锐角三角函数第二课时

2024-12-26 版权声明 我要投稿

锐角三角函数第二课时

锐角三角函数第二课时 篇1

§1.1.锐角三角函数(第二课时)教案

授课教师: 授课日期:2017、11、17 教学目标: 1.使学生理解锐角正弦、余弦的定义 2.会求直角三角形中锐角的正弦、余弦值

3.通过探索正弦、余弦定义,培养学生观察、比 较、分析、概括等逻辑思维能力.教学重点: 1.理解锐角正弦、余弦的定义;会求直角三角形中锐角的正弦、余弦值.教学难点: 求直角三角形中锐角的正弦、余弦值.教学方法: 引导—探索法.教学过程

一、温故互查

1.在Rt△ABC中,∠C=90,tanA=

12,BC=3,则AC=_______ 132.在Rt△ABC中,如果各边的长度都扩大2倍,则锐角A的正切()A.扩大2倍 B.缩小到原来的0.5倍 C.扩大4倍 D.不变

二、设问导学

(1)如图,在Rt△ABC中,∠C=90,∠A的对边是_________,∠A的邻边是________,锐角A的大小确定后,其对边与邻边的比值是

孤山九年制学校 九年级数学下册

__________的。

(2)如图,Rt△AB1C1和Rt△AB2C2的关系是 ;(3)B1C1B2C2和的关系是 ; AB1AB2C1

C2

B1

B2

A(4)如果改变B2在斜边上的位置,则

B1C1B2C2 和的关系是 ;

AB1AB2从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________.【归纳结论】在Rt△ABC中,如果锐角A 确定,那么∠A的对边与斜边的比、邻边与斜边的比也随之___.

∠A的对边与斜边的比值叫做∠A的正弦(sine),记作sinA,即:sinA=___

∠A的邻边与斜边的比值叫做∠A的余弦(cosine),记作cosA,即:cosA= ___

锐角A的正切、正弦、余弦都是∠A的三角函数,当∠A变化时,相应的∠A的正切、正弦、余弦值也随之_____.在图中,梯子的倾斜度与与sinA和cosA有关,sinA的值越大,梯子越___,cosA的值越大,梯子越___.

三、自学检测

1、求出图中∠A的三个锐角三角函数值。

2、在Rt△ABC中,∠B=90,AC=200,sinA=,求BC的长,cosA和

5孤山九年制学校 九年级数学下册

tanB的值。

3、.如图,在 Rt△ABC 中,∠C =90°,cos A=多少?sinB呢?

四、巩固练习

1、在△ABC中 ∠C=90° tanA=1/3 求sinB的值 2、课本随堂练习第1、2题。

五、课堂小结(俩人小组互述今天的收获)

六、作业布置(课本第6页第1题,第7页第4题。)

12,AC=10,AB等于13

锐角三角函数 篇2

一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaa、cosa、tana表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。

二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。

三.情感目标:提高学生对几何图形美的认识。

教材分析:

1.教学重点: 正弦,余弦,正切概念

2.教学难点:用含有几个字母的符号组siaa、cosa、tana表示正弦,余弦,正切

教学程序:

一.探究活动

1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。

2.归纳三角函数定义。

siaa= ,cosa= ,tana=

3例1.求如图所示的rt ⊿abc中的siaa,cosa,tana的值。

4.学生练习p21练习1,2,3

二.探究活动二

1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°

归纳结果

30°

45°

60°

siaa

cosa

tana

2. 求下列各式的值

(1)sia 30°+cos30°(2) sia 45°- cos30°(3) +ta60°-tan30°

a

b

c

三.拓展提高p82例4.(略)

1. 如图在⊿abc中,∠a=30°,tanb= ,ac=2 ,求ab

四.小结

《锐角三角函数》评课稿 篇3

1、正确分析现在中考命题的方向、热点及考纲要求,得出有关锐角三角函数考点的知识要点及各种题型,通过课堂教学在锐角三角函数的基本概念及运算等基础知识和基本技能得到相应的发展。

2、本节课采用分阶段,分层次归类复习。

(1) 基本概念领会阶段。学生对概念,公式,定义的理解与掌握。

(2) 基本方法学习阶段。使学生对有关基本技能训练,掌握课本例题类型,能举一反三,触类旁通。

(3) 针对练习阶段。检查学生对基本概念,基本技能的掌握情况。

3、本节课选题方面有以下几个特点。

(1)有针对性,突出重要的知识点和思想方法。

(2)具有一定的应用性,即能考察学生的数学基础知识,又能考察学生的数学应用能力。

(3)富有一定的思考性。有几个例题,有分类思想方法,能锻炼学生思维的灵活性。

(4)有计划地设置练习中的思维障碍,使练习具有合适的梯度,提高训练的效率。

锐角三角函数的简单应用教学反思 篇4

直角三角形中边角之间的关系,是现实世界中应用最广泛的关系之一。锐角三角函数在解决现实问题中有着重要的作用,因此,学好锐角的三种三角函数,正切,正弦,余弦的定义是关键。

1、通过课堂教学,在合作探究中培养学生的问题意识。

2、课上问题引入法,从教材探究性问题梯子的倾斜度入手,让学生主动参与学习活动。用特殊值探究锐角的三角函数时,学生们表现得非常积极,从作图,找边、角,计算各个方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出,然后就问:三角函数与直角三角形的边、角有什么关系,三角函数与三角形的形状有关系吗?进一步深入地去认识三角函数。

3、在教学中,我还注重对学生进行数学学习方法的指导。在数学学习中,有一些学生往往不注重基本概念、基础知识,认为只要会作题就可以了,结果往往失分于选择题、填空题等一些概念性较强的题目。通过引导学生进行知识梳理,教会学生如何进行知识的归纳、总结,进一步帮助学生理解、掌握基本概念、基础知识。

4、教学中存在许多缺陷,使我进一步研究和探索。我们必须清醒地认识到,课程改革势在必行,在教学中加入新的理念,发挥传统教学的基础性和严谨性,不断地改善教法、学法,才能适应现代教学。

总之,在教学方法上,改变教师教、学生听的传统模式,采用学生自主交流、合作学习、教师点拨的方式,把主动权真正交给学生,让学生成为课堂的主人,才能提高学生的问题意识,才能提高学生成绩。

反思二:锐角三角函数的简单应用教学反思

教学反思数学是一门应用性很强的学科。它来源于生活,又实践于生活。以登山缆车,荡秋千情境,引导学生将实际问题抽象为数学问题,构造几何模型,应用三角函数的知识解决问题。在整体设计上,由易到难,难度层层推进,尽量满足不同层次学生的学习需要。

数学三角函数的教学在生活中的应用还是比较多的,比如,测量问题,坡度问题,旋转问题等等。解直角三角形的应用题和数学活动,有利于培养学生的空间想象能力,即要求学生通过对实物的观察或根据文字语言中的某些条件,画出适合他们的图形,多给学生充分的自主思考空间和时间,让学生自主积极地学习。

在具体教学过程中,要培养学生的注意力,更要注意兴趣的培养。

我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率,提高成绩。

反思三:锐角三角函数的简单应用教学反思

这节课是在学习了锐角三角函数之后对三角函数的应用,教的时候先从一个实际问题出发引出解直角三角形的内容,然后让学生探究讨论什么是解直角三角形,让学生知道解直角三角形需要用到的量和量之间的关系,哪五个元素,然后这些元素之间的关系,知道两个元素其中必须包括有一条边怎样求出剩下的那三个。

锐角三角函数复习课的评课稿 篇5

本节复习课王老师的教学设计较好地体现了“教为主导,学为主体”的新课标的教学理念,通过复习知识点、运用知识解决具体问题,帮助学生使知识与能力共同发展、提升,如特殊角三角函数值,王老师在帮助学生回忆特殊角三角函数值的基础上,观察、分析、发现三角函数值随着角度变化的变化规律,及正弦、余弦值的变化范围等,紧接着的应用练习有较强的针对性,师生平等的交流,可以看到学生在学习过程中,不是消极被动的接受知识,而是能动的知识建构。

三角函数是反映三角形边角关系的函数,它的解题过程富有解题技巧,弄得好又爽又快,弄不好一团糟。王老师精心选择了一些好题,让学生历经认知、探索的课堂教学过程,如计算tan29°tan60°tan61°和已知tanα=2,则sinα-cosαsinα+cosα 的值为 等,王老师让学生思考以后,合理地点拨、纠偏,确定解题途径,使学生有一种“提升”的参与状态。

能帮助学生掌握一定的学习方法,发展学生自主学习的主动性,展现出对学生可持续发展的学习能力的潜在影响力,是学科教学体现教书育人的一个重要方面。

锐角三角函数说课稿 篇6

初三十班

赵景花

各位评委老师,大家好。今天我说课的课题是人教版九年级数学下册28章《锐角三角函数复习课》。对于本节课,我将从教材内容、学情、教学目标、教学方法和学法、教学准备、教学环节、作业、板书设计等几个方面加以说明。

一、教材内容分析

本节教材是人教版初中数学新教材九年级下第28章内容,是初中数学的重要内容之一。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础。因此,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。本节重点是对锐角三角函数知识中考考点进行全面的分析,掌握。这些知识点是学生必须掌握,能够拿到的分数的部分,保证每个学生不失分。

二、学情分析

九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。并且学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础。心理上九年级学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

学生要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。

三、教学目标

根据教学内容和学情确定本节课的教学目标:

1.知识与技能:理解锐角三角函数的定义,并熟记特殊角的锐角三角函数值进行计算;能用锐角三角函数知识解直角三角函数,解决实际问题。并体会锐角三角函数简化综合题运算过程的意义。

2.过程与方法: 经历锐角三角函数知识的复习总结过程,归类中考考点,培养学生观察分析探究问题和自学能力。

3、情感态度价值观:通过复习,归纳,总结,体会数学的合理性和严谨性及各知识之间的

联系。使学生养成积极思考,总结,综合知识点的好习惯。

四、教学方法和学法分析

1教法:学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的学情情况,本节课采用启发式、探究式教学法。倡导学生主动参与教学实践活动,以独立思考和合作交流的形式发现、分析和解决问题,给学生充分展示自我空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

2学法:本节课的学习方法采用自学探究、互助合作、讨论交流方法。本节课数学活动贯穿始终,既有学生自主探究的,也有小组合作交流的,目的让学生从自主探究中发展,从合作交流中提高。

五、教学准备:制作课件,几何画板

六、教学过程:

教学过程分为:

一、知识点复习;

二、考点分类,加之例题分析,以练习,讲解,总结环节进行;

三、总结学习经验。考点一:锐角三角函数定义

考点二:特殊角的锐角三角函数进行计算 考点三:锐角三角函数之间的联系与转化 考点四:解直角三角形的应用

考点五:锐角三角函数在综合运算中的简化功能

锐角三角函数第二课时 篇7

A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形

2.在锐角△ABC中,求证:sinAsinBsinCcosAcosBcosC。

3.在△ABC中,若角B为钝角,则sinBsinA的值()

A.大于零B.小于零C.等于零D.不能确定

4.若A,B是锐角三角形的两内角,则tanAtanB_____1(填>或<)。

5.在锐角△ABC中,求证:tanAtanBtanC1。

6.在△ABC中,∠C是钝角,设xsinC,ysinAsinB,zcosAcosB, 则x,y,z的大小关系是___________________________。

7.在△ABC中,若sinAsinB,则A一定大于B,对吗?填_________(对或错)

8.在△ABC中,C90,0A45,则下列各式中正确的是()

A.sinAcosAB.sinBcosAC.sinAcosBD.sinBcosB

9.定义在(,)上的偶函数满足f(x2)f(x),且f(x)在[3,2]上为减函数,若,是锐角三角形的两个内角,则()

A.f(sin)f(cos)B.f(sin)f(cos)

C.f(sin)f(sin)D.f(cos)f(cos)

上一篇:五月党组织生活会策划书下一篇:小学生假期家长评语范文