数控车床回零操作

2024-10-09 版权声明 我要投稿

数控车床回零操作(通用5篇)

数控车床回零操作 篇1

摘要

在FANUC 0i数控系统中,对于维修经常出现的回参考点故障来说,弄清楚回参考点的作用及机械与电气原理是非常重要的。根据我们的维修实践来看。有关数控机床回参考点方面的故障率还相当高,为了便于数控维修人员能够迅速准确地判断故障点,在这里把有关机床回参考点过程中各种形式的故障进行分析、如机床不能归参考点、归参考点失败、归参考点不准确等,找出了这些故障的产生原因并给出了其排除方法及总结。

【关键词】 参考点,故障诊断,分析,排除

装 订 线 共 19 页

第 1 页

毕业设计用纸

目录

摘要

第1章

绪论 „„„„„„„„„„„„„„„„„„„„„„1

1.1、数控机床的发展„„„„„„„„„„„„„„„„„„„„1 1.2、数控机床故障诊断技术的发展

„„„„„„„„„„„„„3 第2章

数控机床的参考点

„„„„„„„„„„„„„„„„„5

2.1、什么是参考点

„„„„„„„„„„„„„„„„„„„„5 装 2.2、回参考点的目的 „„„„„„„„„„„„„„„„„„„6 2.3、回参考点的原理

„„„„„„„„„„„„„„„„„„„6

订 2.4、回参考点的方式 „„„„„„„„„„„„„„„„„„„10 第3章

回零点的故障案例与分析„„„„„„„„„„„„„„13

3.1、故障类型与分析 „„„„„„„„„„„„„„„„„„„13 线 第4章

小结 „„„„„„„„„„„„„„„„„„„„„„18 参考文献

„„„„„„„„„„„„„„„„„„„„„„„„19

第1章 绪论

1.1 数控机床的发展

数字控制(Numerical Control)技术,简称数控(CNC)技术,是指用数字指令来控制机器的动作。采用数控技术的控制系统成为数控系统。采用存贮程序的专用计算机来实

共 19 页

第 2 页

毕业设计用纸

现部分或全部基本数控功能的数控系统,称为计算机数控(CNC)系统。装备了数控系统的机床称为数控机床.数控技术是为了解决复杂型面零件加工的自动化而生产的。1948年,美国PARSONS公司在研制加工直升飞机叶片轮廓用检查样板的机床时,首先提出了数控机床的设想,在麻省理工学院的协助下,于1952年试制成功了世界上第一台数控机床样机。后又经过三年时间的改进和自动程序编制的研究,数控机床进入了实用阶段,市场上出现了商品化数控机床。1958年,美国KEANEY AND TRECKER公司在世界上首先研制成功了带有自动换刀装置的加工中心。

我国于1958年开始研制数控机床,到了60年代末和70年代初,简易的数控线切割机床已在广泛使用。80年代初,我国引进了国外先进的数控技术,是我国的数控机床在质量和性能上都有了很大提高。从90年代起,我国已向高档数控机床方向发展。目前,数控机床的应用越来越广泛,其加工柔性好,精度高,生产效率高,具有很多的优点。数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。从目前世界上数控技术及其装备发展的趋势来看,数控系统正向以下几个方向发展。

1.1.1 高速化和高精度化

为实现高速化和高精度化,今后数控技术的发展如下:

① 使伺服电动机的位置环、速度环的控制实现数字化,以达到对电动机的高速、高精度控制

② 采用现代控制理论,减少滞后量提高跟随精度。

③ 采用高分辨率的位置编码器。现代高分辨率位置编码器绝对位置的测量可达163840脉冲/转。

④ 实现多种补偿功能,提高数控机床的加工精度和动态特性。

1.1.2智能化、开放式、网络化

21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成,为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等。简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、共 19 页

第 3 页

毕业设计用纸

方便系统的诊断及维修等。

为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题。目前许多国家对开放式数控系统进行研究,如美国的NGC(The Next Generation Work-Station/Machine Control)、欧共体的OSACA(Open System Architecture for Control within Automation Systems)、日本的OSEC(Open System Environment for Controller),中国的ONC(Open Numerical Control System)等。数控系统开放化已经成为数控系统的未来之路。所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。

网络化数控装备是近两年国际著名机床博览会的一个新亮点。数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。国内外一些著名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在EMO2001展中,日本山崎马扎克(Mazak)公司展出的“CyberProduction Center”(智能生产控制中心,简称CPC)日本大隈(Okuma)机床公司展出“IT plaza”(信息技术广场,简称IT广场);德国西门子(Siemens)公司展出的Open Manufacturing Environment(开放制造环境,简称OME)等,反映了数控机床加工向网络化方向发展的趋势。

1.2数控机床故障诊断技术的发展

数控机床是当代机、电、光、气一体化高新技术的结晶。电气复杂,管路交叉林立。数控系统五花八门,故障现象也各不相同,特别是大、重型数控机床,价格昂贵,以数百万美金计。安装调试时间长(几个月到一年以上)。大型数控机床内有成千上万只元器件,其中任一元件有故障,都会造成机车工作不正常。大、重型数控机床体积庞大,在无恒温条件下使用,环境的影响也很容易引发故障。因此数控机床的维修就成了许多企业的老大难题。要迅速找出数控机床的故障、隐患,并及时排除,就要迅速发展数控诊断技术。

1.2.1 通信诊断

通信诊断也称原距离诊断或海外诊断。用户只需把CNC系统中专用“通信接口”连接到普通电话线上,维修中心的专用通信诊断计算机的“数据电话”也连接到电话线路上。由通信计算机向各用户CNC系统发送诊断程序,并将测试数据送回诊断计算机进行

共 19 页

第 4 页

毕业设计用纸

分析并得出结论,最后又将诊断结论和处理方法通知用户。FUNUC公司生产的数控系统就具有这种诊断功能。通信诊断不仅用于故障发生之后对数控系统进行诊断,而且还可以用作用户的定期预防性诊断,只需按约定的时间对机床作一系列试运行检查,将检查数据通过电话线送入维修中心的计算机进行分析处理,维修人员不必亲临现场,就可以发现系统可能出现的故障隐患。

1.2.2 自修复系统

自修复系统就是在系统内设置备用模块,在数控系统的软件中装有自修复程序.当软件在运行时一旦发现某一个模块有故障时,系统一方面将故障信息显示在CRT,同时自动寻找是否有备用模块, 若有备用模块,系统能自动使故障模块脱机而接通备用模块,从而使系统较快地进入正常工作状态。Cincinnati-Milacron公司生产的950CNC系统就采用了这种自修复技术。

1.2.3 人工智能(AI)专家故障诊断系统

专家系统是一个或一组能在某些特定领域内,应用大量的专家知识和推理方法求解复杂问题的一种人工智能计算机程序。

图1-1 故障诊断专家系统

通常,专家系统由知识库、推理机、数据库以及解释程序、知识获取程序等5个部分组成,见图1-1。

其核心部分为知识库和推理机。其中知识库中存放着求解问题所需的知识,推理机负责使用知识库中的知识去解决实际问题。知识库的建造需要知识工程师和领域专家相互合作把领域专家的知识和经验整理出来,并用系统的知识方法存放在知识库中。当解决问题时,用户为系统提供一些已知的数据,就可从系统处获得专家水平的结论。从数控机床故障诊断的内容看,故障诊断专家系统用于故障检测、故障分析和解决处理三个

共 19 页

第 5 页

毕业设计用纸

方面。在FANUC 0i系统中,已将专家故障诊断系统用于故障诊断。在使用时,操作者以简单的会话问答方式,通过数控系统上的MDI/CRT操作,就能如同专家亲临现场一样,诊断出系统的故障。

1.2.4 人工神经元网络诊断

人工神元网络,简称神经网络,是人们在对人脑思维研究的基础上,用数学方法将其简化、抽象并模拟,能反映人脑基本功能特性的一种并行分布处理连接网络模型。由于神经元网络具有联想、容错、记忆、自适应、自学习和处理复杂多模式故障的优点,是数控机床故障诊断新的发展途径。将神经网络和专家系统结合起来,发挥两者各自的优点,更有助于数控机床的故障诊断。

共 19 页

第 6 页

毕业设计用纸

第2章 数控机床的参考点

2.1 什么是参考点

所谓参考点又称原点或零点,是机床的机械原点和电气原点相重合的点,是原点复归后机械上固定的点。每台机床可以有一个参考原点,也可以据需要设置多个参考原点,用于自动刀具交换(ATC)或自动拖盘交换(APC)等。参考点作为工件坐标系的原始参照系,机床参考点确定后,各工件坐标系随之建立。所谓机械原点,是基本机械坐标系的基准点,机械零部件一旦装配完毕,机械原点随即确立。所谓电气原点,是由机床所使用的检测反馈元件所发出的栅点信号或零标志信号确立的参考点。为了使电气原点与机械原点重合,必须将电气原点到机械原点的距离用一个设置原点偏移量的参数进行设置。这个重合的点就是机床原点。

装 订 线图2-1为一卧式数控铣床参考点相对工作台中心位置的示意图

图2-1 卧式加工中心参考点 2.2 回参考点的目的

数控机床在接通电源后要做回参考点的操作,这是因为在机床断电后,就失去了对

共 19 页

第 7 页

毕业设计用纸

各坐标位置的记忆,即数控系统并不知道以哪一点作为基准对机床工作台的位置进行跟踪、显示等。所以在接通电源后,必须让各坐标轴回到机床一固定点上,这一固定点就是机床坐标系的原点或零点,也称机床参考点往往是由机床厂家在设计机床时就确定的,但这仅仅是机械意义上的。使机床回到这一固定的操作称回参考点或回零操作。在数控机床上,各坐标轴的正方向是定义好的,因此只要机床原点一旦确定,机床坐标系也就确定了。

回参考点是数控机床的重要功能之一,能否正确地返回参考点,将会影响到零件的加工质量。同时,由于数控机床是多刀作业,每一把刀具的刀位点安装位置不可能调整到同一坐标点上,因此就需要用刀具补偿来校正,如加工中心刀具的长度补偿和数控车装 床车刀刀尖的位置补偿,这种刀具偏置的补偿量也是通过刀位点的实际位置与参考点确立的基本坐标系比较后补偿等到的。

如:在CK0630型数控车床上,机床原点位于卡盘端面后20mm处,为让数控系统识别该点,需回参 考点操作。在CK0630型数控车床 的操作面板上有一个回参考点按 钮“ZERO”,当按下这个按钮时 将会出现一个回参考点窗口菜单,显示操作步骤。这个步骤,依此 订 线 按下“X”按钮,“Z”按钮,则 图2-2 机床参考点的建立

机床工作台将沿着X 轴和Z轴的正方向快速运动,当工作台到达参考点的接近开关 时,工作台减速停止。回参考点的工作完成后,显示器即显示机床参考点在机床坐标系中的坐标值(X400,Z400),此时机床坐标系已经建立(如图2-2所示)。操作返回机床参考点一次,恢复记忆,以便进行自动加工。对使用日本FANUC-0i系统的机床,除通电之初外,在机床工作过程中如出现断电、紧急停止或压下了机床行程限位开关时。也必须返回参考点。机床返回参考点的方向、速度、参考点的坐标等均可由系统参数设定。

2.3回参考点的原理

按机床检测元件检测原点信号方式的不同,返回机床参考点的方法有两种。一种为栅格法,另一种为磁开关法。数控机床多采用栅格法产生检测元件的回参考点信号。2.3.1、栅格法

数控机床按照控制理论可分为闭环、半闭环和开环系统。闭环数控系统装有检测最终直线位移的反馈装置;半闭环数控系统的位置测量装置安装在伺服电动机转动轴上或

共 19 页

第 8 页

毕业设计用纸

丝杆的端部,即反馈信号取自角位移;开环数控系统不带位置检测反馈装置。闭环、半闭环数控系统通常利用位移检测反馈装置(脉冲编码器或光栅尺)进行回参考点定位,即栅格法回参考点;开环系统则需另外加装检测元件,通常利用磁感应开关回参考点定位,即磁开关法回参考点。无论采用哪种回参考点操作,为保证准确定位,在到达零点之前,数控机床的伺服系统必须自动减速,因此在多数数控机床上安装减速撞块及相应的检测元件。

栅格法中,按照检测元件测量方式的不同可以分为以绝对脉冲编码器方式回参考点和以增量脉冲编码器方式回参考点。在使用绝对脉冲编码器作为测量反馈元件的系统中,调试机床时第一次开机,通过参数设置配合机床回参考点操作调整到合适的参考点,只要绝对脉冲编码器的后备电池有效,此后每次开机,不必进行回参考点操作。在使用增量脉冲编码器的系统中,回参考点有两种模式:一种为开机后在参考点回零模式下各轴手动回原点,每一次开机后都要进行手动回原点操作。另一种为采用存储器模式,第一次开机手动回原点,以后均可用G代码指令回原点。参考文献[4] 图2-3中采用FUNUC-0i系统数控铣床为例,下面简要给出增量栅格法返回参考点的原理和过程:(采用方式三回参考点)

在图2-3中,快速进给速度参数、慢速进给速度参数、加减速时间常数、栅格偏移量等参数分别由数控系统的相应参数设定。机床返回参考点的操作步骤为:

(1)将方式开关拔到“回参考点”档,选择返回参考点的轴,图2-3 增量栅格法返回参考点原理 按下该轴点动按钮,该轴以快速移动速度(v1)移向参考点。

(2)当与工作台一起运动的减速撞块压下减速开关触点时,减速信号由通(0N)转为断(OFF)状态,工作台进给会减速,按参数设定的慢速进给速度(v2)继续移动。减速可削弱运动部件的移动惯量,使零点停留位置准确。

(3)栅格法是采用脉冲编码器上每转出现一次的栅格信号(又称一转信号PCZ)来确定参考点,当减速撞块释放减速开关,触点状态由断转为通后,数控系统将等待编码器上的第一个栅格信号的出现。该信号一出现,工作台运动就立即停止,同时数控系统发出参考点返回完成信号,参考点灯亮,表明机床回该轴参考点成功。有的数控机床在减速信号由通(ON)转为断(OFF)后,减速向前继续运动,当又脱开

共 19 页

第 9 页 装 订 线

毕业设计用纸

开关后,轴的运动方向与机床会向相反的进给方向运动,直到数控系统接受到第一个零点脉冲,轴停止运动。同时数控系统发出参考点返回完成信号,参考点灯亮,表明机床回该轴参考点成功。

根据数控机床栅格法回参考点动作过程引起回参考点故障原因有:编码器故障和位置环故障:

2.3.1.1 编码器故障

在数控机床中,光电脉冲编码器作为速度和位置检测的元件,故障发生率较高。首先对光电脉冲编码器作一下简介。光电脉冲编码器可分为增量式和绝对式所谓增量式即编码器转过角度就发出脉冲,查不出轴处于什么位置,只能记录得电后的脉冲数。机床失电后,不能记忆轴的位置。绝对式则能够记忆轴转过的角度和空间位置。这依赖于一组或一个备用电池的支持,使机床失电后仍能保持记忆。当然编码器依据安装位置不同又可分为内装式和外装式,内装式和伺服电动机同轴安装,外装式则安装在传动链末端。编码器输出信号通常有两组相位差90°的方波信号用于辨向,一个零标志位(又称一 转信号)+5v电源和接地端。绝对式还有备用电池连接端。编码器故障分类如下:

①编码器本身故障是指编码器本身元器件出现故障,导致其不能产生和输出正确的波形。这种情况下需更换编码器或维修其内部器件。

②编码器连接电缆故障这种故障出现的几率最高,维修中经常遇到,应是优先考虑的因素。通常为编码器电缆断路、短路或接触不良,这时需更换电缆或接头。还应特别注意是否是由于电缆固定不紧,造成松动引起开焊或断路,这时需卡紧电缆。③编码器 +5v 电源下降是指+5v 电源过低,通常不能低于4.75v,造成过低的原因是供电电源故障或电源传送电缆阻值偏大而引起损耗,这时需检修电源或更换电缆。④绝对式编码器电池电压下降这种故障通常有含义明确的报警,这时需更换电池,如果参考点位置记忆丢失,还须执行重回参考点操作。

⑤编码器电缆屏蔽线未接或脱落这会引入干扰信号,使波形不稳定,影响通信的准确性,必须保证屏蔽线可靠的焊接及接地。

⑥编码器安装松动这种故障会影响位置控制精度,造成停止和移动中位置偏差量超差,甚至刚一开机即产生伺服系统过载报警,请特别注意。

⑦光栅污染这会使信号输出幅度下降,必须用脱脂棉沾无水酒精轻轻擦除油污。下面以FANUC-0i数控系统两例故障予以说明:

1)实例一 故障现象:加工中心主轴定向时一直低速旋转。故障分析和处理:这很

共 19 页

第 10 页 装 订 线

毕业设计用纸

显然是机床接收不到零标志信号,即一转信号。打开机床侧盖,拆下脉冲编码器,发现脉冲编码器底部有一层粉末。完全拆开编码器后发现圆光栅上的条纹已全部被磨光,当然发不出信号。更换新编码器后,一切正常。此时需修改主轴准停时停止位置偏移量参数,使定向位置与更换前相同。

2)实例二故障现象:开机后出现APC(绝对脉冲编码器)电压低故障。故障分析和处理:该机床已闲置5年,采用FANUC 0i系统,电池应该失效。更换4节1号碱性干电池后,机床又显示请求回参考点故障。此时在手动状态将机床移动到参考点附近,再将参数 1815 #5(APCx)#4(APZx)全部置 0,关断一次电源后重新启动,坐标值全部显示为0。再将参数 1815# 5(APCx)#4(APZx)全部置 1,关断一次电源,再重启,一切正常。这样便给机床重新建立了参考点。综上所述,脉冲编码器故障总体而言可分为编码器本身故障和外围输入、输出故障,明确这两点许多问题就清晰了。2.3.1.2 位置环故障:

装 位置环这是数控系统发出控制指令,并与位置检测系统的反馈值相比较,进一步完成控制任务的关键环节。它具有很高的工作频度,并与外设相联接,所以容易发生故障。常见的故障如下:

① 位置控制环报警:可能是测量回路开路;测量系统损坏,位控单元内部损坏。② 不发指令就运动,可能是漂移过高,正反馈,位控单元故障;测量元件损坏。③ 测量元件故障,一般表现为无反馈值;机床回不了基准点;高速时漏脉冲产生报警可能的原因是光栅或读头脏了或光栅坏了。2.3.2、磁开关法

磁开关法是在机械本体上安装磁铁及磁感应原点开关或者接近开关,当磁感应原点开关或接近开关检测到原点信号后,进给电机立即停止,该停止点被认作为原点。磁开关法常用于开环系统,由于开环系统没有位移检测反馈装置脉冲编码器或光栅尺,所以不会产生栅格信号,通常利用磁感应开关回参考点定位。

下面以某数控车床为例简要叙述:

返回参考点的原理和过程。在图2-4中,快速进给速度参数、慢速进给速度参数、加减速时间常数、偏移量等参数分别由数控系统的相应参数设定。返回参考点的操作步骤为:

(1)将方式开关拔到回参考点档,选择返回参考点的轴,按下该轴点动按钮,该轴以快速移动速度移向参考点。

(2)当与工作台一起运动的减速撞块压下减速开关触点时,减速信号由通(0N)转为

共 19 页

第 11 页 订 线

毕业设计用纸

断(OFF)状态,工作台进给会减速,按参数设定的慢速进给速度继续移动。减速可削弱运动部件的移动惯量,使零点停留位置准确。

(3)当减速撞块释放减速开关,触点状态由断转为通后,数控系统将等待感应开关信号的出现。该信号一出现,工作台运动就立即

停止,同时数控系统发出参考点返回完成信号,参考点灯亮,表明机床回该轴参考点成功。图2-4 磁开关法回参考点原理

2.4回参考点的方式

装 订 回参考点的方式将因数控系统的类型和机床生产厂家而异。一台FUNUC Oi系统数控铣床是采用增量栅格法来确定机床的参考点的。采用这种增量式检测装置的数控机床一般有以下四种回参考点的方式。参考文献[8] 2.4.1.方 式 一

回参考点前,先用手动方式以速度v1快速将轴移到参考点附近,然后启动回参考点操作,轴便以速度v2慢速向参考点移动。碰到参考点开关后,数控系统即开始寻找位置检测装置上的零标志。当到达零标志时,发出与零标志脉冲相对应的栅格信号,轴速度

图2-5 回参考点方式一 线 即在此信号作用下制动到零,然后再前移参考点偏移量而停止,所停位置即为参考点。偏移量的大小通过测量由参数设定。如(图2-5)

共 19 页

第 12 页

毕业设计用纸

2.4.2.方 式 二

回参考点时,轴先以速度v1向参考点快速移动,碰到参考点开关后,在减速信号的控制下,减速到速度v2并继续前移,脱开挡块后,再找零标志。当轴到达测量系统零标志发出栅格信号时,速度即制动到零,然后再以v2速度前移参考点偏移量而停止于参考点。如(图2-6)

图2-6 回参考点方式二

2.4.3.方 式 三

回参考点时,轴先以速度v1快速向参考点移动,碰到参考点开关后速度制动到零,然后反向以速度v2慢速移动,到达测量系统零标志产生栅格信号时,速度制动到零,再

图2-7 回参考点方式三

前移参考点偏移量而停止于参考点。如(图2-7)2.4.4.方 式 四

共 19 页

第 13 页 装 订 线

毕业设计用纸

回参考点时,轴先以速度v1向参考点快速移动,碰到参考点开关后制动到零,再反向微动直至脱离参考点开关,然后又沿原方向微动撞上参考点开关,并且以速度v2慢速前移,到达测量系统零标志产生栅格信号时,速度制动到零,再前移参考点偏移量。如(图2-8)装 订 线

图2-8 回参考点方式四

FUNUC-0i系统数控机床返回参考点的方式因数控类型和机床生产厂家不同而异,一台FUNUC-0i系统数控铣床采用的是方式三回参考点:

曾出现这种故障现象:X轴先正方向快速运动,碰到参考点开关后,能以慢速反向运动,但找不到参考点,而且一直反向运动,直到碰到限位开关而紧急停止。根据故障现象和返回参考点的方式,可以判断减速信号正常,位置测量装置的零标志脉冲信号不正常。通过CNC系统PLC接口指示观察,确定参考点开关信号正常,用示波器检测零标志信号,如果有零标志脉冲信号输出,可诊断CNC系统测量组件有关零标志脉冲信号通道有问题。进一步确诊可用互换法,即将有关电路板:如X轴和Y轴的电子脉冲整形插值倍频电路板互换,如发现同样故障转移到Y轴,而X轴工作正常,则该电路板有问题。

共 19 页

第 14 页

毕业设计用纸

第3章 回参考点的故障案例与分析

3.1故障类型与分析

数控机床返回参考点的方式,因数控系统类型和机床生产厂家而不同,要排除回参考点的故障,先要搞清机床回参考点的动作方式及工作原理,然后再对照故障现象来进行分析。一般主要有三类情况:第一类是机床停止位置与参考点位置不一致;第二类是机床不能正常返回参考点,且有报警产生;第三类是机床数控系统没有准备好信号或超程报警。

装 3.1.1 第一类情况

采用栅格法返回参考点时,可通过移动栅格(可由系统参数设定)来调整参考点位置。位置检测装置随伺服电机旋转产生栅格信号,当减速撞块压下减速开关时,伺服电机减速继续向参考点运行。当减速开关释放,数控系统检测到的第一个栅格或零标志位信号即为原点(参考点)时,伺服电机停转。该方法的特点是机床如果接近原点的速度小于某一同定值,则数控机床总是停止于同一点。采用磁性开关方式时,可通过移动接近开关来调整其参考点位置。当磁感应原点开关或接近开关检测到原点信号后,伺服电机立即停止,该停止点被认作原点(参考点)。该方法的特点是软件及硬件简单,但原点位置随着伺服电机速度的变化而成比例地漂移,即原点不确定。3.1.1.1 停止位置偏离参考点一个固定值

这种情况多数是因为减速撞块安装位置不正确或减速撞块太短。检验的方法是:先减小数控系统中接近原点速度的参数,减小运动部件的移动惯量,若返回参考点正常,则可确定是此原因造成。通常需要重新调整撞块位置或减速开关位置,或适当增加撞块长度。也可通过设置栅点偏移量的方法来解决,因为数控系统识别减速信号的变化需要一定时间,当减速撞块离原点太近时,捕捉不到第一个原点信号,系统只能确定两个原点信号,所以机床停止位置偏离参考点刚好一个栅格问距。如使用上述办法后仍有偏离,则应检查参考计数器设置的值是否正确有效,修正参数设置。案例一:

某台经济型数控车床,FANUC 0i数控系统采用方式三回参考点,X轴经常出现原点漂移,且每次漂移量为10mm左右。订 线 共 19 页

第 15 页

毕业设计用纸

诊断:由于每次漂移量基本固定,可能与X轴回参考点有关。经检查相关的参数没有发现问题。检查安装在机床上的减速撞块及检测开关,发现撞块距离检测开关太近。重新调整减速撞块位置,将其控制在该轴丝杠螺距(该轴的螺距为10mm)的一半,约为6mm±lmm,故障排除。3.1.1.2 随机偏差,没有规律性

造成此故障的原因较多,可能的原因有:外界干扰;脉冲编码器的电源电压过低; 脉冲编码器损坏;数控系统的主印刷线路板不良;伺服电机与工作台联轴器连接松动等。案例二:

某配套FANUC-0i系统的数控铣床,回参考点动作正常,但参考点位置随机性大,每次定位都有不同的值。

诊断: 由于机床回参考点动作正常,进一步检查发现,参考点位置虽然每次都在变化,但却总是处在减速撞块放开后的位置上。因此,可以初步判定故障的原因是由于脉冲编码器“零脉冲”不良或丝杠与电动机间的连接不良引起的故障。该机床伺服系统为半闭环结构,维修时采用隔离法,脱开电动机与丝杆间的联轴器,手动压下减速开关,进行回参考点试验。经多次试验发现,每次回参考点完成后,电动机总是停在某一固定的角度上,说明脉冲编码器“零脉冲”无故障。故障的原因可能在电动机与丝杠的连接处。经仔细检查,发现拉杆与联轴器间的弹性胀套配合间隙过大,产生松动。经修整胀套,重新安装后机床恢复正常。3.1.1.3 微小误差

此类故障的原因多数为电缆或连接器接触不良,或因主印刷电路板及速度控制单元工作性能不良,造成位置偏置量过大。案例三:

某配套FANUC-0i 的数控机床,在回参考点后无法继续操作。

诊断:在操作中发现机床在参考点位置停止后,机床操作面板参考点指示灯不亮,无法进行进一步操作。但关机后,又可手动操作,返回参考点后上述现象又出现。这说明机床回参考点动作属正常,考虑到机床已在参考点附近停止运动,因此,初步判断其原因可能是参考点定位精度未达到规定的要求。通过机床的诊断功能,对系统的“位置跟随误差”随DGN800~802进行了检查,发现机床的Y轴踪误差超过了定位精度的允许数值范围。调整伺服驱动器的“偏移”电位器,使“位置跟随误差”DGN800~802的值接近0后,机床恢复正常。装 订 线 共 19 页

第 16 页

毕业设计用纸

3.1.2 第二类情况

故障原因主要是零标志位脉冲信号失效(信号未产生或在传输处理中丢失)。如光栅或脉冲编码器的基准信号(零标志位信号)没有输入到主印刷电路板;磁感应原点开关或接近开关没有检测到原点信号。故障原因多为连接信号电缆断线或检测元件损坏。另外,在进行返回参考点时,机床运动部件开始移动起始点距离参考点太近,也会产生此类故障,所以机床停机前,将机床的运动部件停在距离参考点较远的地方。排除这类故障的方法:首先检查安装在机床上的撞块和检测开关是否松动,再用CNC系统PLC接口的I/O状态观察检洲的开关是台输入剑数控系统中,采用示波器检测零标志位脉冲信号。根据测得的信号,判断故障部位。案例四:

某德国产配备FANUC-0i数控系统的数控磨床,在回参考点时,出现Z轴找不到参考点的故障。

诊断:观察同参考点的过程,发现Z轴运动压到减速开关后,能够减速并反向运动,直到 下行程极限开关。这说明回参考点过程中减速开关没有问题;同时根据CNC显示Z轴的数值正常变化,判定为编码器的零标志位有问题,用示波器测试波形,没有发现零标志位脉冲,可断定是编码器的问题。将编码器拆开,发现其内部有许多油。经分析I六l编码器密封不好,冷却液形成的油雾进入编码器并沉淀,将编码器刻度盘遮挡,使零标志位出现故障。清除了编码器中的油污并将其清洗干净后重新密封,装配好再使用,故障消除。装 订 线 3.1.3 第三类情况

这类故障的原因较简单:(1)多数为返回参考点用的减速开关失灵,触点压下后不能复位造成的只需检查减速开关复位弹簧是否损坏或直接更换减速开关即可;(2)因后备电池失效导致参考点丢失;(3)间隔环磨损。案例五:

某台配备FANUC-0i数控系统的JCS-018立式加工中心,X轴不执行自动返回参考点动作。

诊断:故障发生后,机床无报警提示,但采用手动方式时X轴能够移动。将X轴采用手动方式移至参考点后,机床又能进行正常加工,加工完成后原有故障又重复出现.考虑到故障发生在X轴回参考点的过程中,怀疑该故障与X 轴参考点的参数发生变化有关。根据维修说明书,将与X轴参考点有关的参数调出检查,结果参数均正常。经

共 19 页

第 17 页

毕业设计用纸

仔细检查后发现,机床上X轴参考点的限位开关因油污染失灵,即始终处于接通状态。故当加工程序完成后,系统便认为已回到了参考点,清洗该限位开关后,故障排除。案例六:

日本FV650加工中心回参考点出现超程报警。该加工中心配用FANUC-0i控制系统,使用绝对脉冲编码器作为检测反馈元件,回参考点采用无参考点减速开关控制模式。

因CNC及绝对脉冲编码器的后备电池失效,造成参数丢失。用计算机将备份参数重新装入后,再回参考点时出现各轴在行程范围中间位置时停止,完成回参考点过程。

移动各轴,即使其机械位置在行程中间位置,CRT也显示各轴位置坐标超过软件限制,出现过行程报警。

使用绝对脉冲编码器的系统,采用后备电池维持编码器的位置数据,当电池失效后此时开机各轴所在的机械位置即被认作参考点位置。使用绝对脉冲编码器的加工中心,重新建立正确参考点的步骤如下:

1)在OFFSET菜单下,设置PWE=1。

装 2)将CNC参数NO.1815X、Y、Z各轴设置为00000000。3)将 X、Y、Z各轴手动移至机械原点附近。4)在回参考零模式,各轴手动回参考点。

5)仔细观察各轴是否在参考点位置上,特别是与ATC、APC等有关系的轴的参考点位置是否准确。如位置不准确,重复3至4步直至准确。

6)修改NO.1815为00110000。7)将PWE设置为0。

8)关断CNC电源,几分钟后开机,将各轴移离参考点位置后,手动回参考正常。值得一提的是,丢失参数后重装参数前,将各轴移至机械原点位置。装参数后,只要按正常的回参考点操作程序,开机后手动回各轴参考点即可。案例七:

日本FANUC-0i系统加工中心Z轴回参考点出现超行程报警。

该加工中心Z轴运动时有明显的冲击声,回参考点是CRT显示Z轴超行程报警。观察CRT上Z轴机械位置信息显示0.511,系软件超程。经试验确认,该报警出现时,手动回参考点的过程还未完成。

共 19 页

第 18 页 订 线

毕业设计用纸

在手动回参考点时观察减速开关输入PMC信号DGN16.5变化正常,说明减速开关无问题。

将CNC参数NO.702设定为99999999,手动回参考正常。NO.702重新设定回500。但加工零件程序运行时,G代码回参考点,又出现超程报警。

检查伺服电动机至工作台的机械传动各环节,发现Z轴滚珠丝杠预紧防松螺母松动。拆下防松螺母,下面的间隔环磨损严重,测量磨损量0.511mm。这就是故障的原因。由于间隔环的磨损,在解除软件限位后,可以手动回参考点。但在软件限位恢复设定后,Z轴所承载的主轴箱的重量使在Z轴使能状态下与伺服电动机同轴安装的编码器不动但主轴箱的机械位置却下滑了一段距离,即0.511mm。在其后任何形式的回参考点时,机械位置坐标显示的0值已经不是实际的参考点位置。虽然磨损是一个逐渐的过程,但因该机所使用的零件加工程序没有曲面加工,该磨损误差被刀具补尝所消除,因而从被加工零件的加工质量上反映不出来机床已发生了故障。装 订 线 共 19 页

第 19 页

毕业设计用纸

第4章 小结

根据以上的分析,对于增量式测量系统数控机床,开机后回参考点的故障现象及原因较多,而故障现象与故障原因并无一一对应关系,往往是一种故障现象有几种原因综合引起,或一种原因引起几种故障。因此,诊断故障应该从弄清具体数控系统的回参考点方式及其控制原理入手,结合机床结构,凭借实践经验和维修手册,根据故障的表现形式进行故障定位,力求将故障定在尽可能小的的范围内,在按照可能性的大小进行逐一检查,排除假象,找出真正故障所在,进而排除故障。

在现场维修结束后,应认真填写维修记录,列出有关必备的备件的清单,建立用户档案,对于故障时间,现象,分析诊断方法,采用排故方法,如果有遗留问题应详尽记录,这样不仅使每次故障都有据可查,而且也可以积累维修经验

装 订 线 共 19 页

数控车床回零操作 篇2

1 机械原点设置

1.1 机械原点丢失的原因

台中精机生产的VCENTER-70加工中心采用增量编码器作为机床位置的检测装置。系统断电后,工件坐标系的坐标值就会失去记忆,尽管靠电池能够维持坐标值的记忆,但只是记忆机床断电前的坐标值而不是机床的实际位置,所以机床首次开机后要进行返回参考点操作[1]。而当系统断电遇到电池没电或特殊情况失电时,就会造成机械原点的丢失,从而使机床回参考点失败而无法正常工作。此时机床会产生“#306 n轴电池电压0”的报警信息,并且还会产生机械坐标丢失报警“#300第n轴原点复位要求”(n代指X、Y、Z)。

1.2 机械原点的设置

在通常情况下,设置数控机床机械原点的方法主要有以下两种:1)手动使X、Y、Z三轴超程即利用三轴的极限位置选择机械原点。2)利用各坐标轴的伺服检测反馈系统提供相应基准脉冲来选择机床参考点即机械原点[2]。由于第一种方法是机床厂家通常建议的也是较为简便和实用的方法,因此本文在此详细介绍第1种做法。以X轴为例,设置步骤如下:

(1)将机床操作面板上的方式选择开关设定为MDI方式。

(2)按下机床MDI面板上的功能键【OFS/SET】数次,进入设定画面。

(3)将写参数中的0改为1,由此,系统进入了参数可写状态。此时机床出现“SW0100参数写入开关处于打开”的报警信息。忽略这条报警信息,设置完参数后改回为0即可。

(4)按下功能键【SYSTEM】,进入系统参数键面。通过参数搜索找到参数1815(如表1所示)通常情况下,X轴的#4APZ或#5 APC会显示为0,若不为0就将其设定为0。

(5)找到参数1320,此参数为存储各轴正向行程的坐标值。将其X轴的正向行程设定为最大值999999。目的是让X轴的正向软限位位置值大于其正向硬限位的位置值。

(6)将方式选择开关打到手轮方式,然后摇动手轮使工作台碰及X轴的正向限位档块,此时机床会出现“#500+X过行程”报警。

(7)按下MDI面板上的【POS】功能键,进入机床坐标显示键面。打开相对坐标显示键面,按下X+[起源]使X轴的相对坐标值变为0。

(8)按下机床操作面板上的【超程释放】并摇动手轮至X-6.5的位置。

(9)再次找到参数1815,将X轴的#4APZ或#5 APC都设定为1。

最后重启数控系统,完成X轴的机械原点设置。

Y轴和Z轴的机械原点设置方法与X轴相同,三轴的机械原点都设定好后重新打开写参数设定键面,将其设定为0。此时机床的报警信息全部消失,完成了加工中心的机械原点设置。

利用基准脉冲设定机床零点。

在通常情况下,闭环系统直线的光栅尺每隔50mm就会产生一个基准脉冲,但也会有一些特殊的直线光栅尺,它会每隔20mm就产生一个基准脉冲。对于闭环系统中的旋转编码器来说,产生的基准脉冲距离要比直线光栅尺小很多,比如只有6mm。由于这个基准脉冲在机床上经常会被选定为数控系统计数的基准,因此通过修改机床里的参数就可以将这个基准点的值设定为0,从而使这个点成为机床的参考点也就是机床的机械原点。

1.3 设置机械原点时的注意事项

(1)设置前要检查各坐标轴上要否安装有机床回零的微动开关,且各微动开关的位置是否适合。

(2)在第一个基准脉冲验出之前,必顺保证该坐标轴到了需要降速的距离上了。而这个降速距离就是所选速度的滞后误差值。

(3)由于使用的是编码器,故两个基准脉冲之间的距离会很小,所以在回机床零点时,速度要低一些,从而使滞后误差不会高于这个值的50%。

(4)由于各坐标轴回机床机械原点时的速度是由机床的相应参数决定的,因此在设置这些参数时要注意,确保机床回零速度合适。

(5)倘若机床在回零点时压住了微动开关,那么就必须通过手轮或是手动的方式操作数控机床坐标轴,强制其退出微动开关并退到离微动开关较远的位置,然后再次执行各坐标轴回参考点的操作。

2 机床回零常见故障分析及处理

2.1 机床开机后不能回零故障分析及处理

(1)可能系统参数设置有误。解决方法是仔细检查各个相关参数,必要时重设参数。

(2)零脉冲不良导致的故障。零脉冲不良就会使回零时找不到零脉冲,引起的原因可能是系统轴板故障或是编码器及接线出现故障。解决方法是对编码器进行更换或清洗,检查线路及系统轴板是否有问题。

(3)有可能减速开关短路或是已经损坏。这种故障会导致减速信号不能产生。解决方法是检查减速开关的线路,对减速开关进行维修,必要时更换减速开关。

(4)可能检测元件已被污染。在全闭环控制的系统中,若光栅尺沾有油污,就不能采集到信号。解决方法是清洗光栅尺。

2.2 机床回零时找不到零点位置故障分析及处理

(1)减速开关有可能已经损坏或受污,也可能是线路短路或断路。解决方法就是及时对减速开关进行清理维修,必要时更换减速开关。检查线路连接情况,及时发现问题并解决。

(2)可能是减速档块所处位置不准确。解决方法是调整减速档块到限位开关的距离,避免两者行程过小引发此故障。

2.3 机床回零后的位置与零点位置发生螺距偏移故障分析及处理

引起这一故障可能的原因是产生栅格信号的时刻与减速信号从断开到接通的时刻太接近了,再加上存在的传动误差,就使得机床回零过程中工作台碰到减速开关时,刚好错过了栅格信号,所以只能等到脉冲编码器再转过一周以后才能找到下一个栅格信号。故而出现了此类故障。具体分析如下:

在减速开关的信号从断开恢复到接通状态时,随即便出现了栅格信号,也就是说栅格信号处在了临界点上(如图1a所示)。这样一来,机械部分的热变形,减速开关出现“通”、“断”信号的重复精度误差都会导致零点发生位置偏离的故障(如图1b所示)。解决方法是可适当的调整减速档块所处的位置,从而使零点位置与工作台停止的位置重合(如图1c所示)。也可以采用修改栅格偏移量的方法,使产生栅格信号的时刻离减速信号从断开到接通时刻的距离是栅格信号产生周期的一半,就可消除此故障(如图1d所示)。

2.4 机床回零位置随机性变化故障分析及处理

(1)脉冲编码器的供电电压太低。解决方法是调整从主板上输出的电压值,同时查看编码器线路板上的电源电压是否已到了合适的范围。

(2)伺服调节不良,从而引起跟踪误差偏大。解决方法是修改伺服参数。

(3)滚珠丝杠间隙偏大或丝杠与电动机的联轴器出现了松动。解决的方法是对滚珠丝杠螺母副的间隙进行调整及优化,对联轴器进行紧固或更换。

(4)零脉冲受到干扰。解决的方法是检查脉冲编码器的电缆布置是否合理,反馈电缆屏蔽是否连接无误。

3 结语

掌握数控机床原点的设置方法和常见回零故障处理方式对于解决生产实践中的机床回零故障具有很好的指导作用。但值得说明的是故障现象与故障原因并非是一一对应的,有可能是由几种原因引起的。因此在维修时要根据机床的实际情况,结合实践经验和维修手册逐一检查排除假象,找到故障起因并予以排除。

参考文献

[1]刘江.数控机床故障诊断与维修[M].北京:高等教育出版社,2007.

数控车床回零操作 篇3

摘 要:结合《数控车床编程与操作》课程的教学实践,从指导思想、教学模式、教学内容、教学方法、评价体系等方面,介绍了“项目式”教学模式改革的情况。

关键词:数控车床编程与操作;项目式;教学模式

在德国,20世纪80年代就推行一种“行为引导式”教学法,即项目式教学法,这是一种以项目为主体的教学方式,通过这种教学,学生能真实地参加实际项目的设计、履行和管理。这种教学方法的目标是现代企业的职业行为,强调学生综合能力素质的培养。现在,我校在很多实习实训课程中均应用此教学方法,并且取得了良好的效果。

一、教学改革的指导思想

教学改革的主线是实际操作能力的培养,在此基础上要打破以往传统的教育模式,改变观念,敢于创新,形成一套理论与实际相联系的新型的教育模式,进而提高教学的质量效率,借以推动大专教学改革。

二、教学模式的改革

数控车床编程与操作包含了诸多内容,总共约64学时。对于这么多的内容,课时相对较少,若按传统模式进行讲授,定不会收到良好的教学效果。高职教育的培养目标是为生产第一线培养高素质、高技能的人才,故对理论知识的要求就相对低一些,重点是培养其实际操作技能。所以为了使学生能在短时间内掌握这门课,采用了项目教学法。把该课程应该讲授的理论知识融合到项目中,先对项目进行分析,从中分析出理论知识点,然后运用理论知识编写工艺卡及程序,上机进行模拟加工,最后在机床上实际操作加工、测量。

三、教学模式的划分

整个教学过程可以分为三个阶段:第一阶段:基础知识学习。这个阶段主要是培养学生运用基本的编程指令,对单个零件进行编程。第二阶段:电脑模拟加工。这个阶段主要是利用斯沃数控仿真软件进行对刀加工验证刀具路径。第三阶段:实际加工。这个阶段是让学生把验证好的程序输入到机床中进行实际零件的加工。在整个教学过程中,由学生自己完成加工工艺的制定,教师对工时及产品提出考核指标,并培养他们安全文明生产的意识。

四、教学内容的制定

根据这几年的教学经验以及高职教育的目标,结合工厂车间的实际工作情况,我系组织教师进行讨论,重新确定了教材的内容,并且打破了原有教材的编排体系,对相关内容进行了重新整合,编写了一本学院内部教材,称为《数控车床编程与加工》。本教材将所有内容分为多个部分,并根据相关的内容设计实践环节,所有的内容均按项目进行教学。整个教学内容分为七个项目,每个项目都有固定的学时,并且针对不同的项目采用不同的教学方法。

五、教学方法的改革

教学方法的改革是本次项目教学改革的核心。教学方法运用得是不是合适,会直接影响到最终的教学效果,还会影响到学生的学习兴趣。所以,我们采用集中连续的教学方法,每周连续安排8学时完成一个教学项目,并且这些项目均在数控加工实验室

完成。

六、学生评价体系的改革

学生评价体系采用“单个项目考核+综合评定”的方法。学生每完成一个项目就进行一次考核,学期末再最后进行一次综合评定。考核内容即加工所需的理论知识以及实际操作。学生的最后成绩是所有考核成绩的平均成绩。

本次教学改革的优势如下:(1)集中连续的教学方法使学生对所学的知识掌握更加牢固。(2)项目教学能提高学生的学习兴趣。(3)“单个项目考核+综合评定”激发了学生的进取心。(4)项目教学打破了常规,学习环境宽松,有助于培养学生的创新能力,同时又增进了师生的感情。

参考文献:

[1]瞿士江.项目教学法在信息技术教学中的应用[N].中国电脑教育报,2005.

[2]胡必波.项目驱动教学法应用研究[J].合作经济与科技, 2008(14):31-33.

[3]李兆平,陈艺编.项目教学法运用于职业教育的思考[J].中国教育创新杂志,2006(6):29-31.

数控车床安全操作规程 篇4

2010-09-20

从这学期开始我们就正式进入了实习阶段,这将不同于以往的实训,以前我们都是在学校里进行实习,从现在开始我们将正式走上工作岗位感受到不一样的工作氛围,作为一名工厂的实习员工,在这里我一定会认认真真听从公司的安排,跟着师傅好好学习数控专业知识,争取成为一名优秀的数控操作人员。

这周时间分配给我们任务是熟记安全教育规程:内容如下:

1.进入数控实习现场后,应服从安排,听从指挥,不得擅自启动或操作数控系统及机

床。

2.不得在实习现场进行任何与实习无关的活动,以保证实习正常、有序地进行。

3.使用数控机床前,应仔细查看车床各部分机构是否完好,认真检查数控系统及各电

器附件的插头、插座是否连接可靠。检查车床各手柄位置是否正常,传动带及防护罩是否装好并加油润滑。工作前慢车启动,空转数分钟,观察车床是否有异常。

4.操作数控系统前,应检查散热风扇是否运转正常,以保证良好的散热效果。

5.操作数控系统时,对按键及开关的操作不得太用力,以防止损坏内部结构。

6.安装工件要放正、夹紧,安装完毕应取出卡盘扳手;装卸大工件要用木板保护床面。

7.刀具的安装要垫好、放正、夹牢;装卸完刀具要锁紧刀架,并检查限位。

8.戴好防护眼镜,工作服要扎好袖口,头发过长应卷入工作帽中,不准戴手套及穿凉

鞋工作。

9.数控车床的加工程序必须经指导教师认可后方可使用,以防止编程错误所引起的事

故。

10.开车后,不能随意改变主轴转速;不能打开车床防护门;不能量度尺寸和触摸工件,切削加工时要精力集中,并要防止各部件的碰撞。

11.数控车床的加工虽属自动进行,但不属无人加工性质,仍然需要操作者监控,不允

许随意离开岗位。

12.若发生事故,应立即按下急停按钮并关闭电源,保护现场,及时报告以便分析原因,总结教训。

13.下班时,擦净机床并加油润滑,清理现场,关闭电源。

14.属违反操作规程所引起的事故,当事人必须按实际维修费用作出赔偿。

数控车床回零操作 篇5

关键词:数控轧辊车床;操作;维护技巧

在轧辊车床的工艺能力方面,机床的精度主要对尺寸精度有影响。一般测量尺寸精度是比较方便的,机床系统误差(定位误差)对尺寸精度的影响可以通过更改加工程序而基本予以消除。这时应主要考虑随机误差(重复定位精度)对零件精度的影响,尤其对于用来修复轧辊孔型的车床这点尤为重要。数控轧辊车床的可靠性不单是前面提到的数控系统的无故障时问,还包括电控装置的可靠性。机床检测系统的准确性以及由于操作人员误操作时机床本身自保护的功能,这就要求我们在机床的设计和开发过程中对元器件的筛选,严格把关,在检测方法的选择上,尽量运用比较先进的、成熟的技术、如选用ArC对刀法(机内对刀法)或自动对刀,这样既可提高检测精度,又可减轻工人的劳动强度,提高生产效率。在车床的自保护方面。根据我们考察调研的结果,在数控系统设置软保护(限位)的前提下,还应在车床的一些重要部位设置硬保护(限位),这样可减少由于系统的误动作而产生的不必要损失。

1数控车床安全操作规程

数控车床安全操作规程如下:①操作人员必须熟悉机床使用说明书等有关资料。如主要技術参数、传动原理、主要结构、润滑部位及维护保养等一般知识。②开机前应对机床进行全面细致的检查,确认无误后方可操作。③机床通电后,检查各开关、按钮和按键是否正常、灵活,机床有无异常现象。 ④检查电压、油压是否正常,有手动润滑的部位先要进行手动润滑。⑤各坐标轴手动回零(机械原点)。⑥程序输入后,应仔细核对。其中包括代码、地址、数值、正负号、小数点及语法。⑦正确测量和计算工件坐标系,并对所得结果进行检查。⑧输入工件坐标系,并对坐标、坐标值、正负号及小数点进行认真核对。⑨未装工件前,空运行一次程序,看程序能否顺利运行,刀具和夹具安装是否合理,有无超程现象。⑩无论是首次加工的零件,还是重复加工的零件,首件都必须对照图纸、工艺规程、加工程序和刀具调整卡,进行试切。(11)试切时快速进给倍率开关必须打到较低挡位。(12)每把刀首次使用时,必须先验证它的实际长度与所给刀补值是否相符。(13)试切进刀时,在刀具运行至工件表面30~50 mm处,必须在进给保持下,验证Z轴和X轴坐标剩余值与加工程序是否一致。(14)试切和加工中,刃磨刀具和更换刀具后,要重新测量刀具位置并修改刀补值和刀补号。

2数控轧辊车床的维护技巧

数控车床的电气故障和机械故障:数控车床故障按发生部位可分为电气故障和机械故障。电气故障一般发生在系统装置、伺服驱动单元和车床电气等控制部位。电气故障一般是由于电气元器件的品质下降、元器件焊接松动、接插件接触不良或损坏等因素引起,这些故障表现为时有时无。例如某些子元器件的漏电流较大,工作一段时间后,其漏电流随着环境温度的升高而增大,导致元器件工作不正常,影响了相应电路的正常工作。当环境温度降低以后,故障又消失了。这类故障靠目测是很难查找的,一般要借助测量工具检查工作电压、电流或测量波形进行分析。

机械故障一般发生在机械运动部位。机械故障可以分为功能型故障、动作型故障、结构型故障和使用型故障。功能型故障主要是指工件加工精度方面的故障,这些故障是可以发现的,例如加工精度不稳定、误差大等。动作型故障是指车床的各种动作故障,可以表现为主轴不转、工件夹不紧、刀架定位精度低、液压变速不灵活等。结构型故障可以表现为主轴发热、主轴箱噪声大、机械传动有异常响声、产生切削振动等。使用型故障主要是指使用和操作不当引起的故障,例如过载引起的机件损坏等。机械故障一般可以通过维护保养和精心调整来预防。

数控车床一般由CNC装置、输入/输出装置、伺服驱动系统、车床电器逻辑控制装置、车床等组成,数控车床的各部分之问有着密切的联系。CNC装置将数控加工程序信息按两类控制量分别输出:一类是连续控制量,送往伺服驱动系统;另一类是离散的开关控制量。送往车床电器和逻辑控制装置。伺服驱动系统位于CNC装置与车床之间,它一方面通过电信号与CNC装置连接,另一方面通过伺服电机、检测元件与车床的传动部件连接。车床电器、逻辑控制装置的形式可以是继电器控制线路或者是可编程控制器控制线路。它接受CNC装置发出的开关命令,主要完成主轴启停、工件装夹、工作台交换、换刀、冷却、液压、气动和润滑系统及其他车床辅助功能的控制。另外要将主轴启停结束、工件夹紧、工作台交换结束、换刀到位等信号传送回CNC装置。数控车床本身的复杂性使其故障具有复杂性和特殊性。引起数控车床故障的因素是多方面的,有些故障的现象是机械方面的,但是引起故障的原因却是电气方面的;有些故障的现象是电气方面的,然而引起故障的原因是机械方面的;有些故障是由电气方面和机械方面共同引起的。在进行数控车床故障的诊断时,要重视车床各部分的交接点。

3 结论

数控车床由于采用计算机控制、机电一体化技术,结构复杂、元器件较多,使数控车床的故障复杂,维修难度大,故障率相对普通车床要高,这就要求维修人员要不断提高自己的维修水平。

参考文献:

[1]刘金常,王文震. 现代化轧钢厂电气设备维护及管理分析[J]. 山东工业技术,2014,23:194.

[2]姜武东,马加波,宋将,郭其江,吴勇. 高硼高速钢轧辊在棒材切分轧制中的应用[J]. 现代制造技术与装备,2014,02:38-39.

[3]韩晓辉. 普通轧辊车床与数控轧辊车床的效率分析[J]. 机械工程师,2013,08:270-271.

上一篇:高中作文:邂逅春天的春笋下一篇:外呼班长竞聘演讲稿