电容测量仪(精选8篇)
用一个电阻和电容串联,用恒压源对电容进行充电,然后根据电容充电的曲线超过某个固定电压所需要的时间,利用曲线拟合的方法测量。测量所使用的原始公式是:。可见电容的值和电压以及时间呈微分关系。用这种方法测量,时间和容值是非线性的。因此测量难度高,精度低,并且难以实现数字化。
1.1.2:恒流充电法测量。
用恒流源对电容充电,此时电容的容量和充电时间是成正比的,所以可以利用AD或者比较功能同某个固定电压比较,来实现电容测量。测量所用的原始公式是:
..所以。恒流源的电流大小是已知的,时间和电压也可以测量出来。由上面的公式即可求得电容的大小。使用这种方法来测量,精度较上一种方法有所提高,且便于操作和实现。但要使用恒流源,恒流源的的设计要求很高,且达不到测量所需要的精度要求,因此这种方法也不适用。
1.1.3:用脉冲计数法测量电容。
由555定时器两个电阻以及一个电容,构成的多谐振荡电路,产生较为稳定的振荡频率计算的公式为:≈,这个频率可以自己选择电阻和电容的值确定。再由一个555定时器和一个电阻以及一个电容构成单稳态触发器,并将以上述多谐振荡电路产生的振荡信号作为单稳态触发器的触发信号。根据电容的大小来调节占空比。LM741与两个电容以及一个电阻构成阻容有源滤波器。将单稳态触发器所产生的输出信号滤波成为稳定的输出电压。此方法测量比较精确,并且容易调节所测量电容值的范围(只需调节构成单稳态触发器的电阻的大小即可)。
综合上述的三种方法,我所选择的是第三种方法 1.2 测量信号数字化系统方案选择 1.2.1:利用单片机进行编程翻译。
将测量得出的电压信号值,输入事先编好程序的单片机当中,应用单片机将电压信号翻译出来送入LED数码显示管中,显示出对应的数据。选用的单片机可以为凌阳单片机。该方法显示出的数据精确。而且设计,操作都很简单且功能易于扩展,但要用到单片机,因此设计成本将大大提高很不经济,且测量环境要求较高。
1.2.2:利用译码器进行翻译。
将测量出的结果输入译码器当中,利用译码器将电信号翻译,然后输入到LED数码显示管中,最后显示出对应的数据。选择的译码器可以为7448译码器。该方法所用到的器材较为便宜,且做成的成品便携。但显示不是非常精确,并且功能会很单一。
这里测量精确要求不是很高,故选择第二种方案。
二 单元电路的设计及原理 此方案主要分为两个方面:1.电容量的测量,最后得出来的结果是最后输出电压信号。2.将输出来的电压信号经翻译成为数字信号,由数码管显示出来。
2.1 电容值测量电路及原理 2.1.1 多谐振荡器电路图及工作原理 555定时器构成一个多谐振荡器,其电路图如图2-1-1所示:
图2-1-1 555定时器构成多谐振荡器 其电路工作原理是:接通电源后,电容C被充电,当上升到时,使为低电平,同时放电三极管T导通,此时电容C通过和T放电,下降。当下降到时,翻转为高电平。电容器充放电所需时间为: 当放电结束时,T截止,将通过、向电容器C充电,由上升到所需的时间为:
当上升到时,电路又翻转为低电平。如此周而复始,于是,在电路的输出端就得到一个周期性的矩形波。其振荡频率为:
2.1.2 单稳态触发器电路图及工作原理 555定时器构成一个单稳态触发器,其电路图如图2-1-2(a)所示。其简化电路如图2-1-2(b)所示:
图2-1-2(a)555定时器构成第三稳态触发器电路 图2-1-2(b)555定时器构成单稳态触发器的简化电路 其工作原理是:没有触发信号时处于高电平(>),如果接通电源后Q=0 =0,T导通,电容通过放电三极管放电,使=0,保持低电平不变。如果电源接通后Q=1,放电三极管T就会截止,电源通过电阻R向电容充电,当上升到时,由于R=0,S=1锁存器置0,为低电平。此时放电三极管T导通,电容放电,保持低电平不变。因此,电路通电后在没有触发信号时,电路只有一种稳定状态=0。
若触发输入端施加触发信号(<),电路的输出状态由低电平跳变为高电平,电路进入暂稳态,放电三极管T截止。此后电容充电,当充电至=时,电路的输出端电压由高电平翻转为低电平,同时T导通,于是电容放电,电路返回到稳定状态。
如果忽略T的饱和压降,则从零电平上升到的时间,即为输出电压的脉宽 通常R的取值在几百欧到几兆欧之间,电容的取值为几百皮法到几百微法。这种电路产生的脉冲宽度可以从几个微秒到几分钟,精度可以达到0.1%。这样就可以保证测量时的精度。也可以保证测量的范围能够达到100pF~100uF。
2.1.3 率波器工作电路图及原理利用LM741与电容,电阻组成阻容有源滤波器。其电路结构如图2-1-3所示。
图2-1-3 LM741组成的阻容滤波器 其工作原理是LM741可以对占空比为的信号进行平滑滤波,使最后产生出来的信号(即是图2-1-3中的)与被测量的呈线性关系。
2.1.4 滤波器工作电路图及原理 测试部分所用的总的电路图如图2-1-4所示。图中的即是被测量的电容。图中的电源是测量电路使用的电源,其值为15~18伏特之间。
图2-1-4 测量电路总图 2.2 模拟信号的处理以及数字化显示 在这个环节中,直接采用将信号送入7448译码器中进行翻译,并将翻译成的 BCD码送入LED数码管中,显示出来。其电路结构如图2-2-1 图2.2给出BCD—七段显示译码器7448的逻辑图。如果不考虑逻辑图中由G1~G4组成的附加控制电路的影响(即G3和G4的输出为高电平),则Ya~Yg与A3、A2、A1、A0之间的逻辑关系为:
Ya Yb Yc Yd Ye Yf Yg G13 G14 G15 G16 G17 G18 G19 G3 A’0 G9 A’1 G10 A’2 G11 A’3 G12 G4 G5 G6 G7 G8 G1 G2 A0 A1 A2 A3 图2-2-1 BCD—七段显示译码器7448的逻辑图 & & & & & & & & 1 1 1 ≥1 & ≥1 & ≥1 & ≥1 & ≥1 & ≥1 & ≥1 & & 根据BCD—七段显示译码器的逻辑关系式和逻辑图可列出真值表如表2—2 LED数码管的构造和显示原理:
LED数码管分为共阳极与共阴极两种,如图2—2—2(a)所示,内部结构如图2—2—2(b)(c)所示。a~g代表7个笔段的驱动端,亦称笔段电极。DP是小数点。第3脚与第8脚内部连通,+代表公共阳极,-表示公共阴极。对于共阳极LED数码管(如图2—2—2(a),(b)所示),将8只发光二极管的阳极短接后作为公共阳极。其工作特点是,当笔段电极接低电平,公共阳极接供电平时可以发光。共阴极LED数码管则与之相反,它是将发光二极管的阴极短接后作为公共阴极。当驱动信号为高电平,-端接低电平时才能发光。
LED数码管的特点:
1.能在低电压、小电流条件下驱动发光,能与CMOS、TTL电路兼容。
2.发光相应时间极短(<0.1us),高频特性好,单色性好,亮度高。
3.体积小,重量轻,抗冲击性好。
4.寿命长,使用寿命在10万小时以上,甚至可以达到100万小时。
5.成本低。
三 系统参数设定 系统的参数决定了系统测量的范围在触发器中,本设计在单稳态触发器中的电阻值取为47K, 由公式:
计算可得。被测电阻在100pF~100uF内产生的脉宽为0.000047s~0.47s。所以多谐振荡器产生的信号振荡频率应该小于2Hz。即<2Hz 取多谐振荡器中的电阻值==150K。再由公式:
计算可得多谐振荡器中电容可以取为1.5uF。
在数字显示电路中,因为是使用了7448译码器译码,则相应的LED数码管选为共阴极数码管。
其他元器件的取值以及相应的规格详见附录 四 设计结论以及谢词 4.1 设计结论 本设计主要应用于100pF~100uF电容器的测量。设计中应用了单稳态触发器,多谐振荡器,滤波器,译码器,LED数码管显示器等等。测量比较精确,显示速度快,能适应多种环境下的电容器测量。
4.2 谢词 此次毕业设计中我投入了最大的热情和精力,从设计电路图,选择元器件,使用 EWB仿真电路,其过程中出现了不少的问题,我没有气馁,没有退缩,积极查阅资料,并且一遍又一遍的重复实践,直到我期望的结果实现。事实也证明我的努力没有白费,认真严谨的实习态度给我带来了成功的喜悦!通过这次电子系统设计,我掌握了设计一个数字电路的基本方法和基本步骤,实际解 决了设计中出现的问题,增强了寻找问题,解决问题的能力。此次设计的成功不仅帮助我更好地掌握书本知识,尤其重要的是增强了我的自信,培养了我独立思考的能力!通过这次的电子设计,我感觉有很大的收获:首先,通过学习使自己对课本上的知识可 以应用于实际,使的理论与实际相结合,加深自己对课本知识的更好理解,同时实习也段练 了我个人的动手能力:能够充分利用书籍和网络资源查阅资料,增加了许多课本以外的知识。能对 protel 99、和 EWB等仿真软件操作,能达到学以致用。对我们学生来说,理论与实际同样重要。
我国6~66kV系统绝大部分为小电流接地系统。“DL/T 620交流电气装置的过电压保护和绝缘配合”规定,根据单相接地故障电容电流的数值来确定是否采用消弧线圈接地方式。因此,测量系统的单相接地故障电容电流是必不可少的。采用系统单相直接接地的方法虽然可以测得单相接地故障电容电流,但系统单相直接接地过程中会产生过电压,危及系统的安全运行,所以一般采用间接法测量系统三相对地电容,再计算系统的单相接地故障电容电流。而偏置电容法测量电容电流的方法简单、安全,误差满足工程要求。采用戴维南定理推导偏置电容法测量系统三相对地电容的计算式简单明了。
1 偏置电容法测量计算式
1.1 系统电路图
用偏置电容法测量系统三相对地电容的系统电路图见图1(图中只画出了系统A相对地外接电容的情况
图中,U为试验时系统电压;CA、CB、C0分别为系统A相对地电容、系统B相对地电容、系统C相对地电容;UA、UB、U0分别为系统A相、B相、C相外接电容后的对地电压;UkA、UkB、UkC分别为外接电容前A相、B相、C相的开路电压;·ICA、·ICB、·ICC分别为A相、B相、C相流过外接电容电流。
1.2 系统对地电容计算
根据戴维南定理[1],在对地外接电容支路处断开,可计算出该支路的电流。
等值电源内阻抗Zi(忽略电源漏抗)
改变外接电容的电容量,可以再得到一组(CA+CB+CC)数据。用同样的方法,将外接电容接于B相、C相对地间,可得到:
2 系统单相接地电容电流
将在A相、B相、C相外接电容试验测得的三相电容(CA+CB+CC)取平均值,计算系统单相接地电容电流
式中,UN为系统标称电压。
3 偏置电容法测量电流产生误差的原因
由于被测试系统三相对地电容不完全对称,即系统存在一个不对称电压,在一相对地外加电容前、后,该相对地测得的开路电压、闭路电压(如UKA、UA)的相位有差异,当采用上述公式进行计算时会使计算结果出现误差。下面用相量图对误差原因进行分析,如图2所示(以A相为例)。
图中,eK为未接入偏置电容时的地电位;eA为接入偏置电容后的地电位;AeK为未接入偏置电容时的A相对地电压(UKA);AeA为接入偏置电容后的A相对地电压(UK);θK为未接入偏置电容时的A相对地电压与系统A相电压夹角;θA为接入偏置电容后的A相对地电压与系统A相电压夹角。
由于系统三相对地电容不平衡,系统中性点对地出现不对称电压(U0eK),使得在未接入偏置电容时的A相对地电压AeA(UKA)与接入偏置电容后的A相对地电压AeA(UA)的相量相差(θK-θA)。而在计算时,(UKA-UA)值是采用测量得到的电压有效值相减,而没有用矢量相减,给计算带来误差。
从相量图看出,接入的偏置电容占系统对地电容的比率越大,相量相差(θK-θA)也越大,造成的计算误差也越大;系统三相对地电容不平衡越小,计算误差也越小。对此误差进行了分析[2],认为在工程上是可以接受的。
采用A相、B相、C相分别外接电容试验计算得到的三相电容(CA+CB+CC),取平均值,可以减小误差。
4 现场试验需注意的问题
在测量开路电压UKA、UKB、UKC和A相、B相、C相对地电压UA、UB、UC时,应同时测量系统电压U(线电压)。
由于在测量外接电容接入前的开路电压与测量外接电容接入后的对地电压有一段时间间隔,系统电压可能有变化。在计算时应将电压折算到同一系统电压,以避免由于系统电压变化引起的误差。
外接电容器的电容量应测准确,如果电容器的电容量不明,也可以用上面给出的算式中的电流(ICA、ICB、ICC)进行计算。
摘要:电力系统中心点绝缘系统在确定是否要配置消弧线圈时,需要估算或测量系统的单相接地电流。用戴维南定理推导了偏置电容法测量电容电流的计算式,并分析了其产生误差的原因。
关键词:等值电路,电容电流,误差,偏置电容法
参考文献
[1]俞大光.电工基础(修订版)上册[M].北京:人民教育出版社,1981.
【关键词】发电机;电容;电流;测量
近年来的社会发展中,全国各地区以35KV为主的电网结构逐渐完善,为了装设和调整电力系统运行中存在的消弧线圈以及发电机工作要求,一般在电容电流测量中都是以中性点外接电容法来进行。这种方法在应用的过程中具备着操作简单简洁、操作方法简便、工作量小和对系统运行影响小以及检测精确度高的优势,因此在目前的各系统环节和电力企业都深受人们的青睐与关注。
1.电容电流概述
1.1电容电流概念
电容电流是一种电容性电流,又被人们在工作中广泛的称之为位移电流。这种电流不同于传统电荷定向移动所形成的电流,是一种并没有从真正的故障点流向大地的一种电流形式,是通过电容作为充放电媒介来发挥等效电流的工作模式。这种电流模式在交流电中最为常见,这主要是由于交流电系统中电流是一直处于不断变化状态下的,这种特殊性就能促使了等效电流的持续存在。
众所周知,在目前的社会发展中带有电缆、变压器以及发电器的电力系统已经广泛的进入人们的视线,也成为现代化社会发展中不可缺少的一部分。这种电力系统中,其各种设备中都存在着一定量的电容,而分布电容的大小主要取决于电缆的几何尺寸、电缆材料以及电缆的长度等多个方面。因此,在目前的工作中,我们做好电容电流的研究是十分重要的,对于保障电力系统的正常持续运行有着至关重要的作用。
1.2电容电流补偿的必要性
电缆在应用的过程中实际上是通过各种绝缘电阻以及分布电容来与大地相互连接的,当人体接触到电力系统的那一时刻,触电电流可以及时的通过人体流向大地,从而造成一种闭合电路结构。可以说在目前的工作中,电容电流是通过一定程度的电缆来对其进行控制与处理的,电网对于各地的电容分布都是通过各种电缆来进行控制的。但是由于在工作中电缆的材料、横截面以及密度的不同造成电容的分布也不尽相同,这就要求我们在工作中对其进行及时可靠的调整。
2.工程实例概述
某发电站在建设中装设了9台发电机,其发电总容量为28万KW,,是目前我国现有的大容量、灯泡式的一种组合式机床发电厂。其中,从一号至五号发电机都是有日立公司生产的,而六号至九号发电机是通过日立公司设计,哈尔滨电机厂生产共同完成的。在布局和建设中,发电机的应用是严格按照《国家电厂水轮发电机组建设规章》来进行的,因此在建设中,其每台发电机的电容电流控制也较为合理。
2.1电容电流的计算
在目前的发电机组建设与布局工作中,多数地区的发电机组都实现了以智能化为主的新型管理与检测。智能化测试系统的应用可以在工作中精确的测试出其工作中各发电机的工作量以及输出功率,并对其带荷载能力以及工作效率提出了新的标准与认识。在目前的发电机系统中,电容电流的计算是通过所有带电参数、发电及辅助测试仪以及控制器等多个环节构成的,是以上位计算为主的计算模式,这种计算措施的应用对于发电功率而言十分有效。
2.1.1机械尺寸进行电容的计算
机械尺寸进行电容的计算。
2.1.3单相接地测量电容
(1)单相接地电容电流的测量原理
假设三相电压以A相电压为基准,且电压最大值为1,那么正常情况发电机三相的电压可表示如下:
因为三相对地存在电容,所以即便是空载发电机三相也存在微弱的电流,且分别超前电压900,和电压一样是对称。
当C相接地时,因C相的电压为零,此时A、B相对地的电压等于对C相的电压,即正常时的线电压。所以此时的三相电压为:
可见非接地相对地的电压上升为正常 倍,因为是中性点不接地系统,所以短路电流经A、B对地电容、大地与C相形成回路。A、B对地的容抗不变,因对地电压升高 倍,所以A、B相的电流数值分别比正常时升高 倍,仍超前电压900,分别为:
而C三相电流为A、B相电流之和,且方向相反。
C相电流即为单相短路的总接地电流,为正常情况下单相电容电流的3倍,由这个电流计算出的电容即为三相电容。
(2)半电压下的接地试验。
(3)全电压下单相接地试验
发电机在额定电压下发生单相接地,因发电机对地电容不变,所以其接地电流应是半电压下的2倍。实际测的电流为4.5 A,与半电压下的试验数据比较相符。
2.2电容及单相接地电流的分析
对于中性点不接地发电机,如果电容电流过大,容易损坏绕组对定子铁芯的绝缘而形成常见的单相接地故障,若不及时发现,又出现另一接地点,就会造成匝间或相间短路,使发电机受到更严重的破坏。所以,在我国,10.5KV系统中性点不接地发电机的单相接地电流要求小于3~5A。对于水轮机则要求小于3A。而#1机在全电压单相接地试验中的接地电流已有4.5A[2]。
某发电机在并网后定子线圈的温度一般都在80℃~90℃,这和发电机定子电容电流过大也有关,长期运行,定会加快线棒绝缘的老化。
另外,某电厂的定子绕组单相接地保护是95%定子接地保护,对于发电机中性点附近单相接地,存在死区。
鉴于以上原因,我们要求日立公司按合同要求,无条件加装发电机消弧线圈,用以抵消电容电流,考虑到与发电机直接相连的母线及变压器显容性,为避免并网后造成串联谐振,消弧线圈采用欠补偿。
3.结束语
通过一系列的试验显示:日立公司生产的这组发电机的单相电容超标,导致发电机在单相接地电流都大于4A,某电厂9台机组,除#5机,其余8台都是2机1变的扩大单元接线,实际两机并列运行时发生定子绕组单相接地时电流可达8~9A,这还未把发电机母线和主变的电容考虑进来,为发电机工作的顺利持续进行提供了必然保证依据。 [科]
【参考文献】
[1]马朝正,阎春雨,刘晓冬.一种新的测量系统电容电流的试验方法——相对地减电容法[J].河北电力技术,1999(06).
11月27日上午第三节课,我在11计航班上了一节公开课,课题是《电容器和电容》。课后我进行了如下反思:
一、设计思想:
(1)故事引入:以展示图画、介绍历史故事引入学习内容,是为了建立学生的信心,激发学生的兴趣,让学生知道我们所学的电容器在实际生产和生活中有很重要的应用,只要我们不断的学习,就可以掌握越来越多的知识,进而解决许多我们本来认为很难的问题。(2)实验设计:本课设计的实验是用16V直流电压给470uF的电容器充放电。电容器充放电实验的目的是通过对学生的感观刺激,提高学生的兴趣,激发学生求知的欲望。
不同电容器充电实验主要进行方法的培养,通过实验比较,进行比值法定义,使学生能更好地理解比值定义法。
二、本节课的成功之处:(1)本节课在教学情景的设计上打乱了书中的教学结构,运用了多种教学手段,以增加学生对抽象概念的理解,特别是对充放电的理解,运用实验和图片讲解的教学手段,效果比较明显。
(3)本节的教学容量较大,学生生源层次较差,如果把这一章节的内容都放在一节课上,可能会加大学生的学习难度。因此,本人将本节内容分两课时进行,第一课时讲电容器的概念、构造,以及常用电容器,在学生有一定的电容器知识的基础上再学习本节课内容,从实际教学效果来看这样处理学生对知识的理解较好,掌握较好。
三、教学中存在的不足:
(1)学生基础较差,电容器的相关知识不足,课堂气氛不活跃,教师自导自演,唱独角戏。
今天,我说课的内容是《电容器的电容》,根据新课标理念,我将从教材分析、学情分析、教学目标、教学重难点以及教学过程等几个方面加以说明。(过渡句)好的教材分析会帮助我们对教学内容有一个宏观的把握,所以,我先谈谈对教材的理解。
一、教材分析“电容器的电容”是人教版《物理》选修3-1电磁学的重点内容之一,是在学习了电场强度和电势差等基本物理量和闭合电路欧姆定律分析之后,进一步对电场和电路加以探究学习。
电容器作为一种基本电子元件,在各电路中广泛使用。这部分内容既与生活联系紧密,又是学生深化电学内容的良好契机。学生在学习电容器的电容概念时,夯实之前的比值定义法的物理方法,对学生的思维和知识都有不同深度的拓展,对后面含容电路的分析有重要意义。(过渡句)知道了教材特点,我们再来了解一下学生特点。也就是我说课的第二部分:学情分析。
二、学情分析选修3-1的学习一般在高二阶段,这个阶段的学生对于物理学科的学习有一定的认识,具备较强的抽象逻辑思维能力,在以往的生活中有对于电学内容有前概念,对学生学习电容器和电容有积极的影响。
在学习电容器的充电和放电过程上,由于对电路的认识深度不够,容易对充电和放电过程中电流的产生和能量的转化出现一定的认识偏差,故在教学过程中要采用直观电路的具体分析和两个过程的对比学习来强化概念,深入理解。(过渡句)基于以上的教材特点和学生特点,我制定了如下的教学目标,力图把传授知识、渗透学习方法以及培养兴趣和能力有机的融合在一起,达到最好的教学效果。
三、教学目标【知识与技能目标】
1知道什么是电容器并分析其充电、放电过程。
2.理解电容器的电容概念及其公式,并能用来进行有关的计算。【过程与方法目标】学会控制变量法的实验方法,提高学生综合运用知识的能力。【情感态度价值观目标】结合实际,激发学生学习物理的兴趣,培养学生热爱科学,积极向上的情感。(过渡句)基于这样的教学目标,要上好一堂课,还要明确分析教学的重难点。
四、教学重、难点【重点】电容的概念、公式及其单位【难点】电容器的充电和放电的过程分析(过渡句)教无定法,贵在得法,教学要试学生“知其然”,更要“知其所以然”。新的课程理念认为:在课程实施上注重自主学习,提高教学方式的多样化。
五、教学方法基于此,本课采用自主合作学习。充分运用多媒体资源,加强直观教学,数形结合,进行启发式教学,突出概念,明确其物理意义。具体的方法:讨论法、直观演示法、启发式教学等。(过渡句)说完了教学方法,下面我将着重谈谈本堂课的教学过程。
六、教学过程环节一:
导入新课因为这是一个全新的元件,学生从未接触过,所以这节课我将直接导入,告诉他们我们这节课要学的内容。但是学生此时会有疑惑,什么是电容器,于是我就会通过举生活中常见的容器的例子,比如水杯,让他们先感受什么是容器,然后再顺势过渡到电容器,让他们理解电容器就是装电荷的容器。这样通过类比的方法,降低了学生思维的高度和难度,学生很容易理解。
环节二:新课讲授结合常见电器,介绍电容器的广泛运用,结合多媒体课件对电容器有初步的直观感受。知道电容器最基本的构造是两块彼此绝缘的金属导体和中间的绝缘介质。【意图:从实物展示中思考电容器的物理属性,从学生已有的认识结构出发,为电容器和电容的概念学习提高兴趣和认知基础。】
知道了电容器的广泛应用后可以结合书本让学生构想电容器的基本结构,并对充电和放电过程进行设想分析。在充电荷放电问题的分析中,启发学生从以下方面进行讨论:
1两极板与电源师连接的还是断开的;
2.灵敏电流计是否观察到电流;
3.能量转化【意图:通过教师引导,让学生大胆根据实际情况构想电容器,通过学生之间的探讨,激发他们从物理的学科角度对电容器充电和放电过程进行分析,深化认知】相比电容器,电容的概念更为抽象,可以类比学生熟悉的生活实例如水库容量是指容纳水的本领来阐述电容是指电容器容纳电荷的本领。从定义出发,引出电容的计算公式,分析电容的单位及其换算进制。再从电容的定义式来启发学生回顾之前学习的用比值定义法的物理公式。【意图:遵循学生的认知发展,利用已有的生活学习基础加以拓展,教师引导学生思考,给出思考方向,充分发挥学生的主观能动性,自主学习,讨论交流,可以更深的体会和理解物理概念。】
环节三:巩固提高设计几个辨析问题,检验学生的掌握情况。
1由C=Q/U可知,电容器的电容与它的带电量、两板间电压有关。这道题主要考察学生对电容大小决定因素的了解。C只由电容器本身因素决定。与Q和U无关。
2.电容器带电量多,说明它容纳电荷的本领大。这道题考察同样考察电容的本质属性。当电容器的电荷量增加时,电势差也增加,故两者的比值不变。
3.由Q=CU可知,当U增大时,Q可以无限增大。这道题学生可能答不出来,所以可以在这里进行补充。电容器有一个击穿电压,当电压超过这一电压时,电容器会被击穿,所以带电量不会无限增大。【意图:在这里。通过提问的方式,能够让学生对C、U、Q的关系有更清晰的掌握,知道电容C是电容器的属性,不随U、Q变化,方式简单,效果良好。】
环节四:小结作业最后,小结环节,我会让学生自己分享本堂课的收获。作业打算布置一道开放性作业:让学生查阅资料,了解生活中的电容器。这样学以致用,也可以拓展学生的课外知识。
教学目标
1.知识目标
①知道什么是电容器以及常用的电容器。
②理解电容器的电容概念及其定义,并能用来进行有关的计算。
③知道公式及其含义,知道平行板电容器的电容与哪些因素有关。
④会对平行板电容器问题的动态分析。
2.能力目标
①知道利用比值法定义物理量。
②学会在实验中用控制变量法的实验方法,提高学生综合运用知识的能力。
3.情感目标
结合实际,激发学生学习物理的兴趣。
教学重点
电容的概念。教学难点
电容的定义和引入。
对平行板电容器的动态分析。
教学方法
启发式、探究式、类比法。
教学用具
静电计、平行板电容器、多媒体、电源、导线、电键。教学过程:
(一)复习前面相关知识
要点:场强、电势能、电势、电势差等。
(二)新课教学
展示各种电容器.并做解释:这是一种能容纳电荷的容器,今天我们来学习它——电容器以及描述它容纳电荷本领的物理量——电容
CBB65型金属化聚丙烯 薄膜电容器 CBB60型金属化聚丙烯 CBB61型金属化聚丙烯 薄膜电容器 薄膜电容器
1、电容器
(1)构造:任何两个彼此绝缘又相隔很近的导体都可以看成一个电容器。(2)电容器的充电、放电
操作:把电容器的一个极板与电池组的正极相连,另一个极板与负极相连,两个极板上就分别带上了等量的异种电荷。这个过程叫做充电。
现象:从灵敏电流计可以观察到短暂的充电电流。充电后,切断与电源的联系,两个极板间有电场存在,充电过程中由电源获得的电能贮存在电场中,称为电场能.操作:把充电后的电容器的两个极板接通,两极板上的电荷互相中和,电容器就不带电了,这个过程叫放电.现象:从灵敏电流计可以观察到短暂的放电电流.放电后,两极板间不存在电场,电场能转化为其他形式的能量.提问:电容器在充、放电的过程中的能量转化关系是什么?待学生讨论后总结如下: 小结:充电——带电量Q增加,板间电压U增加,板间场强E增加, 电能转化为电场能 放电——带电量Q减少,板间电压U减少,板间场强E减少,电场能转化为电能
2、电容
与水容器类比后得出。说明:对于给定电容器,相当于给定柱形水容器,C(类比于横截面积)不变。这是量度式,不是关系式。在C一定情况下,Q=CU,Q正比于U。
(1)定义:电容器所带的电量Q与电容器两极板间的电势差U的比值,叫做电容器的电容。(2)公式:CQ
U
-6-12(3)单位:法拉(F)还有微法(F)和皮法(pF)1F=10F=10pF(4)电容的物理意义:电容是表示电容器容纳电荷本领的物理量,是由电容器本身的性质(由导体大小、形状、相对位置及电介质)决定的,与电容器是不是带电无关.3、平行板电容器的电容
(1)[演示]感应起电机给静电计带电
说明:静电计是在验电器的基础上制成的,用来测量电势差.把它的金属球与一个导体相连,把它的金属外壳与另一个导体相连,从指针的偏转角度可以量出两个导体之间的电势差U.现象:可以看到:
①保持Q和d不变,S越小,静电计的偏转角度越大, U越大,电容C越小; ②保持Q和S不变,d越大,偏转角度越小,C越小.③保持Q、d、S都不变,在两极板间插入电介质板,静电计的偏转角度并且减小,电势差U越小电容C增大.(2)结论:平行板电容器的电容C与介电常数ε成正比,跟正对面积S成正比,跟极板间的距离d成反比.平行板电容器的决定式:真空 C课堂练习:
1.关于电容器的充放电,下列说法中正确的是()A.充放电过程中外电路有瞬间电流 B.充放电过程中外电路有恒定电流
C.充电过程中电源提供的电能全部转化为内能 D.放电过程中电容器中的电场能逐渐减小
2.一平行板电容器始终与电池相连,现将一块均匀的电介质板插进电容器恰好充满两极板间的空间,与未插电介质时相比().
A.电容器所带的电荷量增大 B.电容器的电容增大 C.两极板间各处电场强度减小 D.两极板间的电势差减小
3.下列关于电容器的说法中,正确的是().
A.电容越大的电容器,带电荷量也一定越多 B.电容器不带电时,其电容为零
C.由C=Q/U可知,C不变时,只要Q不断增加,则U可无限制地增大 D.电容器的电容跟它是否带电无关 1.AD 2.AB 3.D
4、常用电容器(结合课本介绍P30)
(三)小结:对本节内容要点进行概括
(四)作业:课后1、2、3、4
电容式传感器的电容变化量往往很小, 许多情况下, 输出电容仅有几十个或几百个飞法 ( 1 f F =10- 15F) 大小[3], 因而对电容式传感器输出电容特别是输出微小电容的测量始终是一个重要的研究课题。
传统上采用的充/放电电容测量电路、AC电桥电容测量电路、交流锁相放大电容测量电路、基于V / T变换的电容测量电路、基于混沌理论的恒流式混沌测量电路、基于电荷放大原理的电容测量电路等分立式解决方案共同缺点是脉动噪声大, 需使用滤波器及考虑相位补偿, 难以达到高的精度要求, 电路结构相对复杂, 不易集成, 成本也较高[3,4]。
本文提出的基于电容数字转换技术的微小电容测量电路解决了从电容信号到数字信号直接转换的信号处理难题, 具有分辨率高、精度高、响应快速、外部电路结构简单、易于集成、稳定性好、成本低等特点, 彻底弥补了分立式解决方案的不足, 不但缩短了产品开发周期, 更进一步为电容式传感器赢得了优势。
1 硬件设计
硬件总体框架如图l所示, 主要有电容式传感器 ( 被测电容) 、电容数字转换器、微处理器、电源管理电路、接口电路5 个主要组成部分。
1. 1 电容数字转换器AD7746
AD7746[5]是ADI公司推出的24 位、低功耗、双通道电容数字转换器 ( CDC) , 是业界最高精度解决方案[6]。主要特性有:
( 1) 精度。4 f F ( 芯片测量结果与真实值有一个固定的偏差, 这个偏差在 ± 4 f F内) 。
( 2) 分辨率。4 a F ( 芯片可以将两个相差4 a F的电容分辨出来) 。
( 3) 线性度。0. 01% 。
(4) 电容输入范围。-4.096~+4.096 p F。
(5) 可接受共模电容。最大17 p F。
( 6) 更新速率。10 ~ 90 Hz。
( 7) 供电电压范围。2. 7 ~ 5. 25 V。
( 8) 额定温度范围。 - 40 ~ + 125℃。
(9) 接口。双线式串行接口 (兼容I2C) 。
(10) 封装。16引脚TSSOP。
被测电容可以直接连接到AD7746的电容输入通道, 芯片通过内部的激励源持续对被测电容提供高频激励, 二阶∑~△调制器不断对被测电容进行电荷采样, 经过三阶数字滤波器直接输出24位测量结果 (Data) [7]。单端输入方式下, 被测电容, 其中十六进制应转化为十进制计算。
1. 2 微处理器MSP430F149
MSP430F149[8,9]是TI公司生产的16 位、低功耗微处理器, 具有丰富的片内资源和方便高效的开发环境, 已广泛应用于便携式仪器仪表中[10—12]。它从中断请求到CPU唤醒仅仅需要6 μs。在开发时, 不需要仿真器和编程器, 利用片内的JTAG接口与PC机和JTAG调试器连接即可。供电电压范围为1. 8 ~ 3. 3 V。
1. 3 电源管理电路和接口电路
电源采用3 V的纽扣锂电池对测量电路进行供电, 微处理器MSP430F149 的串口通过FT232[13]与计算机的USB接口相连。
2 软件设计
软件流程图如图3 所示。
电路上电后, MSP430F149 进行初始化并启动I2C总线, I2C总线应答 ( Ack) 后初始化AD7746 并进行参数设置和寄存器地址配置, 然后AD7746 开始数据采集。在电容数字转换完成后, 输出的24 位测量结果存储在CAP_DATA_H、CAP_DATA_M、CAP_DATA_L三个寄存器中 ( 分别存储测量结果的高、中、低字节) 并在其RDY引脚 ( 2 引脚) 上产生一个下降沿信号, 用于触发MSP430F149 的外部中断, MSP430F149 在中断允许的情况下, CPU响应中断, 并在中断服务子程序中通过I2C总线读取相应的结果并清零寄存器和转换测量通道, 最后通过串口 ( UART) 上传数据至PC。
3 测试结果
为验证电路性能, 使用2 块铜箔制作平行板电容器, 分别改变平行板电容器极板间距和极板正对面积, 与理论值进行比较。
在噪声随机且满足正态分布的条件下, AD7746有效分辨率最高21 位 ( 电容数字转换完成后输出的24 位测量结果中至少有3 位是随机的) , 峰峰 ( P-P) 分辨率 ( 输出的24 位测量结果中的稳定位数) 与有效分辨率满足如下关系:
有效分辨率- 2. 7 = 峰峰分辨率。
随着电容数字转换时间的不同, 有效分辨率和峰峰分辨率的理论值也不同。在电容数字转换时间为109. 6 ms时, 峰峰分辨率的理论值为18. 2 位, 实际测试中得到的峰峰分辨率为16 位, 0. 1 f F 。
由于18. 2 位为理想条件 ( 噪声随机且满足正态分布) 下的计算结果, 可以认为2 位的损失在正常范围内。
平行板电容器计算公式:, 式中, ε 为介电常数, ε = ε0εr, 其中 ε0为真空介电常数 ( ε0=8. 854 2 × 10-12F·m-1) , εr为相对介电常数 ( 空气中 εr= 1. 000 5 ) ; S为极板正对面积; d为极板间距。
当S = 0. 004 225 m2时, 改变d的大小。由于当S一定时, d与C为反比例函数关系, 函数值在自变量的初期有较大的变化, 当d [1, 2]时, 以1 mm为步进; 当d ( 2, 50]时, 以1 cm为步进。测量结果如图4 所示 ( d的每个取值点测量十次, 求平均值) 。
当d = 0. 05 m时, 改变S的大小。S分别选取0. 01 m2、0. 012 1 m2、0. 014 4 m2、0. 016 9 m2、0. 019 6 m2、0. 022 5 m2。测量结果如图5 所示 ( S的每个取值点测量十次, 求平均值) 。
测试结果说明: 当S一定d改变和d一定S改变时, 测量值与理论值有一定的偏差, 由于平行板电容器作为输入时本身并不稳定, AD7746 也存在4 f F的测量误差, 且测量值利用最小二乘支持向量机 ( LS-SVM) [14,15]进行非线性回归后, 与理论值曲线趋势基本保持一致, 可以认为误差并不取决于测量电路本身。实际应用中, 电容式传感器输出的电容是被测量的反映, 因此分辨率的大小得到更多的关注, 测量电路0. 1 f F的分辨率可以满足绝大部分测量的分辨率要求。
4 结论
1 创建演示实验,帮助理解概念
教材上由“实验表明:电容器所带的电量Q与其两端的电势差U成正比,比值Q/U是个常数。它表征了电容器容纳电荷的本领,故定义C=Q/U,”没有安排实验,何以表明?学生怀凝其真实性,没有说服力。
我用图1所示的高阻放电法,得出了“同一个电容器所带的电量与其两端的电势差成正比,比值Q/U是个常数;不同电容器Q/U这个常数不同”的结论,而且还测出了电容器的电容量!
图1中C为电解电容(16V,470uF),R为电阻箱(0~99.999KΩ),uA为数字电流表,○V为数字电压表,E为学生电源直流电压档。
(1)E调至12V,闭合电键S,调节电阻箱R,使uA读数为200uA,并由○V读出C的充电电压(实测为12.4V),填入表2中。断开S,调节R,同时开始计时,每隔5s钟读一次放电电流I1,共读出约13组数据,填入表1对应栏中。
表1:放电电流记录表
(2)由表1中I1的数据在图2中描点作图。
(3)由I=Q/t得Q=It,即I-t图中曲线下面的“面积”'代表了电量Q,而“面积”可以用曲线下面的格子数目来表示(不足半格的舍去,超过半格的计一格),每一小格代表达式1s×10uA的电量,填入表2中。
(4)E调至6V(实测为6.2V),重复1、2、3步,放电电流填入表1的I2栏中,在图2中作出图线,结果填入表2中。
(5)E调至4V(实测为4.1V),重复1、2、3步,放电电流填入表1的I3栏中,在图2中作出图线,结果填入表2中。
可见, 不同一电容器Q/U比值相同。
至此,用C=Q/U定义电容器的电容,学生已深信不疑了!
2 确保平行板电容器演示实验成功(效果明显)
图3示演示实验(即课本上图13-41),实质上是一个静电实验。静电实验的成功与否,起决于起电与绝缘。在南方地区,11月份有雾的天气,起电困难而且起得的电荷很快就“消失”了。
据我查得资料,做静电实验最好的绝缘材料是石腊和泡沫塑料(新购家用电器时的包装泡沫塑料),垫在讲台上做实验,保证了绝缘性能.在有雾的天气,把仪器擦干净并进行局部加热,效果不错.具体做法是:利用家用红外线取暖器作实验台,整个实验在取暖器上进行,并将取暖器置于泡沫塑料上(如图4示).效果很好,同行不防一试。
3 来自学生的几个凝点
3.1 静电计为什么可以测电势差?与电压表有何不同?
静电计是在验电器的基础上改装而成的,全属球(包括杆)与外壳是绝缘的。而任何两个相互绝缘又靠近的导体都构成一个电容器。静电计实质上是一个定值电容,因其正对面积小,故其容量很小。由Q=C*U,即Q正比于U。而Q与指针的张角有关(Q多时,因同种电荷相斥,使张角增大)。故张角大小反映了电势差的大小,即可测电势差U。
用静电计测电容器两端的电压,实质上是一个极小的电容器C与待测电容器C′并联,如图5示。只是C<<C′,故Q<<Q′,即Q′可以看成不变。
电压表是由电流计串联一个分压电阻改装而成,用电压表测电容器两端电压时,电压表与电容器勾成通路而放电,不能测准电容器两端的电压。
3.2 图3示的演示实验中,为什么电容器与静电计的两根导线放在地上而不直接连接起来?
为了使实验现象明显,静电计有较大的偏转,必须让电容器带上足够多的电荷,因此电容器两板间电压很高,有千余伏的电压。做实验时人用手接触,很不安全。接地后,站在地上的人与电容器的一板等电势,用手操作这一板就安全了。如图6示。
3.3 电容器两个极板上带有电荷,如何用简便方法判断其电性?
用试电笔靠近金属板,由于静电的电势(位)很高,故只要试电笔靠近金属板就会使电笔的氖管发光。若氖管发光的部位是靠近手的一端(手握电笔的一端),则金属板带正电;若是远离手的一端发光,则金属板带负电。
4 巧设实验,增强演示效果
(1)用中学实验室J1205型直流高压电源250V档,通过一个25w/220V的白炽灯泡,给一个330μF/300V的电解电容器(21吋彩色电视电源用)充电。注意一定要使直流高压的正极通过电灯接电解电容器正极、直流高压的负极接电容器负极(如图7示)。可以看到灯泡逐渐地亮起来!电容器充好电后,把电容器两端与220V、25W的灯泡两端相连接放电。会看到这个灯泡由亮逐渐变暗直至熄灭。
也可用闪光灯来做这个实验。找一个闪光灯管(如上海照相器材厂生产的海鸥牌SZ-32系列电子闪光灯的灯管),一个250V、300μF的电解电容器,如图8示连在250V的直流高压电源上。电容充足电后接上闪光灯时,发出强烈耀眼的闪光!学生惊叹不止。