等的三角形。)
证明:在△ABC的边AB(或延长线)上截取AD=A’B’,过点D作BC的平行线,交AC于点E,则∠ADE=∠B,∠AED=∠C,(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例)。
过点D作AC的平行线,交BC于点F,则(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例)。
∴____________
∵DE∥BC,DF∥AC
∴四边形DFCE是平行四边形。
∴DE=CF
∴____________ ∴____________
而∠ADE=∠B, ∠DAE=∠BAC, ∠AED=∠C, ∴____________
∵∠A=∠A’, ∠ADE=∠B’, AD=A’B’,∴△____≌△____
∴△ABC∽△A’B’C’.通过证明,我们可以得到命题1是一个真命题,从而得出相似三角形判定定理1:两角分别相等的两个三角形相似。现在,我们已经有两种判定三角形相似的方法。
下面我们可以类比前面的证明方法,来继续证明命题2:两边成比例且夹角相等的两个三角形相似。能自己试试吗?
鼓励学生积极思考,模仿前面的证明过程进行证明。可让学生板书过程,或老师在学生中寻找资源,通过投影修正过程中存在的问题。
通过证明,学生可以得到相似三角形判定定理2:两边成比例且夹角相等的两个三角形相似。下面让每个学生独立完成三边成比例的两个三角形相似的证明。从而得到相似三角形判定定理:三边成比例的两个三角形相似。
(三)运用知识解决问题
例1 已知:如图是一束光线射入室内的平面图,•上檐边缘射入的光线照在距窗户2.5m处,已知窗户AB高为2m,B点距地面高为1.2m,求下檐光线的落地点N•与窗户的距离NC.
例2 如图,等腰直角三角形ABC中,顶点为C,∠MCN=45°,试说明△BCM∽△ANC.
例3 在ABCD中,M,N为对角线BD的三等分点,连接AM交BC于E,连接EN并延长交AD于F.(1)试说明△AMD∽△EMB;(2)求
FN的值. NE
相似三角形的判定定理的选择:1.已知有一角相等,可选判定定理1和2;2.已知有两边对应成比例,可选判定定理2和3。
(四)学习小结:
通过本节课的学习,你学会了哪些知识和方法?哪里还有困惑?
(五)布置作业:
反证:记其中一个平面内的两条相交直线为a,b。假设这两个平面不平行,设交线为l,则a∥l(过平面外一条与平面平行的直线的平面与该平面的交线平行于该直线),b∥l,则a∥b,与a,b相交矛盾,故假设不成立,所以这两个平面平行。
2证明:∵平面α∥平面β
∴平面α和平面β没有公共点
又a在平面α上,b在平面β上
∴直线a、b没有公共点
又∵α∩γ=a,β∩γ=b
∴a在平面γ上,b在平面γ上
∴a∥b.3用反证法
命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点p,点p∈β
又因为p∈AB,所以p∈α
α、β有公共点p,与命题α∥β不符,所以AB∥β。
4【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个
5用反证法
命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点p,点p∈β
又因为p∈AB,所以p∈α
α、β有公共点p,与命题α∥β不符,所以AB∥β。
6证明:∵平面α∥平面β
∴平面α和平面β没有公共点
又a在平面α上,b在平面β上
∴直线a、b没有公共点
又∵α∩γ=a,β∩γ=b
∴a在平面γ上,b在平面γ上
∴a∥b.证明:∵平面α∥平面β
∴平面α和平面β没有公共点
又a在平面α上,b在平面β上
∴直线a、b没有公共点
又∵α∩γ=a,β∩γ=b
∴a在平面γ上,b在平面γ上
∴a∥b.【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个
5用反证法
命题:已知α∥β,AB∈α,求证:AB∥β
证明:假设AB不平行于β
则AB交β于点p,点p∈β
又因为p∈AB,所以p∈α
【面面平行判定定理教案】推荐阅读:
5.2.2 平行线的判定(教案)06-02
直线平面平行判定性质10-10
平行线的判定知识梳理09-24
平面与平面平行的判定的教学反思06-02
平行线及其判定与性质练习题09-24
2.2.2平面与平面平行的判定导学案05-30
面面平行的性质11-14
怎样证明面面平行06-30
全等三角形的判定定理12-11
菱形的判定和性质教案11-26