算法概念说课教案

2024-11-28 版权声明 我要投稿

算法概念说课教案(精选5篇)

算法概念说课教案 篇1

阳泉十一中

崔建华

我说课的题目是《算法的概念》,下面我从教材分析、学情分析、目标分析、教法学法、教学过程、教学反思谈谈我对这节课的设想。一.教材分析

本节内容选自高中数学人教A版《必修3》第一章第一节《算法与程序框图》,本节是第一课时---《算法的概念》。

算法在高中数学课程中是新内容,算法的思想方法几乎贯穿整个高中数学课程的所有章节,如解三角形、数学归纳法、数学建模等.算法概念的引入有助于理解算法的思想,为后面的学习奠定基础。

二、学情分析

学生在初中接触过算法,例如本节课出现的二元一次方程组的解法,但没有明确的算法的概念。本班学生为一个普通大班,需要提高总结归纳能力。

三、目标分析

本节课通过对具体问题的解决过程与步骤的分析,让学生体会算法的思想,了解算法的含义.具体目标为:

1. 要求学生了解算法的含义,体会算法的思想.2. 在分析实例的基础上了解算法的基本特征.3. 能够用自然语言描述一些具体问题的算法.本节课教学重点通过实例让学生体会算法思想,会用自然语言表达一些具体问题的算法,难点是把自然语言转化为算法语言.

四、教法学法

教法上采用情境式教学、问题式教学、探究式教学、体现教师的 启发引导与评价。学生通过观察类比、自主探究 合作交流、练习总结等方法学习。

五、教学过程

本节课教学,先介绍元代数学家朱世杰的《四元玉鉴》,引出介绍我国古代部分数学成就,对学生渗透爱国主义教育.接着围绕算法概念,立足于用自然语言描述解决问题过程中的明确顺序.根据这节课的教学内容、教学目标,采用以教师引导分析帮助学生建立算法概念,着重一个“导”字,并通过适量的练习加以巩固.通过例题设计算法,帮助学生学会用自然语言描述算法.重点是通过设计帮助学生领会算法概念,而不在于算法所涉及问题的本身.教学时可以先让学生回顾问题的解题过程,再让他们整理出步骤,并有条理的用自然语言表达出来.通过这样的教学使学生体会算法设计的基本思路.六、教学反思

算法概念说课教案 篇2

教学目的:理解并掌握算法的概念与意义,会用“算法”的思想编制数学问题的算法。教学重点:算法的设计与算法意识的的培养 教学过程:

一、问题情景:

请大家研究解决下面的一个问题

1.两个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1 个大人或两个小孩,他们四人都会划船,但都不会游泳。试问他们怎样渡过河去?请写出一个渡河方案。

(通过学生讨论得出渡河方案与步骤如下)

S1 两个小孩同船过河去; S2 一个小孩划船回来; S3 一个大人划船过河去; S4 对岸的小孩划船回来; S5 两个小孩同船渡过河去; S6 一个小孩划船回来;

S7 余下的一个大人独自划船渡过河去;对岸的小孩划船回来; S8 两个小孩再同时划船渡过河去。

2.一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少小兔多少鸡?

先列方程组解题,得鸡10只,兔7只; 再归纳一般二元一次方程组的通用方法,即用高斯消去法解一般的二元一次a11x1a12x2b1方程组。

axaxb2222211令Da11a22a21a12,若D0,方程组无解或有无数多解。若D0,则x1b1a22b2a12bab1a21,x2211。

DD由此可得解二元一次方程组的算法。

S1 计算Da11a22a21a12;

S2 如果D0,则原方程组无解或有无穷多组解;否则(D0),x1b1a22b2a12bab1a21,x2211

DDS3 输出计算结果x1、x2或者无法求解的信息。

二、数学构建:

算法的概念:由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题。

算法的五个重要特征:

(1)有穷性:一个算法必须保证执行有限步后结束;(2)确切性:算法的每一步必须有确切的定义;

(3)可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次即可完成;

(4)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件。所谓0个输入是指算法本身定出了初始条件。

(5)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。

三、知识运用:

例1.一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物。没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。(1)设计过河的算法;(2)思考每一步算法所遵循的相同之处原则是什么。

解:算法或步骤如下: S1 人带两只狼过河 S2 人自己返回

S3 人带一只羚羊过河 S4 人带两只狼返回 S5 人带两只羚羊过河 S6 人自己返回 S7 人带两只狼过河

S8 人自己返回带一只狼过河

例2.写出一个求有限整数序列中的最大值的算法。解:为了便于理解,算法步骤用自然语言叙述:

S1 先将序列中的第一个整数设为最大值;

S

2将序列中的下一个整数值与“最大值”比较,如果它大于此“最大值”,这时就假定“最大值”就是这个整数;

S3 如果序列中还有其它整数,重复S2;

S4 在序列中一直进行到没有可比的数为止,这时假定的“最大值”就是这个序列中的最大值。

试用数学语言写出对任意3个整数a、b、c中最大值的求法

S1 max=a S2 如果b>max,则max=b S3 如果c>max,则max=c, S4 max就是a、b、c中的最大值。

四、学力发展:

1.给出求100!123100的一个算法。

2.给出求点P(x0,y0)关于直线AxByC0的对称点的一个算法。

五、课堂小结:

算法的概念:由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题。

算法的五个重要特征:

(1)有穷性:一个算法必须保证执行有限步后结束;(2)确切性:算法的每一步必须有确切的定义;

(3)可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次即可完成;

(4)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件。所谓0个输入是指算法本身定出了初始条件。

(5)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。

六、课外作业:

复数概念的说课稿 篇3

一 学习目标分析

学习目标是教学中最先要考虑的因素,明晰学习目标,做到有的放矢,是课堂教学的第一要素。我从以下几个方面考虑来制定本节课的学习目标:(1)明确《课程标准》要求;(2)分析教材;(3)分析学情。

1、本节课的《课程标准》要求:

(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及与现实世界的联系。

(2)理解复数的基本概念以及复数相等的充要条件。

(3)了解复数的代数表示法及其几何意义。

2、分析教材

复数的引入实现了中学阶段数系的最后一次扩充.但是,复数它完全没有按照教科书所描述的逻辑连续性.实际的需要使实数具有某种实在感.可是,复数的情形却不一样,是纯理论的创造.

新课程中复数内容突出复数的代数表示,同时也强调了复数的几何意义.它的内容是分层设计的:先将复数看成是有序实数对,再把复数看成是直角坐标系下平面上的点或向量,最后介绍复数代数形式的加、减运算的几何意义.同时,复数作为一种新的数学语言,也为我们今后用代数的方法解决几何问题提供了新的工具和方法,体现了数形结合思想.

本节课的学习,一方面让学生回忆数系扩充的过程,体会虚数引入的必要性和合理性.另一方面,让学生理解复数的有关概念,掌握复数相等的充要条件,为今后的学习奠定基础.因此,本节课具有承前启后的作用,是本章的重点内容.

3、分析学情

在学习本节之前,学生对数的概念已经扩充到实数,也已清楚各种数集之间的包含关系等内容,但知识是零碎、分散的,对数的生成发展的历史和规律缺乏整体认识与理性思考,知识体系还未形成。另一方面学生对方程解的问题会默认为在实数集中进行,缺乏严谨的思维习惯。 基于以上分析,本节课的学习目标如下:

(1)通过回忆数系的扩充过程,观察所列举的复数能简述复数的定义,并能说出复数的实部与虚部。

(2)通过小组讨论能将复数归类,并能用语言或图形表达复数的分类,会解决含有字母的复数的分类问题。

(3)通过比较给出的两个复数能归纳出复数相等的充要条件,并能解决与例题相似的题目。

二 评价方案分析(借助教学媒体)

1、 通过课堂检测1检测目标1的达成。

2、 通过例1、课堂检测2检测目标2的达成。

3、 通过例2、课堂检测3检测目标3的达成。

设计意图:通过过程性评价和结果性评价来激发学生的学习兴趣,提过课堂效率。同时能及时反馈学生信息,了解学生的学习效果。

三 重点、难点分析:

本节课是人教版《选修1-2》第三章第一课时,复数的概念为学生学习复数的表示、复数的运算及后继知识奠定了坚实的基础,因此,复数的概念是本节课学习的重点。

2象x=-1这样的方程没有实数解在学生心目中已成定论,负数不能开平方是学生固有的思维模式,而虚数单位i的引入会引起学生认知上的冲突、心理上的排斥。故虚数单位i的引入是学生学习中的难点。

四 教法与学法分析(课堂结构)

结合以上分析,本节课的教法主要采用问题驱动教学模式.通过设置问题串,让学生形成认知冲突;通过设置问题串,引领学生追溯历史,提炼数系扩充的原则;通过设置问题串,帮助学生合乎情理的建立新的认知结构,让数学理论自然诞生在学生的思想中。

五 教学设计流程

从建构主义的角度来看,数学学习是指学生自己建构数学知识的活动.在数学活动过程中,学生与教材及教师产生交互作用,形成了数学知识、技能和能力,发展了情感态度和思维品质.基于这一理论,我把这一节课的教学程序分成四个环节来进行,下面我向各位专家作详细说明: 1 创设情境

从学生已有的知识入手,提出问题串:

问题1 从小到大,我们认识了各种各样的数。进入高中,我们学习了集合,你知道的数集有哪些?分别用什么记号表示?

问题2你能用包含关系将这些数集“串”起来吗?(N?Z?Q?R)

问题3 “?”能换成“ ? ”吗?为什么? ?

设计意图:一方面从学生已有的认知入手,便于学生快速进入学习状态,激发他们的学习热情,培养学生的归纳、概括与表达能力;另一方面为引入虚数单位“i”埋下伏笔,引入课题。 2 建构理论

问题4 我们常说的运算,是指加、减、乘、除、乘方、开方等运算,思考一下,这些运算在各个数集中总能实施吗?

追问:这些问题是怎么解决的呢?

设计意图:让学生思考数集扩充的原因,在此基础之上,帮助学生重新建构数集的扩充过程,这是本节课的生长点.

问题5 那么在实数范围内加、减、乘、除、乘方、开方这些运算总能实施了吗?

由此,追问:

问题6 需要添加什么样的数呢?

设计意图:教师引领学生采用类比的思想,将问题转化为找一个数的平方为-1,从而让“引入新数”水到渠成.

此时,教师适时介绍与虚数单位i有关历史,,从而激发学生学习的兴趣,强化对i的认识,并让学生感受到科学上每一步的迈出是多么的艰辛!

引入i后,给出问题串:

问题7 添加的新数仅仅是i吗?

问题8 你还能写出其他含有i的数吗?

问题9 你能写出一个形式,把刚才所写出来的数都包含在内吗?

设计意图:学生通过问题7、8的铺垫,引导学生由特殊到一般,抽象概括出复数的代数形

式,帮助学生主动建构复数的代数形式.

由此,追问: a?bi(a,b?R)一定是虚数吗?

问题10 实数集与扩充后的复数集是什么关系呢?

设计意图:学生通过讨论自然而然地想到要对复数进行分类,从而深化对复数概念的理解,攻克本节课的重点.

问题11 复数集、实数集、虚数集、纯虚数集它们之间是什么关系呢?你能用图表的形式画出来吗?

设计意图:让学生直观地感受复数的分类,进一步深化复数的概念。

3 检测反馈

为了检测学生对复数有关概念的理解,对应三个目标我分别设置了下列三组练习: 例1、指出下列复数的实部和虚部

(1)4 (2)2-3i(3)-6i(4)0(5)1i(6)2 ?2

例2、实数m取什么值时,复数z=m(m-1)+(m-1)i 是:

(1)实数? (2)虚数?(3)纯虚数?

设计意图:例题1主要是前后照应,采用概念同化的方式完善认知结构;例题2主要是巩固复数的分类标准.让学生在解决问题的过程中内化复数有关概念,起到及时反馈、学以致用的功效.

并追问:对于复数z1?a?bi,z2?c?di(a,b,c,d?R),你认为在什么情况下相等呢? 从而为在直角坐标系中用点表示复数提供了可能.并设置了:

例3已知复数z1= (x + y) + (x-2y)i ,复数z2= (2x-5) + (3x+y)i , 若z1 = z2 ,求实数x,y的值.

设计意图:强化复数相等的充要条件,并让学生感受到复数问题可以化归为实数问题来求解.

4 回顾反思 (学生的疑问和收获)

抛出问题:实数能用数轴上的点来表示,所有的复数也能用数轴上的点来表示吗?

设计意图:通过学生总结、教师提炼,深化内容,让学生体会数系扩充过程中蕴含的创新精神和实践能力。提出问题激发学生对复数的后续学习的欲望。 六、反思:

本节课教学,采用问题驱动教学模式,从概念产生的背景到概念的建立、辨析再到概念的应用,层层深入,最后完成评价检测目标的达成。这样教学,符合 “感知—辨认—概括—定义—应用”的概念学习模式。此外,复数的概念,并不是通过教师的讲授来实现的,而是让学生在问题解决中感悟、体验。

当然,在本设计中,有些问题还有值得思考的必要。比如,由于虚数单位i的概念非常抽象,又与学生原有知识冲突,学生能否顺利接受从而理解复数的概念?学生能否将复数分类并能准确表示?评价方案是否切合学生实际?如果这些学习目标无法顺利实现,在教学过程中还要做哪些知识铺垫?这都是值得研究的。

路由算法的概念 篇4

路由算法是路由协议必须高效地提供其功能,尽量减少软件和应用的开销。当实现路由算法的软件必须运行在物理资源有限的计算机上时高效尤其重要。路由算法原理路由算法必须健壮,即在出现不正常或不可预见事件的情况下必须仍能正常处理,例如硬件故障、高负载和不正确的实现。因为路由器位于网络的连接点,当它们失效时会产生重大的问题。最好的路由算法通常是那些经过了时间考验,证实在各种网络条件下都很稳定的算法。此外路由算法必须能快速聚合,聚合是所有路由器对最佳路径达成一致的过程。当某网络事件使路径断掉或不可用时,路由器通过网络分发路由更新信息,促使最佳路径的重新计算,最终使所有路由器达成一致。聚合很慢的路由算法可能会产生路由环或网路中断。

路由算法可以分为:非自适应的和自适应的。非自适应算法不会根据当前测量或者估计的流量和拓扑结构来调整它们的路由决策,这个过程也称为静态路由。相反,自适应算法则会改变它们的路由决策,以反映出拓扑结构的变化,通常也会反映出流量的变化情况,这个过程称为动态路由,

路由算法是网络层软件的一部分,它负责确定一个进来的分组应该被传送到哪一条输出线路上。如果子网内部使用了数据报,那么路由器必须针对每一个到达的数据分组重新选择路径,因为从上一次选择了路径之后,最佳的路径可能已经改变了。如果子网内部使用了虚电路,那么只有当一个新的虚电路被建立起来的时候,才需要确定路由路径。因此,数据分组只要沿着已经建立的路径向前传递就行了。无论是针对每个分组独立地选择路由路径,还是只有建立新连接的时候才选择路由路径,一个路由算法应具各的特性有:正确性、简单性、健壮性、稳定性、公平性和最优性。

sb307算法的概念的教学设计 篇5

程 序 框 图

苏州三中 赵颖

教学内容:程 序 框 图(第1课时)教学目的:

1.明白程序框图的组成,程序框的种类.2.掌握算法的基本逻辑结构.3.如何画程序框图,并掌握其中的规则.教学过程:

一、复习已有概念,巩固原先基础 上课尹始,教师出示灯片:

1、算法是指。

2、算法有哪些特征?

3、用自然语言表示算法。

学生回答,教师总结:

1、算法通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确的和有效的,而且能够在有限步之内完成。

2、①有限性 ②明确性 ③程序性

二、直观导入,初步感知概念

教师点出算法的难点:比较抽象,难以直观掌握,能否有直观的表示方法呢? 例如上一节“判断整数n(n>2)是否为质数”的算法可以用其它形式来表达.图示幻灯:

为您服务教育网 http:///

用幻灯介绍程序框图,(1)程序框图的概念

程序框图又称流程图,是一种用规定的程序框、流程线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:

①表示相应操作的程序框;②带箭头的流程线;③程序框外必要的文字说明。(2)用图示显示:

终止框、输入(输出)框、处理框和判断框

重要性:算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们更经常地用图形方式来表达它.辨析练习,掌握四种程序框图

1.流程图的判断框,有一个入口和n个出口,则n的值为()(A)1(B)2(C)3(D)4 2.下列图形符号表示输入输出框的是()

(A)矩形框(B)平行四边形框(C)圆角矩形框(D)菱形框 3.表示“根据给定条件判断”的图形符号框的是()

(A)矩形框(B)平行四边形框(C)圆角矩形框(D)菱形框

为您服务教育网 http:///

三、引导探究,理解新知

1.尽管不同的算法千差万别,但它们都是由三种基本的逻辑结构构成的,这三种逻辑结构就是顺序结构、条件结构、循环结构.下面分别介绍这三种结构.(1)小组研讨,建立表象。上例中有这三种逻辑结构就是顺序结构、条件结构、循环结构吗?再请小组代表汇报发言。(2)验证认识,形成概念。

①当学生通过小组讨论,能找到三种结构后,教师提问顺序结构的特点,并总结图示.②提问条件结构的特点,并总结图示.③提问循环结构的特点,并总结图示.为您服务教育网 http:///

2.正确认识,解答例题。

1、写出过两点P1(2,0),P2(0,3)的直线方程的一个算法,并画出程序框图。

2、写出求A(x1,y1),B(x2,y2)的两点距离的一个算法,并画出程序框图。

3、已知f(x)=x2-2x-3,求f(3)、f(-5)、f(5),并计算f(3)+f(-5)+f(5)的值,设计出解决该问题的一个算法,并画出程序框图。

四、引导辨析,掌握本质

1.组织学生开展小组讨论:怎样画程序框图的规则再请小组代表汇报小组合作学习结果。

幻灯显示:画程序框图的规则(1)使用标准的框图符号;

(2)框图一般从上到下、从左到右的方向画;

(3)除判断框外,大多数框图符号只有一个进入点和一个退出点;(4)在框图符号内描述的语言要简练清楚

五、巧设练习,拓展新知

上一篇:考察学习丈八丘联小心得下一篇:建材市场星级评定汇报材料