中国科学院宁波材料技术与工程研究所

2024-12-18 版权声明 我要投稿

中国科学院宁波材料技术与工程研究所(精选7篇)

中国科学院宁波材料技术与工程研究所 篇1

究所

中国科学院宁波材料技术与工程研究所简介

中国科学院宁波材料技术与工程研究所,是中国科学院在“知识创新工程”试点工作向“创新跨越、持续发展”推进的新阶段,与地方政府共同出资建设的一个新的直属科研机构。

xx年4月20日,经过一年多酝酿,中国科学院与浙江省人民政府在杭州正式签署了《共建中国科学院宁波材料技术与工程研究所协议书》,这标志着中国科学院在浙江省设置研究机构“零的突破”。与此同时,中国科学院与浙江省、宁波市人民政府还就研究所建设的具体事宜共同签署了《中国科学院宁波材料技术与工程研究所建设备忘录》。

宁波材料所实行理事会领导下的所长负责制。理事会由中国科学院和浙江省、宁波市人民政府及相关部门的代表组成。第一届理事会于xx年5月29日召开第一次会议,审议通过了研究所的《章程》。《章程》中规定,宁波材料所将报请中央机构编制委员会批准设立,是隶属于中国科学院的事业法人单位,纳入“知识创新工程”的支持范围。

宁波材料所将坚定不移地贯彻执行中国科学院与地方各级政府共同制定的办所方针,通过集成技术、整合资源,为社会经济的可持续发展提供创新性的解决方案,成为促进成果转化的一个动态平台。目前,在中科院及浙江省和宁波市各级政府部门的大力支持下,宁波材料所的筹建工作进展顺利,预计xx年

底全面完成各项基本建设,xx年初开始投入正常使用。与此同时,研究所将以灵活的方式,引进人才、组织项目,边建设、边运行,力争使“硬件”设施建成验收之日,即为部分“软件”成果取得收获之时。

展望未来,我们坚信宁波材料所必将成为我国材料科学与技术领域特色鲜明、水平一流,在国际上有相当影响的研究机构,成为重要的科技创新、人才培养和高新技术产业化基地。

中国科学院宁波材料技术与工程研究所 篇2

将于2010年11月9~12日在宁波举办。论坛的主题为“新材料与环境友好”

征文范围

新能源材料 (太阳能电池材料, 锂离子电池材料, 燃料电池材料) ;LED新光源材料 (衬底材料, 发光材料及外延生长, 芯片制造, 器件结构与设计, 封装材料与工艺, LED照明与显示的应用) ;OLED新光源材料 (发光材料 (主发光材料, 客发光体, 磷光材料) , 器件结构设计、生产工艺, OLED显示与照明的应用) 。

联系方式

中国机械工程学会周武秀电话:010-6879 9025传真:010-6879 9026投稿邮箱:cllt@cmes.org, cllt2010@yahoo.cn

中国科学院宁波材料技术与工程研究所 篇3

摘要:常压烧结工艺是在烧结过程中对材料不进行加压而使其在高温烧结炉中进行烧结制备致密的烧结块材,常压烧结工艺是目前应用最普遍的一种烧结方法。常压烧结工艺可选择的材料种类比较广泛,适用面比较广泛,所以常压烧结工艺广泛应用在材料科学与工程领域。本文主要讲述常压烧结工艺的原理和工程应用,并讲述常压烧结工艺在材料科学与工程专业实验教学中的研究和应用,并对常压烧结工艺的未来发展趋势和发展方向进行分析和预测。本文作者认为应该在材料科学与工程专业教学实验中增加采用常压烧结工艺制备复合材料的实验课程。

关键词:常压烧结技术 材料科学与工程专业 实验教学 研究 应用

一、前言

在材料科学与工程专业的本科教学工作中,学生在高年级就开始学习材料科学与工程专业的基础课程和专业课程。其中在材料科学与工程专业课程教学中,在讲述材料的制备工艺方法中讲述过常压烧结工艺制备和合成复合材料。常压烧结工艺是制备金属陶瓷复合材料以及其他类型复合材料的主要方法。常压烧结工艺首先将原料粉末通过压力成型工艺制备出具有一定形状的试样坯体,并放入到高温烧结炉中进行高温烧结得到致密的烧结试样,所以通过常压烧结工艺得到较高致密度的烧结制品。所以常压烧结工艺制造的烧结制品的致密度较高,力学性能较高。常压烧结工艺可以制备复合材料和梯度功能材料等。常压烧结工艺烧结速度慢,烧结时间较长,但是烧结温度较高,可以制备比较致密的烧结块材。采用常压烧结工艺可以制备复合材料等。常压烧结工艺制备复合材料由于具有可以达到净近尺寸成形的优势,常压烧结工艺可以根据工程需要制造形状复杂的烧结制品和零部件,所以常压烧结工艺能够广泛应用于工程领域中。在材料科学与工程专业的本科课程教学中,在材料加工工程和材料制备方法中都讲述过常压烧结技术。此外还可以将常压烧结技术制备复合材料作为一项实验教学内容安排学生进行实验,使学生认识和了解常压烧结技术制备复合材料的工艺过程。所以常压烧结工艺制备复合材料在材料科学与工程专业教学实践中得到广泛的应用。本文主要讲述常压烧结工艺的原理和工程应用,并讲述常压烧结工艺在材料科学与工程专业实验教学中的研究和应用,并对常压烧结工艺的未来发展趋势和发展方向进行分析和预测。

二、常压烧结技术的原理和工程应用

常压烧结工艺首先是将原料粉末通过压力成型工艺制备出具有一定形状的试样坯体,并放入到高温烧结炉中进行高温烧结得到致密的烧结试样。常压烧结工艺是在烧结过程中对材料不进行加压而使其在高温烧结炉中以一定的气氛压力下烧结制备致密的烧结制品,常压烧结工艺是目前应用最普遍的一种烧结方法。常压烧结工艺包括了在空气条件下的常压烧结工艺和某种特殊气体气氛条件下的常压烧结工艺。普通陶瓷材料一般是在氧化气氛下烧结,大气条件下的常压烧结在陶瓷生产中经常采用。对于在空气中难于烧结的陶瓷制品如透光体或非氧化物常用气氛烧结法。这种方法是在炉内通入气体形成所要求的气氛,使制品在特定的气氛下烧结。用这种方法可防止陶瓷材料在高温下氧化可直到促进烧结提高制品的致密度。常压烧结工艺属于在大气压条件下坯体自由烧结的过程。在无外加动力下材料开始烧结,常压烧结温度通常比较高。其中常压烧结工艺普遍采用的是高温烧结工艺,常压烧结工艺只需要高温烧结炉,所以制备工艺比较简单。常压烧结工艺烧结温度较高,可以制备比较致密的烧结制品。采用常压烧结工艺的工艺过程是,首先将粉末原料通过压力成型工艺制成所需要形状的预制体,此预制体具有一定的致密度,并将预制体放入到高温烧结炉中进行高温烧结工艺,在一定的烧结温度下保温一段时间得到致密度较高的烧结制品。常压烧结工艺可选择的材料种类比较多,适用面也比较广泛。采用常压烧结工艺可以制备各种复杂形状的烧结制品和零部件,所以常压烧结工艺在材料科学与工程领域有着广泛的研究和应用。

三、常压烧结技术在材料科学与工程专业实验教学中的研究和应用

常压烧结工艺是首先是将原料粉末通过压力成型工艺制备出具有一定形状的试样坯体,并放入到高温烧结炉中进行高温烧结得到致密的烧结试样。常压烧结工艺是在烧结过程中对材料不进行加压而使其在高温烧结炉中以一定气氛压力下烧结制备致密的烧结试样,常压烧结工艺是目前应用最普遍的烧结方法。常压烧结技术具有烧结温度较高,烧结时间较长,烧结效率高,可以实现烧结成型工艺,所以常压烧结技术主要用于制备金属陶瓷复合材料以及其他复合材料等。在材料科学与工程专业的教学课程中,其中材料加工工程和材料制备与合成方法讲述过常压烧结工艺。常压烧结工艺同粉末冶金技术一样都是材料的制备工艺技术。常压烧结工艺同样也是热加工工艺,常压烧结工艺是首先是将原料粉末通过压力成型工艺制备出具有一定形状的试样坯体,并放入到高温烧结炉中进行高温烧结得到致密的烧结试样。常压烧结试样坯体在高温烧结作用下形成致密的烧结体。在材料科学与工程专业课程的课堂教学中,有些专业课程中对常压烧结工艺只是作为了解,对于常压烧结工艺制备复合材料的具体内容和制备工艺步骤的研究和应用了解很少。所以就需要在材料科学与工程专业的`实践教学课程中增加一些关于常压烧结工艺制备复合材料的实验课程。通过常压烧结工艺制备复合材料的实践教学活动可以使学生认识和了解常压烧结工艺制备复合材料的原理,制备工艺过程以及对经过常压烧结工艺后得到复合材料制品的物相组成,显微结构和力学性能进行研究,使学生通过对材料的制备与研究过程可以加深学生对材料科学与工程专业课程学习的认识和了解。对于本科学生的教学实践课程,可以在本科学生的本科专业课程设计和本科毕业设计过程中安排常压烧结工艺制备金属陶瓷复合材料的教学内容。例如采用常压烧结工艺可以制备金属陶瓷复合材料,先将金属陶瓷混合粉末通过压力成型工艺制成具有一定形状的预制体或坯体,并将成型的预制体放入到高温烧结炉中并通过高温烧结工艺并保温一定时间的常压烧结工艺制备金属陶瓷复合材料。通过常压烧结工艺制备致密的复合材料烧结块材。通过实验教学过程使学生认识和了解到常压烧结工艺制备金属陶瓷复合材料的制备工艺过程,提高学生对课程学习的认识和了解。使学生通过实验教学过程认识和了解常压烧结工艺制备复合材料的制备工艺原理,使用方法和制备过程,以及对常压烧结制备工艺得到的烧结制品的物相组成和显微结构进行分析和测试。常压烧结工艺可以制备复合材料和功能材料等。常压烧结工艺可以制备具有复杂形状的烧结制品或零部件,所以常压烧结工艺在工程领域得到了广泛的应用。

常压烧结工艺由于具有很多的优势所以被广泛的应用在材料科学与工程领域中。常压烧结工艺已经成为材料合成和制备的主要制备工艺。常压烧结工艺可选择的材料种类比较广泛,适用面也比较广泛。常压烧结工艺可以制备复合材料等。常压烧结工艺可以得到比较致密的烧结制品。常压烧结技术操作过程比较复杂,对设备要求较高,特别是需要高温烧结炉,可以进行现场操作,因此可以作为本科学生的课程教学实验内容,可作为材料科学与工程专业课程的辅助教学实验,也可以作为本科专业课程设计和本科毕业设计教学内容。使学生通过实践教学来加深对材料科学与工程专业课程的认识和掌握。使学生认识到金属基复合材料的制备过程以及金属陶瓷复合材料的制备过程等,并使得学生对常压烧结工艺得到的烧结制品进行分析和测试,使学生对材料的分析和检测水平有较大的提高。对于拓展学生的知识面有很大的帮助,为本科学生以后的本科专业课程设计和本科毕业设计打下坚实的实验基础。

四、常压烧结技术在材料科学与工程领域的研究发展趋势和发展方向

采用常压烧结工艺的工艺过程是将粉末原料通过压力成型工艺制成所需要形状的预制体,并将预制体放入到高温烧结炉中进行高温烧结工艺得到致密的烧结制品。常压烧结工艺制备金属/陶瓷复合材料的制备工艺是,首先将金属粉末与陶瓷粉末相混合并通过压力成型工艺制备出所需要的形状,并通过高温烧结工艺制备出致密的金属/陶瓷复合材料烧结制品。常压烧结工艺可以制备具有复杂形状的金属陶瓷复合材料烧结制品。利用常压烧结工艺可以制备工程领域所需要的各种形状的零部件和烧结制品,只要成型过程中把模具做成所需要的形状就可以通过常压烧结工艺得到所需要形状的烧结制品。常压烧结工艺制备复合材料具有制备工艺简单,产品成型速度快生产率较高,并可以在工程领域中进行推广应用。本文作者认为应该在材料科学与工程专业教学实验中增加采用常压烧结工艺制备复合材料的实验课程。

五、结论

常压烧结工艺是在烧结过程中对材料不进行加压而使其在高温烧结炉中进行烧结制备致密的烧结块材,常压烧结工艺是目前应用最普遍的一种烧结方法。常压烧结工艺可选择的材料种类比较广泛,适用面也比较广泛,所以常压烧结工艺广泛应用在材料科学与工程领域。本文主要讲述常压烧结工艺的原理和工程应用,并讲述常压烧结工艺在材料科学与工程专业实验教学中的研究和应用,并对常压烧结工艺的未来发展趋势和发展方向进行分析和预测。所以本文作者认为应该在材料科学与工程专业教学实验中增加采用常压烧结工艺制备复合材料的实验课程。

参考文献

[1]李青虹,晋芳伟.机械专业实验课程教学改革的研究[J].机电技术,(1):149-151

[2]刘宏达,马忠丽.高校实验课程教学质量评价体系的构建[J].中国现代教育装备,(3):60-63

[3]罗乐,张春早,黄英.加强实验课程教学质量管理的探索[J].合肥工业大学学报(社会科学版),,19(1):16-18

[4]谢秀红,贾天钰.大学实验课程教学改革新探[J].航海教育研究,(2):74-76

[5]马臣,孟延红,曹智贤.机械实验课程教学体系构建的探索[J].实验室科学,(1):44-46

[6]赵方方,孙会来,高胜利.构建立体化实验教学模式培养创新性工程实践人才[J].实验室科学,2007(1):13-15

[7]王国强,傅承新.研究型大学创新实验教学体系的构建[J].高等工程教育研究,(1):125-128

中国科学院宁波材料技术与工程研究所 篇4

材料教字[2009]03号

材料科学与工程学院关于监考巡考的工作方案

根据学校关于进一步加强考风考纪精神,强化我院教师的监考责任意识,加强学生的学风考风教育和诚信意识,严肃学生考试纪律,杜绝学生考试违纪、作弊现象,维护我院良好的学风,特制定以下方案。

一、加强考风考纪的组织领导

学院建立起党政共同负责、党政主要负责人亲自抓考风考纪的领导责任制。党政负责人对学院的学风考风考纪负有直接的领导责任;学院教学副院长对考试和监考的组织负有监管责任,对监考教师负有培训和管理责任;学院党委副书记对学生的考风考纪负有教育和管理责任。学院成立由院领导、各研究所所长或副所长(每研究所1名)以及各年级辅导员为成员的巡考小组。

二、巡考工作方案

考试前由教学管理办公室将考试科目、考试班级、时间、地点、监考人员及时通知巡考小组成员,我院为开课学院的课程考试,每次安排巡考不少于2人。巡考人员应佩戴巡考标识,协助监考教师认真清场,检查学生考试纪律及监考教师履行监考职责的情况,防止违纪事件的发生。

三、监考工作方案

监考是每位教师应尽的义务。除巡考人员之外,所有教师(包括实验室老师)及班主任都应完成规定的监考任务(研究生班主任除外)。

1、教学办公室在学期初将考试的大约时间、每场考试的监考人员安排及学期平均每人监考次数统计公布。

2、监考老师临时有事不能参加所安排监考时,自行与其他教师进行协商调换,并将调整结果最晚于考试前一天报到教学办公室。但不能由研究生或其他不符合监考人员要求的人代为监考,否则责任自负。

3、监考教师要严格按照《中国矿业大学本专科考试工作暂行条例》切实履行监考职责,如果在巡考过程中发现监考教师缺席、监考不严格、使用手机等情况,严格按照学校的《中国矿业大学教学事故认定和处理办法》进行处理,并上报学校。同时将作为教师年终考核、教学评奖、评选师德模范、教书育人先进个人及优秀班主任的重要指标。

4、对于考试违纪行为,学院要进行严肃、快速处理。由院学生工作领导小组按照学校的有关要求,讨论学院的处理意见,并在48小时内把考试违纪处分建议、相关证据、学生检查以及陈述申辩等材料的纸质件交到教务处教务科,同时做好违纪学生的思想教育工作,以达到教育本人和警示他人的效果。

材料科学与工程学院 OO九年三月二十四日

中国科学院宁波材料技术与工程研究所 篇5

材料成型及控制工程有四个方向:焊接、铸造、热处理、锻压。随着科学技术的发展材料成型也变得越来越机械化和自动化。当今制造技术的主要发展趋势是:制造技术向着自动化、集成化和智能化的方向发展。

焊接:近20年来,随着数字化,自动化,计算机,机械设计技术的发展,以及对焊接质量的高度重视,自动焊接已发展成为一种先进的制造技术,自动焊接设备在各工业的应用中所发挥的作用越来越大,应用范围正在迅速扩大。在现代工业生产中,焊接生产过程的机械化和自动化是焊接机构制造工业现代化发展的必然趋势。焊接采用加热和加压或其他方法使热塑性塑料制品的两个或多个表面熔合成为一个整体的方法。自动化采用具有自动控制,能自动调节、检测、加工的机器设备、仪表,按规定的程序或指令自动进行作业的技术措施。其目的在于增加产量、提高质量、降低成本和劳动强度、保障生产安全等。自动化程度已成为衡量现代国家科学技术和经济发展水平的重要标志之一。现代自动化技术主要依靠计算机控制技术来实现。焊接生产自动化是焊接结构生产技术发展的方向。现代焊接自动化技术将在高性能的微机波控焊接电源基础上发展智能化焊接设备,在现有的焊接机器人基础上发展柔性焊接工作站和焊接生产线,最终实现焊接计算机集成制造系统CIMS。

在焊接设备中发展应用微机自动化控制技术,如数控焊接电源、智能焊机、全自动专用焊机和柔性焊接机器人工作站。微机控制系统在各种自动焊接与切割设备中的作用不仅是控制各项焊接参数,而且必须能够自动协调成套焊接设备各组成部分的动作,实现无人操作,即实现焊接生产数控化、自动化与智能化。微机控制焊接电源已成为自动化专用焊机的主体和智能焊接设备的基础。如微机控制的晶闸管弧焊电源、晶体管弧焊电源、逆变弧焊电源、多功能弧焊电源、脉冲弧焊电源等。微机控制的IGBT式逆变焊接电源,是实现智能化控制的理想设备。数控式的专用焊机大多为自动TIG焊机,如全自动管/管TIG焊机、全自动管/板TIG焊机、自动TIG焊接机床等。在焊接生产中经常需要根据焊件特点设计与制造自动化的焊接工艺装备,如焊接机床、焊接中心、焊接生产线等自制的成套焊接设备,大多可采用通用的焊接电源、自动焊机头、送丝机构、焊车等设备组合,并由一个可编程的微机控制系统将其统一协调成一个整体。

铸造:熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状、尺寸、成分、组织和性能铸件的成形方法。铸造是人类掌握比较早的一种金属热加工工艺,已有约6000年的历史。中国约在公元前1700~前1000年之间已进入青铜铸件的全盛期,工艺上已达到相当高的水平。铸造是指将室温中为液态但不久后将固化的物质倒入特定形状的铸模待其凝固成形的加工方式。被铸物质多为原为固态但加热至液态的金属(例:铜、铁、铝、锡、铅等),而铸模的材料可以是沙、金属甚至陶瓷。因应不同要求,使用的方法也会有所不同。随着科技技术的发展国内的铸造技术也飞速发展近年开发推广了一些先进熔炼设备,提高了金属液温度和综合质量,开始引进AOD、VOD等精炼设备和技术,提高了高级合金铸钢的内在质量。直读光谱仪和热分析仪,炉前有效控制了金属液成分,采用超声波等检测方法控制铸件质量。一些大中型铸造企业开始在熔炼方面用计算机技术,控制金属液成分、温度及生产率等。成都科技大学研制成砂处理在线控制系统,清华大学等开发了计算机辅助砂型控制系统软件,华中科技大学成功开发商品化铸造CAE软件。铸造业互联网发展快速,部分铸造企业网上电子商务活动活跃,如一些铸造模具厂实现了异地设计和远程制造。

铸造专家系统研究虽然起步晚,但进步快。先后推出了型砂质量管理专家系统、铸造缺陷分析专家系统、自硬砂质量分析专家系统、压铸工艺参数设计及缺陷诊断专家系统等。机械手、机器人在落砂、铸件清理、压铸及熔模铸造生产中开始应用。精确成形技术和近精确成形技术,大力发展可视化铸造技术,推动铸造过程数值模拟技术CAE向集成、虚拟、智能、实用化发展;基于特征化造型的铸造CAD系统将是铸造企业实现现代化生产工艺设计的基础和前提,新一代铸造CAD系统应是一个集模拟分析、专家系统、人工智能于一体的集成化系统。采用模块化体系和统一数据结构,且与CAM/CAPP?ERP/RPM等无缝集成;促使铸造工装的现代化水平进一步提高,全面展开CAD/CAM/CAE/RPM、反求工程、并行工程、远程设计与制造、计算机检测与控制系统的集成化、智能化与在线运行,催发传统铸造业的革命性进步。

锻压是锻造和冲压的合称,是利用锻压机械的锤头、砧块、冲头或通过模具对坯料施加压力,使之产生塑性变形,从而获得所需形状和尺寸的制件的成形加工方法。“锻压”作为金属加工的主要方法和手段之一,在国民经济中占有举足轻重的地位,是装备制造业,特别是机械、汽车行业,以及军工、航空航天工业中的不可或缺的主要加工工艺。随着经济结构调整的不断深化,作为支柱产业的汽车制造业的大发展,为我国的锻压行业发展营造了一个非常好的机会。近几年在设备制造技术和加工技术上都取得很大的进展,行业的竞争力得到提升,某些技术水平已进入世界先进行列。

但随着中国汽车工业的快速发展,国产锻造设备存在的不足日益凸显。其中,拥有中国自己产权的通用锻压设备多处于较低的水平,目前锻压设备发展趋势是集机械、电子、液压、气动及检测等方面的最新技术于一体,自动化程度高、换模快速、工作可靠、噪声低、防护完善、精度高。近年来又发展了数控系统,能和电子计算机、工业机器人、自动换模系统及自动仓库等相结合,构成多种系列的柔性制造单元(FMC)和柔性制造系统(FMS),并向电子计算机集成制造系统(CIMS)的方向逼近。

金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度在不同的介质中冷却,通过改变金属材料表面或内部的显微组织结构来控制其性能的一种工艺。在热处理过程中对温度的检测和记录非常的重要,温度控制的不好对产品的影响十分的大,所以温度的检测十分的重要,在整个过程的温度的变化趋势也显得十分的重要,导致在热处理的过程中必须对温度的变化进行记录,可以方便以后进行数据分析,也可以查看到底是哪段时间温度没有达到要求。这样对以后的热处理进行改进起到非常大的作用实现一定程度上的自动化。

日前,中钢邢机通过对热处理炉群的自动化控制系统进行创新改进,在所属异型公司成功完成单台炉体单机控制向整个炉群单机管控的“集中化”转变,实现企业炉群自动化控制的新突破。“集中化”管控就是由单台主机整体集中完成整个炉群的自动化控制工作,通过建立热处理炉群自动化控制的独立整体管控网络,改变每台热处理炉都有一台主机主控的传统模式。企业探索实施“热处理炉群控制集中化管理”,最初是基于对企业扩能上量后热处理炉数量增多、生产用电不易调配问题的解决。经过在异型公司试点进行实际改造实施后,使热处理炉群能够结合排产计划,对照峰谷用电时间段,实现对每台热处理炉作业的自动程序化科学调控,从而大大降低了作业用电成本。同时使企业设备管理更趋便捷科学,运行效率明显提升,目前每班只需2人即可完成17台热处理炉的日常作业管理。为了使工件在生产线上自如地完成整个所要求的热处理工艺过程,被特定设计的连续炉相互连接沟通。炉膛内可多方位贯通,并可使工件料筐90℃角转入下道加热区或过渡保温箱,经传送抵达下一工序或进入冷却室冷却。这种炉体结构和传送装置都具有相当高的水平。以可控气氛箱式炉为例,为满足渗碳、碳氮共渗、氮碳共渗、淬火或光亮淬火、等温淬火等热处理工艺的实施,料盘和料架上的工件以冷链驱动的方式自动送入、通过和送出炉膛,在各自的炉子中完成所要求的工艺。箱式炉与相应的计算机辅助测量、控制与调节系统连用,形成各个独立的模块单元,易于相互连接,构成完善、灵活、组合式自动热处理系统。

电子计算机在热处理中的应用,包括计算机辅助设计(CAD)、计算机辅助生产(CAM)、计算机辅助选材(CAMS)、热处理事务办公自动化(OA)、热处理数据库和专家系统等,它为热处理工艺的优化设计、工艺过程的自动控制、质量检测与统计分析等,提供了先进的工具和手段。计算机在热处理中的应用,最初主要用于热处理工艺程序和工艺参数(温度、时间、气氛、压力、流量等)的控制,现在也用于热处理设备、生产线和热处理车间的自动控制和生产管理,还有的用计算机进行热处理工艺、热处理设备、热处理车间设计中的各种计算和优化设计。在热处理中引入计算机,可实现热处理生产的自动化,保证热处理工艺的稳定性和产品质量的再现性,并使热处理设备向高效、低成本、柔性化和智能化的方向发展。计算机在热处理中的应用国外已十分普遍,例如,日本一家摩托车厂的热处理车间,有连续式渗碳炉、周期式渗碳炉、连续软氮化炉等共37台设备,从开始送料,到最终产品检验,全部由计算机控制,每班只需要三个人操作,一人在计算机室内负责全部生产、技术和质量管理,一人在现场巡回检查,一人负责产品质量检验,生产效率极高。我国在热处理行业中应用计算机还是近十多年的事情,目前国内研制生产的热处设备已越来越多地引入了微机控制,极大地提高了设备的自动化水平和生产效率。在热处理工艺过程的实时控制、计算机辅助设计、计算机模拟和数学模型的开发应用等方面,也取得了一定的成绩。

中国科学院宁波材料技术与工程研究所 篇6

毕业

主要面向公路交通行业的施工及检测单位,可担任施工员、质检员、实验员等技术工作。经过工程实践锻炼,可担任施工项目、试验室、建筑材料供应等分项工程技术主管。此外,还可在养护与管理以及市政工程等土建行业单位从事施工检测、试验等技术工作。目前在建筑这一方面,市场对此类人员还是比较有需求的,因为在现在大多数人还是比较注重建筑这一口,所以说就业前景还是比较乐观的。建筑材料工程技术专业高校毕业人数为150-200人,其中男91%、女9%,20建筑材料工程技术专业高

校招

生男女比例为文科34%、理科66%,近几年建筑材料工程技术专业的

就业率

分别为(90%-95%)、(90%-95%)、(95%-100%)。

中国科学院宁波材料技术与工程研究所 篇7

会议收到论文100多篇,经学术委员会审查,有92篇论文收录到论文集中。内容包括污染土的基本性质,污染物的扩散规律,废弃物的处理现状及控制措施,城市固体废弃物的土工特性及填埋技术,土工合成材料在环境岩土工程中的应用,河海湖堤岸的淤积、冲刷、侵蚀和液化及其防护,垃圾填埋场的设计、施工和管理等,反映了国内外在环境岩土工程与土工合成材料领域的新进展。所收录的论文紧密结合工程实践,实用性强,可供从事土木工程勘察、设计、施工、管理和科研的科技人员以及大专院校有关专业的师生参考。

开幕式由大会组委会主席陈云敏教授主持。出席大会的嘉宾有全国政协常委、浙江大学副校长冯培恩教授,浙江省水利厅厅长李治华先生,杭州市市政市容管理局局长何荣坤先生,中国科学院院士、同济大学孙钧教授,中国工程院院士、长江水利委员会技术委员会主任文伏波教授,中国工程院院士、浙江大学建筑工程学院院长董石麟教授,浙江大学曾国熙教授,中国土工合成材料工程协会理事长、长江科学院前院长包承纲教授,中国土木工程学会土力学与岩土工程分会副理事长、清华大学李广信教授。还有很多海外知名学者:国际土工合成材料协会亚洲委员会主席、日本Kyoto大学Masashi Kamon教授,国立新加坡大学周顺和教授,香港科技大学离心机实验室主任吴宏伟教授,美国加州环保局官员王蔚蔚女士,美国高级岩土工程系统顾问公司赵爱根博士。另外出席大会的还有国内知名大学教授,科研院所、设计施工单位专家,土工合成材料生产厂家代表共221人。这些专家、学者的到来使本次大会充分体现了我国及国际上在环境土工和土工合成材料领域的发展水平。17日和18日,到会的专家和代表们按照废弃物和污染土的基本特性与处理技术、自然及工程引起的土工环境问题与防治技术、土工合成材料在环境土工中的应用以及土工环境改善和美化4个专题作了水平报告与分组报告。通过2天的交流和讨论,对环境岩土工程内涵有了进一步的理解,对岩土工程构筑物的设计理论、研究方法、先进技术、管理和运行方法、新材料应用等方面有了全面的了解。尤其是15个水平报告,充分反映了国内外相关领域的最新进展。闭幕式由包承纲教授做了总结并致闭幕词,大会在热烈的气氛中胜利闭幕。11月19日上午参观了杭州天子岭废弃物处理总场,这是我国第一个完全按照建设部标准设计的大型处理场。填埋场内完全实现垃圾卫生填埋,渗滤液经过收集处理后,排入城市废水管道。垃圾场产生的沼气回收后,送入填埋场的发电厂进行回收发电,每年可以产生750万元的经济效益。填埋场可处理杭州的全部生活垃圾,整个填埋场内绿竹成荫,风景秀丽。下午,代表们参观了西湖清淤工程。

为了进一步推动我国环境土工与土工合成材料事业向更高水平更快的发展,经大连理工大学申请,大会筹委会决定第二届环境岩土工程与土工合成材料技术研讨会将于2005年,在美丽的海滨城市大连举办,届时,我国的环境土工与土工合成材料事业一定会呈现出更加美好的局面。

上一篇:寒假肯德基实践小结下一篇:安全教育对学前教育的重要性论文