抛物线标准方程教案(推荐10篇)
根据课程标准的要求,本节教材的特点及所教学生的认知情况,把教学目标拟定如下: 知识目标:理解抛物线的定义;明确焦点、准线的概念;了解用抛物线的定义推导开口向右的抛物线的标准方程的推导过程进一步得出开口向左、向上、向下的抛物线的标准方程,并熟练掌握抛物线的四种标准方程及其所对应的开口方向、焦点坐标、准线方程之间的关系;
2、能力目标:让学生感知数学知识与实际生活的普遍联系,培养学生类比、数形结合的数学思想方法,提高学生的学习能力,同时培养学生运动、变化的辨证唯物主义观点;
3情感目标:培养学生不怕困难、勇于探索的优良作风,增强学生审美体验,提高学生的数学思维的情趣,给学生以成功的体验,形成学习数学知识的积极态度。教学重点和难点:
重点:抛物线的定义;根据具体条件求出抛物线的标准方程;根据抛物线的标准方程求出焦点坐标、准线方程。
难点:抛物线的标准方程的推导。
关键:创设具体的抛物线的直观情景,结合建立坐标系的一般原则,从“对称美”和“简洁美”出发作必要的点拨。教学方法 启发、探索 教学手段
运用多媒体和实物辅助教学 教学过程:
一、新课引入:
1、实例引入:观察生活中的几个实例(1)截面图;(2)卫星接收天线(观察其轴截面);(3)太阳灶(观察其轴截面);(4)探照灯(观察其轴截面);(5)投球时球的运行轨迹(播放动画演示其轨迹)
2、复习引入:在平面内到一定点的距离和到一条定直线距离的比是常数e 的点的轨迹,当0〈e < 1时是什么图形?(椭圆)当e > 1时是什么图形?(双曲线)
当e = 1时它又是什么图形呢?(让学生大胆猜想,猜想后用几何画板演示动画,让学生认真观察动点所满足的条件,让学生对抛物线由感性认识上升到理性认识)教师指出:画出的曲线叫抛物线。(类比:使学生看到曲线上任一点到定点和到定直线的距离之比等于常数是圆锥曲线的一个共同的本质属性,明确抛物线与椭圆、双曲线之间的联系)
二、新课讲授:
(一)定义:(提问学生,由学生归纳出抛物线定义)
平面内到一定点和到一条不过此点的定直线的距离相等的点的轨迹叫做抛物线。定点叫做抛物线的焦点,定直线叫做抛物线的准线。概念理解:
平面内有——(1)一定点F——焦点
(2)一条不过此点(给出的定点)的定直线l ——准线
探究:若定点F在定直线l 上,那么动点的轨迹是什么图形?
(是过F点与直线l 垂直的一条直线——直线MF,不是抛物线)
(3)动点到定点的距离 |MF|
(4)动点到定直线的距离 d
(5)| MF| = d
满足以上条件的动点M的轨迹——抛物线
(二)推导抛物线的标准方程(开口向右)(重点):
1、要把抛物线上的点M的集合P={M| |MF|=d}表示为集合Q={(x,y)|f(x,y)=0}。首先要建立坐标系,为了使推导出的方程尽量简化,应如何选择坐标系? [教师引导]建立适当的直角坐标系应遵循的两点原则: ①若曲线是轴对称图形,则可选它的对称轴为坐标轴; ②曲线上的特殊点,可选作坐标系的原点。]
过焦点F作准线l 的垂线交l 于点K,启发学生思考回答问题:(1)如何确定x轴(或y轴)?
(以对称轴为坐标轴)
由抛物线的几何特征知KF是抛物线的对称轴。(2)如何确定坐标原点?
(曲线上的特殊点,可作为坐标系的原点)
因为线段KF的中点适合条件——到点F的距离等于到直线l 的距离,所以它又在抛物线上——以线段KF的中点为坐标原点。
(3)怎样建立坐标系才使方程的推导简化?
[教师引导]通过不同位置的二次函数解析式的对比,联想抛物线如何建系。让学生大胆发言,谈谈自己的观点(教师要积极鼓励学生引导学生)
取经过焦点F且垂直于准线l的直线为x轴,x轴与l 相交于点K,以线段KF的垂直平分线为y 轴,建立直角坐标系。
2、开口向右的抛物线标准方程的推导:(教师引导得出结论)步骤:(投影展示)
过焦点F且垂直于准线l的直线为x轴,x轴与直线l 相交于点K,以线段KF的垂直平分线为y 轴,建立直角坐标系。
设焦点到准线的距离|KF|= p(p>0)那么,焦点F的坐标为(p / 2,0),准线l的方程为x =p/2 顶 点:坐标原点(0,0)开口方向:向右
4、让同学们类比写出不同位置的抛物线的标准方程、焦点坐标、准线方程
5、让学生对这抛物线和它们的标准方程进行对比分析,辨认异同: 相同点:
1、原点在抛物线上; 2、对称轴为坐标轴; 3、p值的意义:(重点)
(1)表示焦点到准线的距离;(2)p>0为常数;(3)p值等于一次项系数绝对值的一半;
4、准线与对称轴垂直,垂足与焦点关于原点对称,它们与原点的距离等于一次项系数的绝对值的1/4,即2p/4=p/2.不同点: 方程
对称轴
开口方向
焦点位置
X2=2py(p>0)x轴
向右
X轴正半轴上
X2=-2py(p>0)
x轴
向左
X轴负半轴上
Y2=2px(p>0)y轴
向上
Y轴正半轴上
Y2=-2px(p>0)y轴
向下
Y轴负半轴上
三、例题讲解:
例1.(1)已知抛物线的标准方程是y2 =6x,求它的焦点坐标和准线方程;(2)已知抛物线的焦点是F(0,-2),求它的标准方程
(解题过程教师要板书,注意版面条理,简洁,做好起到示范作用)解:(1)p=3,所以抛物线的焦点坐标是(3/2,0),准线方程是 x=-3/2.(2)因为抛物线的焦点在轴的负半轴上,且,所以抛物线的标准方程是
例2.求分别满足下列条件的抛物线的标准方程:(1)焦点坐标是F(-5,0)(2)经过点A(2,-3)解:(1)焦点在x轴负半轴上,=5,所以所求抛物线 的标准议程是.
(2)经过点A(2,-3)的抛物线可能有两种标准形式: 点A(2,-3)坐标代入,即9=4p,得2p=
点A(2,-3)坐标代入x2=-2py,即4=6p,得2p= ∴所求抛物线的标准方程是y2=x或x2=-y。
四、课堂练习:
1、根据下列条件,写出抛物线的标准方程:(投影展示)(1)焦点是F(3,0);(2)准线方程是x = ;
(3)焦点到准线的距离是2。
2、根据下列抛物线的焦点坐标和标准方程、准线方程:(投影展示)(1)y 2=20x
(2)x 2=1/2y
(3)2y 2+5x=0
(4)x 2+8y=0 向学生指出,本题是求抛物线的标准方程,所求抛物线的顶点在原点,对称轴是坐标轴 总结:要确定抛物线的标准方程,关键在于确定p 值及抛物线开口方向;反之亦然。
五、课堂小结:(提学生归纳总结)
1.椭圆、双曲线与抛物线的定义的联系及其区别;
2.会运用抛物线的定义、标准方程求它的焦点坐标、准线方程; 3.注重类比及数形结合的思想。
六、作业布置: 课本
【教学目标】
1.设计轨迹探究活动, 经历“由定义获得轨迹 (抛物线) ”的过程, 提高归纳、发现能力, 理解抛物线的定义;
2.经历“推导抛物线的标准方程”的过程, 提高求轨迹方程的能力, 体现数形结合与转化思想;
3.经历“获得四种标准方程”的过程, 掌握抛物线的标准方程, 提高类比能力, 学习数形结合的思维方法。
【重点】理解抛物线的定义, 掌握抛物线的标准方程。
【难点】形成“动点、轨迹、位置、方程”对应联系的能力。
[设计说明]
“8.5抛物线及其标准方程”一节计划用3课时完成
第1课时的教学核心是:
求抛物线的标准方程, 学习过程中体现的本质是“动点成线”和“求曲线的方程”, 知识结构中体现的要点是“抛物线位置特征与标准方程形式特点”的联系。
【教学过程】
一、抛物线
1.引入问题:到定点的距离与到定直线的距离之比为常数的动点轨迹?
2.分类思考、问题转化:
若常数0<e<1, 则动点M的轨迹是一个椭圆;若常数e>1, 则动点M的轨迹是一个双曲线;若常数e=1, 则动点M的轨迹是什么?
3.探究活动:到定点的距离与到定直线的距离相等的动点轨迹
(1) 尝试并讨论:作轨迹上的一个点参考:
特殊的一点:从F到l的垂线段的中点;一般的一点:
方法一:在直线l上任取一点P, 连PF, 作PF的中垂线m, 过点P作l的垂线交m于M, 则M是轨迹上的一点;
方法二:过F作l的垂线FK (K为垂足) , 在直线FK上取一点P, 过P作FK的垂线m, 以F为圆心、│PK│为半径画圆弧交m于M, 则M是轨迹上的一点。
(2) 作多个点, 归纳得到轨迹的示意图
在学生基本得到轨迹之后, 教师借助于《几何画板》演示“动点轨迹”。
[设计说明]
让学生经历“从点到线”的过程, 从中训练学生的归纳、直觉思维。同时, 突出点的特性也为后面求轨迹方程作了“铺垫”。
4.学习抛物线的定义
过渡问题:这是什么曲线呢?
自学课本:抛物线的定义
“平面内到定点的距离与到定直线的距离相等的动点轨迹叫做抛物线”。
思考讨论:定义中有内隐的条件要求吗?
隐含条件:定点不在定直线上
补充:若定点在定直线上, 则轨迹是一条直线 (过这个定点且垂直于这条定直线的直线)
(过程设计:若学生没有发现隐含条件, 则可以直接研究定点在定直线上的情况)
二、求抛物线的方程
1.引入问题:我们原来知道“二次函数的图象是抛物线”, 现在又知道了“平面内到定点的距离与到定直线的距离相等的动点轨迹叫做抛物线”。从“曲线与方程的思想”去考虑, 我们如何说明前后说法没有矛盾?
思路一:说明二次函数的图象满足抛物线的定义 (即从二次函数研究图象的几何性质) ;
思路二:说明抛物线 (在适当的条件下) 可以用二次函数表示 (即求抛物线的方程) 。
[设计说明]引入思维冲突, 激发学生的学习兴趣。
2.已知抛物线, 求方程
已知:抛物线的焦点为F, 准线为l, 求:抛物线的方程。
思考提示:
(1) 作为已知条件, 焦点F到准线l的距离可以假设为p (已知) ;
(2) 从已知条件看, 一般我们可以怎样建立坐标系? (以l为轴) 受二次函数的启发, 为使方程简单, 可以将抛物线的“顶点”作为坐标原点, 但现在“顶点”还没有研究, 怎样建立坐标系的这句话怎么说?
[设计说明]
关于怎样取坐标系才能得到标准方程的问题, 不宜作过份开放的探究学习, 因为在获得结果之前难于对方程形式作预测, 更何况这里的建系方式与一般求轨迹方程时的建系略有不同。
解:过F作l的垂线FK (K为垂足) , 设│FK│=P (焦参数) , 取FK的中点O,
这就是“顶点在原点、焦点在x正半轴上”的抛物线的标准方程。
思考:解析式反映的是二次函数吗? (x是y的二次函数) 。
三、抛物线的标准方程
1.引导问题: (曲线的) 标准方程其中“标准”的含义是什么?
理解:所谓“标准方程”, 主要是方程的“最简”, 从而使曲线的几何性质 (形状大小、位置特征) 能从方程中显露出来。
认识:对于一条确定的曲线, 在坐标系中它的位置的“标准”, 决定了其方程的“标准”。
2.抛物线的四种标准方程, 阅读理解:课本第116页汇总表。
教学要求:让学生参照焦点在x正半轴上的情况
先列出具有明显几何意义一步:, 再比较方程的特点。
位置描述:抛物线的顶点在原点, 焦点在××半轴上;或者说:抛物线的顶点在原点, 开口向××。
数量特征:焦参数p (焦点到准线的距离) , 顶点是焦点到准线的垂线段的中点。
3.标准方程的直接运用
例1 (课本第117页)
(1) 已知抛物线的标准方程是y2=6x, 求它的焦点坐标和准线方程;
(2) 已知抛物线的焦点坐标是F (0, -2) , 求它的标准方程。
四、反馈与巩固
抛物线抛物线标准方程教学设计一、教材分析
选修2-1第二章中共包括四部分内容《曲线与方程》《椭圆》《双曲线》和《抛物线》,其中《抛物线》分两课时,本节是第一课时。抛物线和椭圆、双曲线既有区别,又有联系。区别主要有:从形上,椭圆是封闭的中心对称曲线;双曲线是非封闭中心对称曲线;抛物线是非封闭轴对称曲线;从标准方程的个数上,椭圆、双曲线各有两个,而抛物线有四个。联系主要有:三者都是圆锥曲线;研究方法相同,建立直角坐标系,根据定义,利用坐标法推导标准方程。
教材将《抛物线及其标准方程》安排在《橢圆》《双曲线》之后,是对圆锥曲线知识的延续与完善,同时又为后续研究《抛物线的简单几何性质》提供了线索和依据。在教材中起到了承上启下的作用。
二、教学目标
1.三维目标
《新课程标准》要求:“经历从具体情境中抽象出抛物线模型的过程,掌握抛物线的定义、标准方程、几何图形”。《高考考纲》要求:“了解抛物线在解决实际问题中的作用,理解数形结合的思想”。这节课在教学中起到的作用是:“掌握抛物线的定义,并推导出标准方程,为以后用代数方法解决抛物线问题打下基础,为解决实际问题提供有力工具”。
知识与技能:了解抛物线的定义中定点与定直线的位置关系,抛物线上点满足的条件;掌握抛物线的焦点、准线方程的几何意义;正确区分四种抛物线标准方程特征,并能根据已知条件写出抛物线的标准方程。
过程与方法:借助于生活实例,直观感知抛物线形状;通过折纸实验和观察几何画板中点的运动轨迹,归纳概括抛物线定义;经历抛物线标准方程的推导过程,学会用坐标法求解抛物线标准方程,提高观察、分析、类比、计算的能力。
情感、态度与价值观:通过本节课的学习,感受抛物线在刻画现实世界和解决实际问题中的作用;体验解析几何的基本思想,即数形结合思想、函数与方程思想。
2.教学重点、难点
(1)教学重点及突破策略
抛物线是圆锥曲线之一。抛物线定义是推导抛物线标准方程及研究几何性质的基础,是本节课其他知识产生的核心,所以应让学生充分讨论理解其含义。
重点:抛物线的定义;根据具体条件求出抛物线的标准方程;能根据抛物线的标准方程求出焦点坐标、准线方程。
突破策略:通过折纸实验、几何画板等教学手段,突出重点“抛物线的定义”;通过逐层递进式的问题设置,突出重点“根据具体条件求出抛物线的标准方程;能根据抛物线的标准方程求出焦点坐标、准线方程”;通过“牛刀小试”和“知识升华”等课堂练习进一步突出重点。
(2)教学难点及突破策略
推导抛物线标准方程时,建立坐标系,将几何问题代数化尤为重要。同时,不同的曲线有不同的建系策略,无法统一定论。抛物线标准方程因建系不同共有四种,初学者很容易混淆。所以,恰当的建系和分清四种方程都具有一定难度。
难点:如何选择适当的坐标系推导抛物线标准方程;正确区分四种抛物线标准方程的特征。
突破策略:借助于小组活动,学生之间相互启发,降低思维难度,有效地突破难点“如何选择适当的坐标系推导抛物线标准方程”;通过让学生观察表格和全班交流等形式,有效突破难点“正确区分四种抛物线标准方程的特征”。
三、教学设计
1.模式介绍
本节本节课主要采用我校校本教学模式:“双互动、四统一”。“双互动、四统一”教学模式要求教师和学生恰如其分地扮演好教与学的角色,师生要多维互动,生生要经常互动,人机要适时互动,人与教材要深刻互动。教师要善于创境设疑,导引探究,启发深入,收敛点拨;学生要善于发现问题,积极理顺问题,大胆发散探究,合理作出结论。具体模式为:问题——发散——收敛——综合——创造。
2.教学设计
本节课从学生熟悉的一元二次函数y=ax2(a≠0)谈起,借助于生活中的抛物线直观感知抛物线的形状,并点出本节课的研究方向——抛物线及其标准方程。
为了突出重点,突破难点,本节课设置了三个探究,以“问题——发散——收敛”模式展开。
探究1:学生以学案为基础利用教师提供的卡片纸进行折纸,并借此粗略画出抛物线的简图。结合作图过程,归纳出曲线上的点所满足的几何条件。随之,教师利用几何画板动态演示抛物线的生成过程,完善之前的猜想,归纳出抛物线的定义。
探究2:以开口向右的抛物线为例,以学习小组为单位,根据抛物线的定义,建立直角坐标系推导抛物线方程。之后,全班交流,教师借助于电子白板交互式完成学生的思路演示,并归纳概括标准方程中“标准”的含义。
探究3:类比于开口方向向右的抛物线标准方程的推导过程,推导开口方向向左、向上、向下的抛物线的标准方程及焦点坐标、准线方程,进而将抛物线的标准方程推广到四种。由于学生在探究2中一定程度上掌握了抛物线标准方程推导方法,所以在此环节学生尝试独立探究,完成表格。这样做,可以有效提高学生观察、分析、类比、计算等能力。
抛物线几种标准方程确立后,学生通过观察表格,比较四种抛物线图像、标准方程、焦点坐标和准线方程的区别与联系,归纳概括记忆方法:左2次,右一次,一次定焦点,焦点定开口,开口定符号,4倍要记住。
最后,通过“例题剖析”“牛刀小试”和“知识升华”等环节以“综合——创造”的模式展开深化学生对本节课知识点的记忆与理解及提升解决问题的能力。
参考文献:
\[1\]张祖忻,朱纯,胡颂华.教学设计——基本原理与方法\[M\].上海:上海外语教育出版社,1992.
\[2\]孙玉恒,李宁.“双互动四统一”教学范式探析\[J\].延边教育学院学报,2010,(6).
高中数学“情境·问题·反思·应用”
——“抛物线及其标准方程”教学案例
梁
家
斌
(江苏省金湖中学,江苏 金湖 211600)
摘要:通过几何画板及Fash的演示,使学生直观感受抛物线的形成过程,然后学生运用类比的方法,自主研究、合作交流等方式得出抛物线的定义、标准方程,最后反思应用。
关键词:抛物线;标准方程;教学 1 教学设计
1.1 教学内容分析
圆锥曲线是解析几何中的一个重要内容,本章圆锥曲线分为椭圆、双曲线和抛物线三个部分,三部分在圆锥曲线中的地位相同。本章对抛物线的安排篇幅不多,并非其不重要,主要是因为学生对于椭圆、双曲线的基本知识和研究方法已经熟悉了,这里精简介绍,学生是完全可以接受的,讲解时应采用类比的方法让学生自主研究、合作交流等方式得出抛物线的定义、标准方程,最后反思应用。本课是高二数学§8.5的第一课时,它是学习抛物线的性质及其应用的基础。抛物线的定义很简单但非常重要,学习时要注意和椭圆、双曲线的第二定义相联系,为深刻体会圆锥曲线的统一定义作好充分准备。由椭圆、双曲线、抛物线的定义可以看出,它们都是平面内与一个定点的距离和它到一条直线的距离之比为常数e的点的轨迹,随着e的变化,轨迹的图形发生变化,既可从中得到圆锥曲线的统一定义,又可对学生进行运动、变化、对立、统一的辩证唯物主义思想教育。在由抛物线的定义导出它的标准方程时,可先让学生考虑怎样选择坐标系,在导出方程的过程中,设焦点到准线的距离是p,这就是抛物线方程中参数p的几何意义,所以p的值永远大于0。1.2 数学情境的创设
笔者上这一节课的时间是2003年12月10日上午第二节,当时的背景是淮安市高
一、高二数学研讨会在我校举行,围绕新课改的精神,如何进行课堂教学上的一节公开课。笔者设置了以下的数学情境:
前面我们一起研究了椭圆、双曲线的定义,标准方程,几何性质,大家想一想:椭圆、双曲线的第二定义的内容是什么?
与一个定点的距离和一条定直线的距离的比是常数e的点的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么,当e=1时,它是什么曲线呢?
师生一起利用几何画板进行动画演示得出e=1,指出此时曲线是抛物线。1.3 教学目标
根据教学大纲和考试说明,结合数学情境的创设,确定本节课的素质教育目标是: ⑴知识教学目标:理解和掌握抛物线的定义与标准方程。
⑵能力训练目标:掌握抛物线的定义及其标准方程,掌握抛物线的焦点、准线及方程与焦点坐标的关系,培养学生数形结合、分类讨论、类比的思想。
⑶德育渗透目标:根据圆锥曲线的统一定义,对学生进行运动、变化、对立、统一的辩证唯物主义思想教育。2 教学过程 2.1 创设情境
师:前面我们一起研究了椭圆、双曲线的定义,标准方程,几何性质,大家想一想:椭圆、双曲线的第二定义的内容是什么?
生:与一个定点的距离和一条定直线的距离的比是常数e的点的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么,当e=1时,它是什么曲线呢?
师生一起利用几何画板进行动画演示得出e=1,指出此时曲线是抛物线。
(通过几何画板的演示,由e的变化揭示课题,通过研究e的值,得到抛物线,再观察抛物线的点满足的条件,由学生归纳抛物线的定义,生动、直观。)2.2 探索研究
1、实验、演示,观察猜想。几何画板课件演示:
学生观察 ① 动点M到焦点F的距离|MF|与动点M到定直线l的距离d之间的关系;② 观察追踪动点M得到的轨迹形状。
探索出当e =1时动点M的轨迹为抛物线,进而给出抛物线的定义。
2、抛物线的定义:
平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫抛物线.点F叫抛物线的焦点,直线l叫做抛物线的准线.3、求抛物线的标准方程。师:下面,根据抛物线的定义,我们来求抛物线的方程,过F作准线的垂线,垂足为K,设|MK|=p,如何建立直角坐标系?
先让学生思考,独立建立直角坐标系,教师巡视,从学生中归纳出以下几种解法,视频展台展出。
y2=2px-p2(p>0)
y2=2px+p2(p>0)
y2=2px(p>0)
师:选择哪一种方程作为抛物线的标准方程?并说明理由。
生:将方程y2=2px(p>0)叫做抛物线的标准方程,因为此时方程最简洁,顶点是原点。师:很好!我们把方程y2=2px(p>0)叫做抛物线的标准方程,它表示焦点在x轴的正半轴上,坐标是(p/2,0),准线方程是x=-p/2。(Flash动画演示)
强调:① p的几何意义;
② 已知抛物线的标准方程y2=2px(p>0),迅速写出它的焦点坐标、准线方程; ③ 已知抛物线的焦点F(p/2,0)或准线方程x=-p/2(p>0),迅速写出其标准方程。练习:已知抛物线的标准方程是y2=6x,则焦点坐标是________;准线方程是_____________。生:焦点(3/2, 0),准线方程是x=-3/2。
4、讨论四种位置上的抛物线标准方程
利用Fash,设置一个旋转按钮将焦点在x轴正半轴上的抛物线(上图)逆时针旋转分别得到下列图形,由学生说出标准方程,焦点坐标及准线方程。
图形
标准方程:y2=-2px(p>0)
x2=2py(p>0)
x2=-2py(p>0)焦
点:F(-p/2,0)
F(0,p/2)
F(0,-p/2)准线方程:x=p/2
y=-p/2
y=p/2 师:观察上面的图与表格,观察、归纳,寻找异同? 生:相同点 ① 顶点为原点; ② 对称轴为坐标轴;
③顶点到焦点的距离等于顶点到准线的距离,其值为p(p>0)。不同点 ①一次项变量为x(或y),则焦点在x(或y)轴;若系数为正,则焦点在正半轴上,系数为负,则焦点在负半轴上;
② 焦点在x(或y)轴的正半轴上,开口向右(向上),焦点在x(或y)轴的负半轴上,开口向左(向下)。
(学生先归纳,师然后点评)
师:知道抛物线的标准方程,如何写出焦点坐标与准线方程?
生1:先确定焦点的位置,然后根据表格写出焦点坐标与准线方程。
生2:先观察方程的结构,若一次项变量为x,则焦点的横坐标是一次项系数的1/4,纵坐标为0;若一次项变量为y,则焦点的纵坐标是一次项系数的1/4,横坐标为0。2.3 反思应用
例1 已知抛物线的焦点坐标是F(0,-2),求它的标准方程.生:因为焦点在y轴的负半轴上,并且所以所求抛物线的标准方程是x2=-8y.变:
⑴抛物线的标准方程是y2=-6x,则它的焦点坐标是_,准线方程是___; 生:焦点(-3/2,0),准线方程x=3/2 ⑵抛物线的标准方程是y=-x2/8,则它的焦点坐标是_,准线方程是_; 生:焦点(0,-2),准线方程x=2 ⑶抛物线的焦点F(0,3),则它的标准方程是________; 生:x2=12y ⑷抛物线的准线方程是y=3,则它的标准方程是______; 生:x2=-12y ⑸抛物线的焦点在x轴上,且过点(-3,2),则它的标准方程是_____; 生:由抛物线过点(-3,2),且焦点在x轴上,设方程为y2=-2px(p>0), 将点(-3,2)代入方程得p=-4/3,所以方程为y2=-4x/3。
师:大家想一想,在椭圆(或双曲线)中,若椭圆(双曲线)经过两个点,求它的标准方程时,我们是如何设方程的?
生:一般化,设mx2+ny2=1(m>0,n>0)师:这里能否一般化?
生2:能!∵抛物线的焦点在x轴上,∴设方程y2=mx(m≠0)将点(-3,2)代入方程得m=-4/3,所以方程为y2=-4x/3。例2 求适合下列条件的抛物线的标准方程 ⑴过点(-3,2);
生:设方程为y2=mx(m≠0)或x2=ny(n≠0),将点的坐标代入得
y2 =-4x/3或 x2=9y/2 ⑵焦点为直线l:2x+y-4=0与坐标轴的交点。生:先求出直线与坐标轴的交点(2,0)或(0,4),故标准方程为y2 =8x或 x2=16y 例3 点P(2,y)为抛物线y2=8x上的一点,F是它的焦点,则|PF|=______,y=_____。
生:由抛物线y2=8x知准线方程x=-2,根据抛物线的定义知|PF|等于点P到准线的距离4,将点的坐标代入方程有y=±4。
师:解决这类问题,首先心中要有一个图形,利用定义求解是关键。变:若点Q为抛物线的一点,⑴若|QF|=4,则点Q的坐标是_________; 生:(2,±4)⑵|QF|的最小值是_______; 生:2 ⑶若A(3,4),则|QA|+|QF|的最小值是____,此时点Q的坐标是_______。生:5;(2,4)2.4 归纳总结
师:下面请同学们回忆一下,这节课学习的主要内容?
生:⑴抛物线的定义、焦点、准线、标准方程等基本知识及其相互联系; ⑵理解p的几何意义,即焦点到准线的距离,p>0;
⑶掌握用坐标法求曲线方程的方法,要注意选好坐标系的恰当位置。师:用到了哪些数学思想方法:
生:坐标法、数形结合、待定系数法、定义法 师:一起观看表格,并填充(表在几何画板上)3 回顾反思
这堂课受到听课教师和学生的好评,主要是因为把学习的主动权交给学生,利用几何画板创设情境,使得学习内容直观、生动,抓住解析几何的核心─数形结合。3.1创设情境是上好课的基础
利用几何画板从学生已有的知识进行迁移,采用类比的方法让学生主动学习、合作交流,体验数学的发现和创造过程,培养学生数学表达和交流的能力。3.2恰当引导学生提出数学问题
在上课前需要事先预想学生可能会提出的问题以及可能提出的解决方法,但是也不能忽视学生的发散思维,在讲授过程中并不是每一个环节都能按照教师预想的步骤进行,对于课堂上突发性的问题,教师要能自如地应对。比如,在如何建立直角坐标系求方程时,有一个学生提出以FK为y轴,FK的中垂线为x轴,虽然与我们的过程不一致,也要加以肯定与鼓励,其实从另一个角度来看,反而是一件好事,为我们后面谈其它三种形式埋下引子。3.3 变式训练,提高学生解题能力与思维深度
在本例中,我们围绕例1进行变式训练,师生围绕几个典型问题展开了充分的讨论,学生在质疑、讨论、总结的过程中,理解了抛物线的定义与标准方程,形成了自己的数学思想方法,更触发了学生积极思考、勤奋探索的动力,开发了学生的智慧源泉,实现了举一反
教学目标:
(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程,会由标准方程求出椭圆的交点和焦距;
(二)能力目标:通过对椭圆概念的引入和标准方程的推导,培养学生分析、探索的能力,增强学生运用代数法解决几何问题的能力;
(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神。
教学重点:椭圆的定义和椭圆的标准方程的推导。教学难点:椭圆标准方程的推导。
教学方法:探究式教学法(教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力。)
教具准备:自制教具(圆柱体、细绳)。
教学过程:(一)启发诱导,推陈出新
1、复习旧知识:拉直一根细线,一端固定,作一个圆,由此回忆圆的定义(到一点的距离等于定长的点的轨迹),圆的标准方程;
2、提出新问题:到两点的距离等于定长的点是什么轨迹呢? 尝试作图;
3、创设情境,引出课题:“椭圆及其标准方程”。(二)小组合作,形成概念
下面请同学们思考下面的问题:
1、在作图时,视笔尖为动点,线的两个固定的端点为定点,动点到两定点距离之和符合什么条件?其轨迹如何?
2、改变两端点之间的距离,使其与绳长相等,画出的图形还是椭圆吗?
3、当绳长小于两图钉之间的距离时,还能画出图形吗?
学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆、线段、不存在。
归纳出椭圆的定义:平面内到两个定点F1、F2的距离之和等于定长(大于F1F2)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
(三)椭圆标准方程的推导
1、建立适当坐标系(让学生根据自己的经验来确定)
原则:尽可能使方程的形式简单、运算简单;主要应使曲线对于坐标轴具有较多的对称性。
2、标准方程推导过程如下:
①建立直角坐标系:以直线F1F2为x轴,线段F1F2的垂直平分线为y轴,建
立如图所示的坐标系;
②确定点的坐标:设F1F22c,则F1c,0,F2c,0,设Px,y是椭圆上的任意一点;
③设定长为2a,由条件PF1PF22a得
xc2y2xc2y22a;
x2y2④化简:得到椭圆方程为221。
ab(通过学生自己动手推导方程是学生构建知识的一个过程。)
3、归纳方程特点,巩固上述知识。
4、延伸:①焦点在y轴上:F10,c,F20,c
y2x2②方程:221
ab③a,b,c的关系:b2a2c2,ab0,ac0
(四)例题讲解
例1:平面内两个定点的距离是8,写出到这两个定点距离的和是10的动点的轨迹方程。
解:这个轨迹是椭圆,两个定点是焦点,用F1、F2表示。
取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴。2a10,2c8
a5,c4,b2a2c252429,即b3
x2y2x2y2这个椭圆的标准方程是221,即1
25953(例1是巩固椭圆的定义及标准方程)
x2y2x2y21与椭圆c2:1的焦点。
例2:分别求椭圆c1:433解:43
椭圆c1的焦点在x轴上,椭圆c2的焦点在y 轴上
a24,b23,ca2b21
1,椭圆c1的两个焦点分别是0和1,0 0,是1和0,1。
椭圆c2的两个焦点分别(例2会由椭圆的标准方程求出椭圆的焦点坐标和焦距)
(五)课堂练习
课本P61 A 1(2)(3)2(3)(4)(五)课堂小结
1、椭圆定义
2、焦点分别在x轴和y轴上的椭圆的标准方程(结合图形,表述焦点坐标,焦距,系数的关系等)
3、考虑一下将椭圆平移到坐标轴任意位置时的坐标,留给同学们课后思考
教学目标(一)知识目标
1.掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径; 2.理解并掌握切线方程的探求过程和方法。(二)能力目标
1.进一步培养学生用坐标法研究几何问题的能力;
2.通过教学,使学生学习运用观察、类比、联想、猜测、证明等合情推理方法,提高学生运算能力、逻辑思维能力.(三)情感目标
充分调动学生学习数学的热情,激发学生自主探究问题的兴趣,同时培养学生勇于探索、坚忍不拔的意志品质。教学重、难点(一)教学重点
圆的标准方程的理解、掌握。(二)教学难点
圆的标准方程的应用。教学过程
Ⅰ.复习提问、引入课题
师:前面我们学习了曲线和方程的关系及求曲线方程的方法。请同学 1
们考虑:如何求适合某种条件的点的轨迹?
生:①建立适当的直角坐标系,设曲线上任一点M的坐标为(x,y);②写出适合某种条件p的点M的集合P={M ︳p(M)};③用坐标表示条件,列出方程f(x,y)=0;④化简方程f(x,y)=0为最简形式。⑤证明以化简后方程的解为坐标的点都是曲线上的点(一般省略)。[多媒体演示]
师:这就是建系、设点、列式、化简四步曲。用这四步曲我们可以求适合某种条件的任何曲线方程,今天我们来看圆这种曲线的方程。[给出标题]
师:前面我们曾证明过圆心在原点,半径为5的圆的方程:x2+y2=52 即x2+y2=25.若半径发生变化,圆的方程又是怎样的?能否写出圆心在原点,半径为r的圆的方程? 生:x2+y2=r2.师:你是怎样得到的?(引导启发)圆上的点满足什么条件? 生:圆上的任一点到圆心的距离等于半径。即,亦即 x2+y2=r2.师:x2+y2=r2 表示的圆的位置比较特殊:圆心在原点,半径为r.有时圆心不在原点,若此圆的圆心移至C(a,b)点(如图),方程又是怎样的?
生:此圆是到点C(a,b)的距离等于半径r的点的集合,由两点间的距离公式得
即:(x-a)2+(y-b)2= r2
Ⅱ.讲授新课、尝试练习
师:方程(x-a)2+(y-b)2= r2 叫做圆的标准方程.特别:当圆心在原点,半径为r时,圆的标准方程为:x2+y2=r2.师:圆的标准方程由哪些量决定? 生:由圆心坐标(a,b)及半径r决定。
师:很好!实际上圆心和半径分别决定圆的位置和大小。由此可见,要确定圆的方程,只需确定a、b、r这三个独立变量即可。
1、写出下列各圆的标准方程:[多媒体演示]
① 圆心在原点,半径是3
:________________________ ② 圆心在点C(3,4),半径是 :______________________ ③ 经过点P(5,1),圆心在点C(8,-3):_______________________
2、变式题[多媒体演示]
① 求以C(1,3)为圆心,并且和直线3x-4y-7=0相切的圆的方程。
答案:(x-1)2 +(y-3)2 = ② 已知圆的方程是(x-a)2 +y2 = a2 ,写出圆心坐标和半径。
答案: C(a,0), r=|a| Ⅲ.例题分析、巩固应用
师:下面我们通过例题来看看圆的标准方程的应用.[例1]已知圆的方程是 x2+y2=17,求经过圆上一点P(,)的切线的方程。
师:你打算怎样求过P点的切线方程?
生:要求经过一点的直线方程,可利用直线的点斜式来求。
师: 斜率怎样求? 生:。。。
师:已知条件有哪些?能利用吗?不妨结合图形来看看(如图)生:切线与过切点的半径垂直,故斜率互为负倒数
半径OP的斜率 K1=,所以切线的斜率 K=- =- 所以所求切线方程:y-= -(x-)即: x+ y=17
(教师板书)师:对照圆的方程x2+y2=17和经过点P(,)的切线方程 x+ y=17,你能作出怎样的猜想? 生:。。。
师:由x2+y2=17怎样写出切线方程 x+ y=17,与已知点P(,)有何关系?
(若看不出来,再看一例)
[例1/]
圆的方程是x2+y2=13,求过此圆上一点(2,3)的切线方程。
答案:2x+3y=13 即:2x+3y-13=0 师:发现规律了吗?(学生纷纷举手回答)
生:分别用切点的横坐标和纵坐标代替圆方程中的一个x和一个y,便得到了切线方程。
师:若将已知条件中圆半径改为r,点改为圆上任一点(xo,yo),则结论将会发生怎样的变化?大胆地猜一猜!生:xox+yoy=r2.师:这个猜想对不对?若对,可否给出证明? 生:。。。
[例2]已知圆的方程是 x2+y2=r2,求经过圆上一点P(xo,yo)的切线的方程。
解:如图(上一页),因为切线与过切点的半径垂直,故半径OP的斜率与切线的斜率互为负倒数
∵半径OP的斜率 K1=,∴切线的斜率 K=- =- ∴所求切线方程:y-yo= -(x-xo)即:xox+yoy=xo2+yo亦即:xox+yoy=r2.(教师板书)
当点P在坐标轴上时,可以验证上面方程同样适用。
归纳总结:圆的方程可看成 x.x+y.y=r2,将其中一个x、y用切点的坐标xo、yo 替换,可得到切线方程
[例3]右图为某圆拱桥的一孔圆拱的示意图.该圆拱跨度AB=20M,拱高OP=4M,在建造时每隔4M需用一个支柱支撑,求支柱A2P2的长度。(精确到0.01M)
引导学生分析,共同完成解答。
师生分析:①建系; ②设圆的标准方程(待定系数);③求系数(求出圆的标准方程);④利用方程求A2P2的长度。
解:以AB所在直线为X轴,O为坐标原点,建立如图所示的坐标系。则圆心在Y轴上,设为
(0,b),半径为r,那么圆的方程是
x2+(y-b)2=r2.∵P(0,4),B(10,0)都在圆上,于是得到方程组:
解得:b=-10.5 ,r2=14.52
∴圆的方程为 x2+(y+10.5)2=14.52.将P2的横坐标x=-2代入圆的标准方程 且取y>0 得:y=
≈14.36-10.5=3.86(M)答:支柱A2P2的长度约为3.86M。Ⅳ.课堂练习、课时小结 课本P77练习2,3 师:通过本节学习,要求大家掌握圆的标准方程,理解并掌握切线方程的探求过程和方法,能运用圆的方程解决实际问题.Ⅴ.问题延伸、课后作业
(一)若P(xo,yo)在圆(x-a)2+(y-b)2= r2上时,試求过P点的圆的切线方程。
常规解法:根据运动的独立性, 把平抛运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动来处理.设抛出点位置坐标为 (x, y) , 初速度为v0, 物体抛出运动至A点的时间为tA, 物体抛出运动至B点的时间tB, 物体抛出运动至C点的时间为tC, 有:
联立上述方程求解, 可得:v0=2m/s, x=1, y=0.
或者根据运动的独立性, 结合数据特点列方程有:
抛体由A运动至B及由B运动至C的时间相等, 设为t, 则有 (20-11.25) - (11.25-5) =gt2得
物体经过B位置时的竖直分速度
物体从抛出运动至B所需时间
水平位移xB=v0×tB=3 m, 则抛出点的水平坐标为4-3=1 m,
竖直位移
我们知道平抛运动的轨迹是抛物线, 而抛出点则对应抛物线的顶点.可将抛物运动轨迹方程设为y=ax2+bx+c,
根据三点位置坐标列方程有:
a×32+b×3+c=5 ⑦
a×42+b×4+c=11.25 ⑧
a×52+b×5+c=20 ⑨
联立方程组解得抛物线方程为y=1.25x2-2.5x+1.25, 即y=1.25 (x-1) 2 ⑩
由此可知, 抛物线顶点 (即抛出点) 坐标为 (1, 0) .
例题二:如图2所示, 在地面上发射一枚炮弹, 炮弹出炮口时速度v=141 m/s与水平方向成45°斜向上.不计空气阻力, 重力加速度g取10 m/s2, 求炮弹上升的最大高度及水平射程.
解析:炮弹的运动是斜抛运动, 轨迹是抛物线, 抛物线的顶点就是炮弹运动达到的最高点, 落点在水平地面上.
以抛出点为原定, 水平方向为x轴, 竖直向上为y轴, 建立直角坐标系.当运动时间为t时, 炮弹所在位置坐标为x=vcos45°×t, 得
则炮弹运动轨迹方程为
即
故抛物线的顶点坐标为 (1000, 500) , 由此可知炮弹上升最大高度是500 m.
当炮弹落地时, 纵坐标为0, 由③解得横坐标为0或2000 m (0舍去) , 则炮弹的水平射程是2000 m.
一类半线性抛物方程组的爆破速率
主要讨论了一类具有大初值的半线性抛物方程组初值问题爆破解的爆破速率.利用 Scaling方法,在更弱的`条件下获得了爆破解的爆破速率的上估计,推广了相关的结果.
作 者:李玉环 LI Yu-huan 作者单位:四川师范大学,数学与软件科学学院,四川,成都,610066 刊 名:四川师范大学学报(自然科学版) ISTIC PKU英文刊名:JOURNAL OF SICHUAN NORMAL UNIVERSITY(NATURAL SCIENCE) 年,卷(期):2007 30(6) 分类号:O175 关键词:爆破速率 爆破 半线性抛物方程组◆ 知识与技能目标
理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.
◆ 过程与方法目标(1)预习与引入过程
当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、你能举出现实生活中圆锥曲线的例子.当学生把上述两个问题回答清楚后,要引导学生一起探究P41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm长,两端各结一个套),教师准备无弹性细绳子一条(约60cm,一端结个套,另一端是活动的),图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?〖板书〗2.1.1椭圆及其标准方程.
(2)新课讲授过程
(i)由上述探究过程容易得到椭圆的定义.
〖板书〗把平面内与两个定点F1,F2的距离之和等于常数(大于F1F2)的点的轨迹叫做椭圆(ellipse).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为M时,椭圆即为点集PM|MF1MF22a.
(ii)椭圆标准方程的推导过程 提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.
无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理.
设参量b的意义:第一、便于写出椭圆的标准方程;第二、a,b,c的关系有明显的几何意义.
y2x2 类比:写出焦点在y轴上,中心在原点的椭圆的标准方程221ab0.
ab(iii)例题讲解与引申
例1 已知椭圆两个焦点的坐标分别是2,0,2,0,并且经过点标准方程.
分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c.引导学生用其他方法来解.
53,,求它的22x2y253另解:设椭圆的标准方程为221ab0,因点,在椭圆上,ab2292512a102则4a. 4ba2b24b6例2 如图,在圆x2y24上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是什么?
分析:点P在圆x2y24上运动,由点P移动引起点M的运动,则称点M是点P的伴随点,因点M为线段PD的中点,则点M的坐标可由点P来表示,从而能求点M的轨迹方程.
x2y21上动点,求线段AP中点M的轨迹方引申:设定点A6,2,P是椭圆
259程.
解法剖析:①(代入法求伴随轨迹)设Mx,y,Px1,y1;②(点与伴随点的关
x12x6系)∵M为线段AP的中点,∴;③(代入已知轨迹求出伴随轨迹),∵
y2y21x3y1x12y121M1,∴点的轨迹方程为;④伴随轨迹表示的范围.
2592594例3如图,设A,B的坐标分别为5,0,5,0.直线AM,BM相交于点M,且它们的斜率之积为224,求点M的轨迹方程. 9分析:若设点Mx,y,则直线AM,BM的斜率就可以用含x,y的式子表示,由于直线AM,BM的斜率之积是的关系式,即得到点M的轨迹方程.
解法剖析:设点Mx,y,则kAM4,因此,可以求出x,y之间9yx5,x5yx5; x5yy4,化简即可得点M的轨迹方程. 代入点M的集合有x5x59kBM
引申:如图,设△ABC的两个顶点Aa,0,Ba,0,顶点C在移动,且kACkBCk,且k0,试求动点C的轨迹方程. 引申目的有两点:①让学生明白题目涉及问题的一般情形;②当k值在变化时,线段AB的角色也是从椭圆的长轴→圆的直径→椭圆的短轴.
◆ 情感、态度与价值观目标
通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;必须让学生认同与体会:椭圆的定义及特殊情形当常数等于两定点间距离时,轨迹是线段;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,及引入参量ba2c2的意义,培养学生用对称的美学思维来体现数学的和谐美;让学生认同与领悟:例1使用定义解题是首选的,但也可以用其他方法来解,培养学生从定义的角度思考问题的好习惯;例2是典型的用代入法求动点的伴随点的轨迹,培养学生的辩证思维方法,会用分析、联系的观点解决问题;通过例3培养学生的对问题引申、分段讨论的思维品质.
◆能力目标
(1)想象与归纳能力:能根据课程的内容能想象日常生活中哪些是椭圆、双曲线和抛物线的实际例子,能用数学符号或自然语言的描述椭圆的定义,能正确且直观地绘作图形,反过来根据图形能用数学术语和数学符号表示.
(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.
(3)实践能力:培养学生实际动手能力,综合利用已有的知识能力.
(4)数学活动能力:培养学生观察、实验、探究、验证与交流等数学活动能力.(5)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.
甘肃省张掖市实验中学 雒淑英
一.本课数学内容的本质、地位及作用分析:
本节课是《全日制普通高级中学教科书(必修)·数学》(人民教育出版社中学数学室编著)第二册(上)第八章第一节《椭圆及其标准方程》第一课时。
用一个平面去截一个对顶的圆锥,当平面与圆锥的轴夹角不同时,可以得到不同的截口曲线,它们分别是圆、椭圆、抛物线、双曲线,我们将这些曲线统称为圆锥曲线。圆锥曲线的发现与研究始于古希腊,当时人们从纯粹几何学的观点研究了这种与圆密切相关的曲线,它们的几何性质是圆的几何性质的自然推广。17世纪初期,笛卡尔发明了坐标系,人们开始在坐标系的基础上,用代数方法研究圆锥曲线。在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想。
解析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系。在第七章中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形,在第八章,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。由于教材以椭圆为重点说明了求方程、利用方程讨论几何性质的一般方法,然后在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用。
本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等。因此,教学时应重视体现数学的思想方法及价值。
根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用动态作图优势为学生的数学探究与数学思维提供支持。二.教学目标分析:
按照教学大纲的要求,根据教材分析和学情分析,确定如下教学目标: 1.知识与技能目标: ①理解椭圆的定义。
②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力。2.过程与方法目标:
①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力。②巩固用坐标化的方法求动点轨迹方程。
③对学生进行数学思想方法的渗透,培养学生利用数学思想方法分析和解决问题的意识。3.情感态度价值观目标:
①充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识。
②重视知识的形成过程教学,让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与创新的乐趣。
③通过对椭圆定义的严密化,培养学生形成扎实严谨的科学作风。
④通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美。
⑤利用椭圆知识解决实际问题,使学生感受到数学的广泛应用性和知识的力量,增强学习数学的兴趣和信
心。
三.教学问题诊断:
1.教学的第一个问题可能是椭圆是怎样画出的。教学中通过椭圆与圆的关系,让学生观察与操作,利用水杯及细绳建立直观的概念,要鼓励学生大胆操作。
问题解决方案一:学生可能提出将圆柱形水杯换成圆锥。(解释方法一致)问题解决方案二:两定点距离、绳长与图形的关系,通过操作,完善定义。2.教学的第二个问题是椭圆标准方程的推导与化简中含有两个根式的等式化简。
问题解决方案:由于用两边同时平方法化简较为繁琐,有些学生完成可能的有困难,老师要及时加以指导。如果学生有能力掌握,可运用方案二“等差数列法”或方案三“三角换元法” 降低难度。
3.教学的第三个问题可能是竖椭圆方程的得出。
问题解决方案:可以利用类比“化归”的思想,通过翻折和旋转的方式实现图形变换,从而利用焦点在x轴上椭圆的标准方程得到焦点在y轴上椭圆的标准方程,避免繁琐、重复的推导过程。四.教法特点以及预期效果分析:
本节课采用启发式与试验探究式相结合的教学方式。
在启发式教学过程中,以问题引导学生的思维活动。教学设计突出了对问题链的设计,教学中,结合学生的思维发展变化不断追问,使学生对问题本质的思考逐步深入,思维水平不断提高。
通过学生试验的方法进行教学。本节课主要是通过直观感知、操作确认归纳出椭圆的定义。在试验中注重数学的逻辑性和严谨性。本节课立足教材,重视对现象的观察、分析,引导学生通过自己的观察、操作等活动获得数学结论,把合情推理作为一个重要的推理方式融入到学生的学习过程中.
通过学生反思,自己总结归纳学习内容,构建知识链。在总结时采用“一个知识点、两种方法、三种思想”的方式,学生目标明确,学习重点清晰,易于掌握。