命题、定理和证明教案(精选12篇)
重点:命题、定理、证明的概念 难点:命题、定理、证明的概念
一、板书课题,揭示目标
同学们,到现在为止,我们已经学习了一些简单的性质、判定、定义,这些命题都是真命题,那什么是命题呢?我们今天就来学习5.3.2命题、定理.本节课的学习目标是:(请看投影)
二、学习目标
1、理解命题、定理、证明的概念.2、会判断一个命题是真命题还是假命题.三、指导自学
认真看课本(P21-22练习前).1结合例子理解命题的定义,会把一个命题写成“如果„„那么„„”的形式;○2理解真命题、假命题的概念并会判断一个命题的真假.○如有疑问,可以小声问同学或举手问老师.6分钟后,比谁能正确地做出检测题.三、先学
1、教师巡视,督促学生认真紧张地自学
2、学生练习:
检测题 P22 练习补充题:
1、下列是命题的是()1对顶角相等.○2答案A是正确的.③若a=b,则a+c=b+c.④画射○线BC.⑤这条边长等于多少?
2、下列命题是真命题的是()1同角的补角相等。○2相等的角是对顶角。○③互补的角是邻补角。
④若∠1=∠2,∠2=∠3,则∠1=∠3 分别让两位同学上堂板演,其余同学在位上做。
四、更正、讨论、归纳、总结
1、自由更正
请同学们认真看堂上板演的内容,如果有错误或不同解法的请上来更正或补充。
2、讨论、归纳 评讲2(1):命题假设的对吗?为什么?怎样找一个命题的假设?引导学生回答:“如果”后接的部分是假设(师板书)
(2)命题的题设正确吗?为什么?他没有“如果„„那么„„”的形式该怎么办呢?如何把命题写成“如果„„那么„„”的形式,引导学生回答:题设——已知事项;结论——是由已知事项推出来的事项。
评补充题:
1、答案正确吗?为什么?引导学生回答:命题的条件是什么?(1)命题必须是一个完整的句子.(2)对某件事做出了判断。
2、“同位角相等“是真命题吗?为什么?引导学生画图说明:
五、课堂作业(见测试题)
直线和圆的三种位置关系
由图易知: (1) 当d>r时⇔直线与圆没有交点⇔直线与圆相离;
(2) 当d=r时⇔直线与圆有一个交点⇔直线与圆相切;
(3) 当d<r时⇔直线与圆有两个交点⇔直线与圆相交.
这两种判定直线与圆的位置关系的方法中, 第一种是数据法, 第二种是图形法, 用数据与图形这种“数形结合”的方法判断直线与圆位置关系, 从数学概念理解上较好地体现了“数学结合”的数学思想, 二者相辅相成.但“数”与“形”的两种定义之间有联系吗?当d=r时, 直线与圆确实只有一个交点吗?如何证明?
课本上对此没有详细证明, 在常规学习中, 这“数”、“形”二定义的渊源也不断被忽略, 二者之间真的没有沟通点吗? 如果只是画图证明, 不严谨;如果单凭感觉, 不能说明问题, 我们应该怎么证明“当d=r时, 直线与圆相切”这样一个命题 (及其逆命题) 呢?为了挖掘概念学习之源, 笔者给出以下两个命题的证明, 以帮助同学们深入理解两种方法的相通之处, 并培养严谨的数学学习习惯.
命题1 如果圆心O到直线l的距离d=半径r, 那么直线l是圆O的切线.
已知:如图2, ⊙O中, OP⊥直线l, 垂足为点P, 且OP=圆半径r .
求证:直线l是圆O的切线.
证明:∵OP⊥直线l, 垂足为点P,
∴线段OP表示点O到直线的距离.
根据点到直线的距离定义“直线外一点与直线上各点相连所得的线段中, 垂线段最短”可以得到以下结论:
若在直线l上另取任意一点Q, 则QO>OP.
∵OP=圆半径r,
∴点P是圆上的点.
∵QO>OP (即OQ>r) ,
∴根据点和圆的位置关系即知, 点Q在圆O外.
由Q点的任意性可知, 直线l上除P点外的所有点, 都在圆O外, 此时, 只有点P在圆上, 即直线与圆只有一个交点P, ∴直线和圆相切.命题得证.
说明:命题1即圆的切线判定定理——经过半径的外端并且垂直于这条半径的直线是圆的切线.
命题2 如果直线l是圆O的切线, 那么圆心O到直线的距离d=半径r.
已知:如图3, 直线l是圆O的切线, 且过点O的线段OP⊥直线l, 垂足为点P,
求证:OP=半径r.
证明: (以下用反证法证明直线与圆只有点P一个交点)
假设直线与圆的交点是点Q, 连接OQ, 则OQ=r, 此时点Q在圆上.
∵直线l与圆O相切,
∴直线l与圆O只有且只有一个交点, 即点Q.
∵OP⊥直线l, 垂足为P,
∴在直线l上的所有点与点O的连线中, OP最短,
则 OP<OQ, ∴OP<半径r.
∴直线l与圆O相交, 则直线l与圆O有两个交点, 与假设矛盾.
因此直线l与⊙O的唯一交点是点P.
∴点P既在圆上, 又在直线上.
∴OP=半径r, 命题得证.
说明:命题2即圆的切线的性质定理——圆的切线垂直于经过切点的半径.
【关键词】不等式 中值定理 单调性 驻点
证明: 。
证明方法一:(利用罗尔定理)令
顯然 在 上连续, 内可导,且有 ,
由罗尔定理可知
取 ,则有 ,
所以当 则有 即 ;
同理取 ,则有下列等式 ,
当 时,则有 ,即 ,即 ;
当 时, ,
综上所述,当 时,有 恒成立。
证明方法二:(利用拉格朗日中值定理)设函数 ,
令 ,得驻点 ,
显然当 时,有 ;
当 时,有 。
我们先考虑 , 在 上连续, 内可导,且有 ,
由拉格朗日中值定理可知 ,
由于 ,由上式推出 ;
再考虑 , 在 上连续, 内可导,且有 ,
由拉格朗日中值定理可知 ,
由于 , ,由上式推出 ;又已知 ,
综上所述,当 时,有 ,即 。
证明方法三:(利用柯西中值定理)取定函数 , , ,设 ,
显然 , 在 上连续, 内可导,由柯西中值定理可知
,即 ,即 ;
又设 ,显然 , 在 上连续, 内可导,
由柯西中值定理可知 ,
即 ,即 ;又已知 ,
综上所述,当 时,有 。
证明方法四:(利用函数单调性判别法)设函数 ,驻点 ,显然 在 上连续, 内可导,在 内显然有 ,由函数单调性判别法可知, 在 上单调增加,即有 ;
同理 在 上连续, 内可导,在 内显然有 ,由函数单调性判别法可知, 在 上单调减少,即有 ;又已知 ,
§6.5 三角形内角和定理的证明 ●教学目标(一教学知识点
三角形的内角和定理的证明.(二能力训练要求
掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力.(三情感与价值观要求
通过新颖、有趣的实际问题,来激发学生的求知欲.●教学重点
三角形内角和定理的证明.●教学难点
三角形内角和定理的证明方法.●教学方法 实验、讨论法.●教具准备 三角形纸片数张.投影片三张
第一张:问题 第二张:实验
第三张:小明的想法●教学过程 Ⅰ.巧设现实情境,引入新课
用橡皮筋构成△ABC,其中顶点B、C为定点,A为动点(如图6-37,放松橡皮筋后,点A自动收缩于BC上,请同学们考察点A变化时所形成的一系列的三角形:△A1BC、△A2BC、△A3BC……其内角会产生怎样的变化呢?
得出结论:当点A离BC越来越近时,∠A越来越接近180°,而其他两角越来越接近于0°。三角形各内角的大小在变化过程中是相互影响的。三角形的最大内角不会大于或等于180°。
当点A远离BC时,∠A越来越趋近于0°,而AB与AC逐渐趋向平行,这时,∠B、∠
但观察与实验得到的结论,并不一定正确、可靠,这样就需要通过数学证明.那么怎样证明呢?请同学们再来看实验.图6-39 这里有两个全等的三角形,我把它们重叠固定在黑板上,然后把三角形ABC的上层∠B 剥下来,沿BC的方向平移到∠ECD处固定,再剥下上层的∠A,把它倒置于∠C与∠ECD 之间的空隙∠ACE的上方.这时,∠A与∠ACE能重合吗?
图6-40 已知,如图6-40,△AB C.求证:∠A+∠B+∠C=180°
证明:作BC的延长线CD,过点C作射线CE∥AB.则 ∠ACE=∠A(两直线平行,内错角相等 ∠ECD=∠B(两直线平行,同位角相等 ∵∠ACB+∠ACE+∠ECD=180°(1平角=180° ∴∠A+∠B+∠ACB=180°(等量代换 即:∠A+∠B+∠C=180°.在证明过程中,我们仅仅添画了一条射线CE,使处于原三角形中不同位置的三个角,巧妙地拼凑到一起来了.为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.我们通过推理的过程,得证了命题:三角形的内角和等于180°是真命题,这时称它为定理.即:三角形的内角和定理.小明也在证明三角形的内角和定理,他是这样想的.大家来议一议,他的想法可行吗?
∵PQ∥BC(已作
∴∠PAB=∠B(两直线平行,内错角相等 ∠QAC=∠C(两直线平行,内错角相等 ∵∠PAB+∠BAC+∠QAC=180°(1平角=180° ∴∠B+∠BAC+∠C=180°(等量代换
图6-42 也可以这样作辅助线.即:作CA的延长线AD,过点A作∠DAE=∠C(如图6-42.也可以在三角形的一边上任取一点,然后过这一点分别作另外两边的平行线,这样也可证出定理.即:如图6-43,在BC上任取一点D,过点D分别作DE∥AB交AC于E,DF∥AC 交AB于F.∴四边形AFDE是平行四边形(平行四边形的定义 ∠BDF=∠C(两直线平行,同位角相等 ∠EDC=∠B(两直线平行,同位角相等 ∴∠EDF=∠A(平行四边形的对角相等 ∵∠BDF+∠EDF+∠EDC=180°(1平角=180° ∴∠A+∠B+∠C=180°(等量代换 Ⅲ.课堂练习
(一课本P196随堂练习1、2.图6-44
1.直角三角形的两锐角之和是多少度?等边三角形的一个内角是多少度?请证明你的结论.答案:90°60°
如图6-44,在△ABC中,∠C=90° ∵∠A+∠B+∠C=180° ∴∠A+∠B=90°.图6-45 如图6-45,△ABC是等边三角形,则:∠A=∠B=∠C.∵∠A+∠B+∠C=180° ∴∠A=∠B=∠C=60°
2.如图6-46,已知,在△ABC中,DE∥BC,∠A=60°,∠C=70°,求证:∠ADE=50°.证明:∵DE∥BC(已知
∴∠AED=∠C(两直线平行,同位角相等 ∵∠C=70°(已知 ∴∠AED=70°(等量代换
∵∠A+∠AED+∠ADE=180°(三角形的内角和定理 ∴∠ADE=180°-∠A-∠AED(等式的性质 ∵∠A=60°(已知
∴∠ADE=180°-60°-70°=50°(等量代换(二读一读P197.(三看课本P195~196,然后小结.Ⅳ.课时小结
这堂课,我们证明了一个很有用的三角形内角和定理.证明的基本思想是:运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角.辅助线是联系命题的条件和结论的桥梁,今后我们还要学习它.Ⅴ.课后作业
(一课本P198习题6.6 1、2(二1.预习内容P199~200 2.预习提纲
(1三角形内角和定理的推论是什么?(2三角形内角和定理的推论的应用.Ⅵ.活动与探究
1.证明三角形内角和定理时,是否可以把三角形的三个角“凑”到BC边上的一点P?(如图6-47(1,如果把这三个角“凑”到三角形内一点呢?(如图6-47(2“凑”到三角形外一点呢?(如图6-47(3,你还能想出其他证法吗?
(1(2(3 图6-47 [过程]让学生在证明这个题的过程中,进一步了解三角形内角和定理的证明思路,并
且了解一题的多种证法,从而拓宽学生的思路.[结果]证明三角形内角和定理时,既可以把三角形的三个角“凑”到 BC 边上的一点 P,也可以把三个角“凑”到三角形内一点;还可以把这三个角“凑”到三角形外一点.●板书设计 §6.5 三角形内角和定理的证明 一、三角形内角和定理 三角形三个内角的和等于 180° 图 6-48 已知,如图 6-48,△ABC.求证:∠A+∠B+∠C=180° 证明:作 BC 的延长线 CD,过点 C 作射线 CE∥BA,则:∠A=∠ACE()∠ECD=∠B()
∵∠ECD+∠ACE+∠ACB=180°()∴∠A+∠B+∠ACB=180°()
二、议一议
三、课堂练习
四、课时小结
廖宏中
学习目标:
1、掌握命题的概念,并能分清命题的组成部分.2、经历判断命题真假的过程,对命题的真假有一个初步的了解。
3、初步培养不同几何语言相互转化的能力。
学习重点:命题的概念和区分命题的题设与结论
学习难点:区分命题的题设和结论
学习过程:
一、学前准备
1、预习疑难:。
2、填空:①平行线的3个判定方法的共同点是。
②平行线的判定和性质的区别是。
二、探索与思考
(一)命题:
1、阅读思考:①如果两条直线都与第三条直线平行,那么这条直线也互相平行;
②等式两边都加同一个数,结果仍是等式;
③对顶角相等;
④如果两条直线不平行,那么同位角不相等.这些句子都是对某一件事情作出“是”或“不是”的判断
2、定义:
3、练习:下列语句,哪些是命题?哪些不是?
(1)过直线AB外一点P,作AB的平行线.(2)过直线AB外一点P,可以作一条直线与AB平行吗?
(3)经过直线AB外一点P,可以作一条直线与AB平行.请你再举出一些例子。
(二)命题的构成:
1、许多命题都由两部分组成.是由已知事项推出的事项.2、命题常写成“如果……那么……”的形式,这时,“如果”后接的部分是,.....
“那么”后接的的部分是.......
(三)命题的分类真命题:。
(定理:的真命题。)
练习:
1.下列语句是命题的个数为()
①画∠AOB的平分线;②直角都相等;③同旁内角互补吗?④若│a│=3,则a=3.A.1个B.2个C.3个D.4个
2.下列5个命题,其中真命题的个数为()
①两个锐角之和一定是钝角;②直角小于锐角;③同位角相等,两直线平行;④内错角互补,两直线平行;⑤如果a
三、应用:
1、指出下列命题的题设和结论:
(1)如果两个数互为相反数,这两个数的商为-1;(2)两直线平行,同旁内角互补;(3)同旁内角互补,两直线平行;
(4)等式两边乘同一个数,结果仍是等式;(5)绝对值相等的两个数相等.(6)如果AB⊥CD,垂足是O,那么∠AOC=90°
2、把下列命题改写成“如果……那么……”的形式:
(1)互补的两个角不可能都是锐角:。
(2)垂直于同一条直线的两条直线平行:。
(3)对顶角相等:。
3、判断下列命题是否正确:(1)同位角相等
(2)如果两个角是邻补角,这两个角互补;(3)如果两个角互补,这两个角是邻补角。
四、学习体会:
1、本节课你有哪些收获?你还有哪些疑惑?
2、预习时的疑难解决了吗?
五、作业:课本第24页第12、13题。
五、自我检测:
1、判断下列语句是不是命题
(1)延长线段AB()
(2)两条直线相交,只有一交点()(3)画线段AB的中点()(4)若|x|=2,则x=2()(5)角平分线是一条射线()
2、选择题
(1)下列语句不是命题的是()
A、两点之间,线段最短
B、不平行的两条直线有一个交点 D、对顶角不相等。B、两个锐角之和为锐角 D、锐角小于它的余角
C、x与y的和等于0吗?(2)下列命题中真命题是()A、两个锐角之和为钝角C、钝角大于它的补角
(3)命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;
④同位角相等。其中假命题有()A、1个B、2个
3、分别指出下列各命题的题设和结论。
(1)如果a∥b,b∥c,那么a∥c(2)同旁内角互补,两直线平行。
4、分别把下列命题写成“如果……,那么……”的形式。
(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等。
5、如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据:
(1)∵a∥b,∴∠1=∠3(_________________);(2)∵∠1=∠3,∴a∥b(_________________);(3)∵a∥b,∴∠1=∠2(__________________);
(4)∵a∥b,∴∠1+∠4=180º(_____________________)(5)∵∠1=∠2,∴a∥b(__________________);(6)∵∠1+∠4=180º,∴a∥b(_______________).6、已知:如图AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF 证明:∵AB⊥BC,BC⊥CD(已知)∴=90°()∵∠1=∠2(已知)
∴=(等式性质)
∴BE∥CF()
7、已知:如图,AC⊥BC,垂足为C,∠BCD是∠B的余角。求证:∠ACD=∠B。证明:∵AC⊥BC(已知)
∴∠ACB=90°()∴∠BCD是∠ACD的余角
∵∠BCD是∠B的余角(已知)
∴∠ACD=∠B()
8、已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。求证:AD∥BE。
DC
4E
D
A
E
C D
b2 ac4
C、3个D、4个
证明:∵AB∥CD(已知)
∴∠4=)∵∠3=∠4(已知)
∴∠3=)∵∠1=∠2(已知)
姓名:成绩:
1.在四边形ABCD中,O是对角线的交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC, AD=BCB.AB=DC,AD=BC C.AB∥DC,AD=BC
D.OA=OC,OD=OB
2.如图,在平行四边形ABCD中,AD5,AB3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和
3B.3和
2C.4和
1D.1和
4E 3.如图,在平行四边形ABCD中,AC,BD相交于点O.下列结论中正确的个数有()结论:①OAOC,②BADBCD,③ACBD,④BADABC180.
A
D.4个
第3题图
A.1个B.2个C.3个
4.能够判别一个四边形是平行四边形的条件是()
A.一组对角相等B.两条对角线互相垂直且相等C.两组对边分别相等D.一组对边平行 5.下列条件中不能确定四边形ABCD是平行四边形的是()
A.AB=CD,AD∥BCB.AB=CD,AB∥CDC.AB∥CD,AD∥BCD.AB=CD,AD=BC 6.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()
A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88° 7.四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件()
A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180° 8.以不在一条直线上的三点A、B、C为顶点的平行四边形共有()
A.1个B.2个C.3个D.4个
二、填空题
5.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是
(添加一个条件即可)
6.在四边形ABCD中,AB=CD,AD=BC,∠B=50,则∠A=_______,∠D=_________。7.如图,平行四边形ABCD中,AC、BD相交于点O,已知AB=8cm,BC=6cm,△AOB的周长为18cm,那么△AOD的周长为__________。
如图2,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF
为平行四边形.
D
第5题图
C
C
A第7题图
9.如图:平行四边形ABCD的对角线AC、BD相交于点O,MN过点O与AB、CD
相交于M、N,你认为OM、ON有什么关系?为什么?
10.如图,△ABC中,BD平分∠ABC,DE∥BC交AB于点E,EF∥AC交BC于F,试说明
BE=CF。
A
12.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD是平行四边形吗?为什么?
13.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由
.三、如图3,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形的形状,请问田村能否实现这一设想?
汉儿庄中学执笔人审核领导 教学目的:
1、知识目标:会证明等腰三角形的性质定理。能从等腰三角形的性质定理中得出结论,进一步体会证明的必要性,会用综合法进行证明。
2、能力目标:观察等腰三角形的对称性,发展形象思维及合情推理能力、演绎推理能力。
3、情感目标:经历探索、猜想、证明的过程,进一步发展推理论证能力。并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
教学重点:等腰三角形性质定理及推论的探索。
教学难点:等腰三角形性质定理的证明和运用。
预习要点:
1、动手操作,用硬纸板分别制作锐角等腰三角形、直角等腰三角形、钝
角等腰三角形、等边三角形。
2、等腰三角形的3、等腰三角形的、、互相重合,简称
();
4、,等边三角形的相等,并且每一个角都等于度。
主备人: 审核人:
授课时间: 考纲要求:二级 教学目标】
1、掌握动能的表达式。
2、掌握动能定理的表达式。
3、理解动能定理的确切含义,应用动能定理解决实际问题。【教学重点、难点】 对动能定理的理解和应用。【教学过程】
一、导入新课
导入:通过上节课的探究,我们已经知道了力对物体所做的功与速度变化的关系,那么物体的动能应该怎样表达?力对物体所做的功与物体的动能之间又有什么关系呢?这节课我们就来研究这些问题。
二、新课教学
1、动能表达式
我们在学习重力势能时,是从哪里开始入手进行分析的?这对我们讨论动能有何启示?
学习重力势能时,是从重力做功开始入手分析的。讨论动能应该从力对物体做的功入手分析。
在以下简化的情景下求出力对物体做功的表达式。
设物体的质量为m,在与运动方向相同的恒定外力F的作用下发生一段位移l,速度由v1增加到v2,如图所示。试用牛顿运动定律和运动学公式,推导出力F对物体做功的表达式。
推导过程:
问题:教材上说“mv2”很可能是一个具有特殊意义的物理量,为什么这样
21说?
分析:因为这个量在过程终了与过程开始时的差,正好等于力对物体做的功,所以“mv2就是我们要找的动能表达式,即
21质量为m的物体,以速度v运动时的动能为 Ek12mv2
问题:动能是矢量还是标量?国际单位制中,动能的单位是什么?
分析:动能是标量,单位与功相同,国籍单位制中都为焦耳
2、动能定理
动能定理的表达式:
有了动能的表达式后,前面我们推出的W就可以写成 WEk2Ek1
其中Ek2表示一个过程的末动能mv22,Ek1表示一个过程的初动能mv12。
221112mv2212mv12,上式表明,力在一个过程中对物体所作的功,等于物体在这个过程中动能的变化。这个结论,叫做动能定理。
问题:如果物体受到几个力的作用,动能定理中的W表示什么意义?
分析:(1)定理中力所做的功W,是指物体合外力的功,它等于各个力做功的代数和。
(2)若合外力方向与物体运动方向相同时,合外力对物体做正功,W>0,则物体动能增加。
(3)若合外力方向与物体运动方向相反时,合外力对物体做负功,W<0,则物体动能减少。
问题:动能定理是否可以应用于变力作功或物体作曲线运动的情况,该怎样理解?
分析:(1)动能定理,我们实在物体受恒力作用且作直线运动的情况下推出的。当物体受变力作用,或做曲线运动时,仍可以用分割求和的方法得到动能定理。故对任何过程的恒力、变力;匀变速、非匀变速;直线运动、曲线运动等都能运用。
(2)若物体的运动由几个过程组成,而又不需要研究过程的中间状态时,可把多个过程看成一个全过程研究,但功应该为各个阶段合力做功的代数和
3、例题
一、要点
【 要点一 冲量 】 1.下列说法中正确的是
()A.一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同
B.一质点受两个力作用处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反
C.在同样的时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反 D.在同样的时间内,作用力和反作用力的功大小一定相等,正负号不一定相反
答案 B 【 要点二
动量 】
2.质量是1 kg的钢球,以5 m/s的速度水平向右运动,碰到墙壁后以3 m/s的速度被反向弹回,钢球的动量改变多少? 若钢球以2 3 m/s的速度,与水平面成30°角落到粗糙地面相碰后弹起,弹起速度大小为2 m/s,方向与水平面成60°角,判别钢球的动量改变量的方向.答案kg•m/s,方向水平向左kg•m/s,与竖直方向成30°角 【 要点三
动量定理 】
3.排球运动是一项同学们喜欢的体育运动.为了了解排球的某些性能,某同学让排球从距地面高h1=1.8 m处自由落下,测出该排球从开始下落到第一次反弹到最高点所用时间为t=1.3 s,第一次反弹的高度为h2=1.25 m.已知排球的质量为m=0.4 kg,g取10 m/s2,不计空气阻力.求:(1)排球与地面的作用时间.(2)排球对地面的平均作用力的大小.答案(1)0.2 s(2)26 N
二、题型
【 题型1 应用动量定理解释现象 】
例1.一个笔帽竖直放在桌面上的纸条上,要求把纸条从笔帽下抽出,如果缓慢拉出纸条笔帽必倒,若快速拉出纸条,笔帽可能不倒.以下判断正确的是
()A.缓慢拉动纸条时,笔帽受到的冲量小
B.缓慢拉动纸条时,纸对笔帽水平作用力小,笔帽也可能不倒 C.快速拉动纸条时,笔帽受到冲量小
D.快速拉动纸条时,纸条对笔帽水平作用力小
答案 C 【 题型2 动量定理的简单应用 】
例2.一质量为m的小球,以初速度 0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即反方向弹回.已知反弹速度的大小是入射速度大小的 ,求在碰撞中斜面对小球的冲量大小.答案
第1课时 三角形内角和定理
第一环节:情境引入
活动内容:(1)用折纸的方法验证三角形内角和定理.
实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果
(1)(2)(3)(4)
试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。
试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢? 活动目的:
对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明. 教学效果:
说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。
第二环节:探索新知 活动内容:
① 用严谨的证明来论证三角形内角和定理. ② 看哪个同学想的方法最多?
A D A
E
E B B C
C
D
方法一:过A点作DE∥BC ∵DE∥BC ∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)∵∠DAB+∠BAC+∠EAC=180° ∴∠BAC+∠B+∠C=180°(等量代换)方法二:作BC的延长线CD,过点C作射线CE∥BA.
∵CE∥BA ∴∠B=∠ECD(两直线平行,同位角相等)∠A=∠ACE(两直线平行,内错角相等)∵∠BCA+∠ACE+∠ECD=180° ∴∠A+∠B+∠ACB=180°(等量代换)活动目的:
用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。教学效果:
添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的.
第三环节:反馈练习活动内容:
(1)△ABC中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?
(2)△ABC中,∠C=90°,∠A=30°,∠B=?(3)∠A=50°,∠B=∠C,则△ABC中∠B=?
(4)三角形的三个内角中,只能有____个直角或____个钝角.(5)任何一个三角形中,至少有____个锐角;至多有____个锐角.(6)三角形中三角之比为1∶2∶3,则三个角各为多少度?
(7)已知:△ABC中,∠C=∠B=2∠A。
(a)求∠B的度数;
(b)若BD是AC边上的高,求∠DBC的度数?
活动目的:
通过学生的反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏. 教学效果:
学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题。
第四环节:课堂小结 活动内容:
① 证明三角形内角和定理有哪几种方法? ② 辅助线的作法技巧.③ 三角形内角和定理的简单应用.活动目的:
复习巩固本课知识,提高学生的掌握程度. 教学效果:
学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进行相关证明.课后练习:随堂练习;习题7.5第1,2,3题 教学反思
三角形的有关知识是“空间与图形”中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:(1)通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。
(2)充分展示学生的个性,体现“学生是学习的主人”这一主题。
1.在一个三角形中,各边和它所对角的正弦的比相等,且等于其外接圆半径的两倍,即
abc2R sinAsinBsinC
证明:如图所示,过B点作圆的直径BD交圆于D点,连结AD BD=2R, 则 D=C,DAB90 在RtABD中 A sinCsinDc 2RD
b c c2R sinCab同理:2R,2R
sinAsinBabc所以2R
sinAsinBsinC2.变式结论
1)a2RsinA,b2RsinB,c2RsinC 2)sinAC
a
B abc ,sinB,sinC2R2R2R3)asinBbsinA,asinCcsinA,csinBbsinC 4)a:b:csinA:sinB:sinC
例题
在ABC中,角A,B,C所对的边分别是a,b,c,若(3bc)cosAacosC,求cosA的值.解:由正弦定理 a2RsinA,b2RsinB,c2RsinC得
(3sinBsinC)cosAsinAcosC
定理的证明属于比较难的,可以不看。很多人看都看不懂,或者看懂了也不会用。
但是定理的结论和应用一定要会。
考研里的证明题属于压轴的,大部分人都做不出来,所以不用担心。只要把基本盘拿下,你的分数就应该能过国家线。
祝你成功。
呵呵非常理解你的处境。我觉得这个问题不难解决,主要有两个办法。下面帮你具体分析一下,呵呵~
一。旁听师弟师妹的数学课~优点:不仅经济,便利,而且对老师的水平有保证~因为都是你们学校的嘛,你可以事先充分打听好哪个老师哪门课讲得好,然后还能比较容易获取课程进度,这样就可以专门去听自己不懂得那块,针对性强矮甚至你下课后还可以就不懂得习题跟老师请教一下~就本人这么多年的上学经验,老师对“问题学生”都是欢迎的,至少不排斥~缺点:由于不是专门针对考研复习的讲授,有些东西可能不是很适合~举个例子吧,比如将同样的知识,高一时候和高三第一轮复习时,讲的侧重点就不一样~(但是个人觉得这不算什么大缺点~嘿嘿~)
二。报名参加专门的考验辅导班。优点显而易见。老师肯定都是有多年考研辅导经验的,指导复习当然针对性强,有事半功倍的效果。缺点就是,嘿嘿,学费问题。你所在地的学费情况我就不清楚了,你可以自己去查一下~
还有一句话想说,其实这两个办法也不是对立的,你可以在学校里去旁听老师的课,把第一轮扎扎实实的复习完,放假回家去报名参加个辅导班,利用假期有针对性的做第二轮复习~相信两轮复习下来,你的长进一定不蝎呵呵~
我就说这么多,要是以后想起来了会再来补充的~最后祝你如愿考上理想院校哦~加油
也不知道一楼是哪个名校数学系的研究生,广州大学吗?这么有才华!听他的话等楼主没考到130哭的地方都找不到。
考研每一门学科都要复习好几轮,也不知道楼主考什么专业,数学几?
【命题、定理和证明教案】推荐阅读:
命题定理证明练习题12-12
七年级数学命题、定理自学案01-22
命题与证明全章教案03-21
7.7《动能和动能定理》原创教案07-12
三角形的内角和定理教案09-14
初中常见定理证明11-10
余弦定理证明过程02-10
圆的定理及证明03-26
勾股定理的证明10-14
勾股定理简洁证明方法10-25
注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com