高一数学试讲教案

2024-12-23 版权声明 我要投稿

高一数学试讲教案(共10篇)

高一数学试讲教案 篇1

1、主题:the olympic games(奥运会)

本节课是本单元的阅读课an interview.描述的是古希腊的一位作家穿越时空,到现代社会采访一位中国女孩的奇幻之旅,向我们展现了奥运会的有关知识以及古代与现代奥运会的异同。

2、教学目标:

知识目标:让学生了解奥运会。

能力目标:训练并培养学生的听、说、读、写能力。

情感目标:让学生学习奥运精神,热爱运动,增强体质。

3、教学重难点:古代与现代奥运会的异同,有关奥运会的英语表达方式。

4、学生分析和教学法:

当今高中生正处于好奇,求知欲强的年龄阶段,尤其在素质教育和新课改的背景下我们教学更应该突出以学生为中心,教师为指导,因此我选择的教学法是任务型教学法和情境交际法,教具是多媒体和麦克风。

二、教学步骤

step1 leading in导入(预演热身,激情导入)

给学生展示奥运会会旗、会徽、五环,伴随着08北京奥运主题曲you and me《我和你》引入正题,激发学生学习的兴趣。

step2 fast reading快读(雾里看花、水中望月、粗枝大叶、不求甚解)

要求学生快速浏览、默读课文,叙述课文的大意,从而对课文有个大体了解。

step3 careful reading细读(穿越迷雾、云开雾散、粗中有细、精益求精)

在本环节我设计了一个表格,关于古代和现代奥运会的异同,让学生在细读过程中找出答案,从而对课文有个更详细的认识。

(温馨提示:在学生阅读时,教师应该走下讲台,来回走动,以便解决学生遇到的问题;在学生回答问题时,教师应多给予表扬和鼓励。)

step4 summary总结全文(化零为整、资源整合)

让学生根据上述表格以及关键词复述课文,进一步巩固课文。

step5 language points语言点(讲练结合、学以致用、链接高考)

教师呈现例句----学生观察分析讨论-----教师讲解归纳----翻译句子,做相关高考题。

注:实现师生互动,活跃气氛,增强应试能力。

讲解词汇:compete、allow、as….as..句子翻译:

(1)姚明不会参加nba下赛季的比赛了。

(2)本周日山东鲁能足球队将与深圳进行一场比赛。

(3)我们学校不允许男女生亲密接触。

(4)小沈阳曾经梦想成为像周润发一样有男人味的明星。step6 discussion讨论(七嘴八舌、重在参与)

话题:汶上以后有没有能力举办奥运会,为什么? 把学生分成南北半球,正反两方,针锋相对,激烈辩论,获胜一方将会获得由一中商店提供的礼物一份---棒棒糖。

step7 homework作业(复习巩固、及时反馈、自学成才)写一篇关于运动与健康的文章,150个单词左右。

三、板书设计。

在黑板的左侧是阅读中的关键词,在右侧是知识点的归纳。

初二数学试讲教案 篇2

1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。

2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。

3、引导学生体会“降次”化归的思路。

重点难点

重点:掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。

难点:通过分解因式或直接开平方将一元二次方程降次为一元一次方程。

教学过程

(一)复习引入

1、判断下列说法是否正确

(1)若p=1,q=1,则pq=l(),若pq=l,则p=1,q=1();

(2)若p=0,g=0,则pq=0(),若pq=0,则p=0或q=0();

(3)若x+3=0或x-6=0,则(x+3)(x-6)=0(),

若(x+3)(x-6)=0,则x+3=0或x-6=0();

(4)若x+3=或x-6=2,则(x+3)(x-6)=1(),

若(x+3)(x-6)=1,则x+3=或x-6=2()。

答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。

2、填空:若x2=a;则x叫a的,x=;若x2=4,则x=;

若x2=2,则x=。

答案:平方根,±,±2,±。

(二)创设情境

前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程)。由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗?

引导学生思考得出结论:解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。

给出1.1节问题一中的方程:(35-2x)2-900=0。

问:怎样将这个方程“降次”为一元一次方程?

(三)探究新知

让学生对上述问题展开讨论,教师再利用“复习引入”中的内容引导学生,按课本P.6那样,用因式分解法和直接开平方法,将方程(35-2x)2-900=0“降次”为两个一元一次方程来解。让学生知道什么叫因式分解法和直接开平方法。

(四)讲解例题

展示课本P.7例1,例2。

按课本方式引导学生用因式分解法和直接开平方法解一元二次方程。

引导同学们小结:对于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接开平方法解。

因式分解法的基本步骤是:把方程化成一边为0,另一边是两个一次因式的乘积(本节课主要是用平方差公式分解因式)的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解。

直接开平方法的步骤是:把方程变形成(ax+b)2=k(k≥0),然后直接开平方得ax+b=和ax+b=-,分别解这两个一元一次方程,得到的解就是原一元二次方程的解。

注意:(1)因式分解法适用于一边是0,另一边可分解成两个一次因式乘积的一元二次方程;

(2)直接开平方法适用于形如(ax+b)2=k(k≥0)的方程,由于负数没有平方根,所以规定k≥0,当k<0时,方程无实数解。

(五)应用新知

课本P.8,练习。

(六)课堂小结

1、解一元二次方程的基本思路是什么?

2、通过“降次”,把—元二次方程化为两个一元一次方程的方法有哪些?基本步骤是什么?

3、因式分解法和直接开平方法适用于解什么形式的一元二次方程?

(七)思考与拓展

不解方程,你能说出下列方程根的情况吗?

(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。

答案:(1)有两个不相等的实数根;(2)和(4)没有实数根;(3)有两个相等的实数根

通过解答这个问题,使学生明确一元二次方程的解有三种情况。

高一数学试讲教案 篇3

大家好,首先自我介绍一下,我叫**,来自**大学。我今天试讲的是有关相交线的内容。 说起相交线,其实咱们在座的各位同学并不陌生,生活中许许多多有关相交线事例,比如说:包头市区里的街道,盖楼房用的塔吊,还有就是家里的窗户等等。

要想了解有关相交线的特征,那么首先由我来想大家介绍一下与相交线相关的一些角:

邻补角:两个角有一条公共边,他们的另一边互为反向延长线,具有这种关系的两个角互为邻补角。(注意其中的两个条件)

特别说明:1、邻补角是具有特殊关系的两个角,是两个角互补的特例,如果两个角互为邻补角,那

么这两个角一定互补,但是互补的两个角不一定互为邻补角。

2、一个角的补角很多,但是邻补角只有两个。

对顶角:两个角有一个公共顶点,并且其中一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角为对顶角。(注意其中的两个条件)

特别说明:1、对顶角一定相等,且成对出现,但是相等的两个角不一定是对顶角。

垂直:垂直是相交的一种特殊情况,当提到线段与线段、线段与射线、线段与直线垂直时,是指他们所在的直线相互垂直。

1、两条直线垂直是,四个角都是直角,反过来,当两条直线相交时,有一个角是直角,那么这两条直线就垂直。

垂线:两条直线相互垂直,其中的一条直线叫做另一条直线的垂线。,他们的交点叫做垂足。

点到直线的距离:直线外的一点到这条直线的垂线段的距离,叫做点到直线的距离。

特别说明:1、点到直线的距离是指垂线段的长度,而不是垂线段。垂线段是一个几何图形。而距离是一个数量。

2、过直线外的一点有且只有一条直线与已知直线垂直。

证明方法:

反证法:

假设直线L与直线外一点A,过A有2条直线与L垂直。

作AB⊥L,垂足为B;作AC⊥L,垂足为C。 则AB与AC交于A。 又∵AB⊥L,AC⊥L ∴AB∥AC

“AB与AC交于A”与“AB∥AC”矛盾,所以假设不成立。 即过直线外一点,有且只有一条直线于已知直线垂直。

3、垂线段的性质:连接直线外的一点与已知直线上各点的所有线段中,垂线段最短。

证明方法

由平行线一点向另一条线做无数个连线,

垂线的平方 = 其他连线的平方 - 垂点与连接点线段的平方 根据直角三角形两短边平方和等于斜边平方 得知平行线间垂线段最短 “三线八角”的判定

所谓的 “三线八角”就是,两条直线被第三条直线所截,构成8个角。这八个角中共有4对同位角,2对同旁内角,2对内错角。

同位角的特征:位于截线同一方,被截两线的同侧。呈“F”型。 内错角的特征:位于截线的两侧,被截两线直接。呈“Z”型

高一数学教案 篇4

一、设计构思

1、设计理念

注重发展学生的创新意识。学生的数学学习活动不应只限于接受、记忆、模仿和练习,倡导学生积极主动探索、动手实践与相互合作交流的数学学习方式。这种方式有助于发挥学生学习主动性,使学生的学习过程成为在教师引导下的“再创造”过程。我们应积极创设条件,让学生体验数学发现和创造的历程,发展他们的创新意识。

注重提高学生数学思维能力。课堂教学是促进学生数学思维能力发展的主阵地。问题解决是培养学生思维能力的主要途径。所设计的问题应有利于学生主动地进行观察、实验、猜测、验证、推理与交流等教学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。伴随新的问题发现和问题解决后成功感的满足,由此刺激学生非认知深层系统的良性运行,使其产生“乐学”的余味,学生学习的积极性与主动性在教学中便自发生成。本节主要安排应用类比法进行探讨,加深学生对类比法的体会与应用。

注重学生多层次的发展。在问题解决的探究过程中应体现“以人为本”,充分体现“人人学有价值的数学,人人都能获得必需的数学”,“不同的人在数学上得到不同的发展”的教学理念。有意义的数学学习必须建立在学生的主观愿望和知识经验基础之上,而学生的基础知识和学习能力是多层次的,所以设计的问题也应有层次性,使各层次学生都得到发展。

注重信息技术与数学课程的整合。高中数学课程应尽量使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。

另外,在数学教学中,强调数学本质的同时,也让学生通过适度的形式化,较好的理解和使用数学概念、性质。

2、教材分析

幂函数是江苏教育出版社普通高中课程标准实验教科书数学(必修1)第二章第四节的内容。该教学内容在人教版试验修订本(必修)中已被删去。标准将该内容重新提出,正是考虑到幂函数在实际生活的应用。故在教学过程及后继学习过程中,应能够让学生体会其实际应用。《标准》将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质。其中,学生在初中已经学习了y=x、y=x2、y=x-1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识。现在明确提出幂函数的概念,有助于学生形成完整的知识结构。学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法。因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外应让学生了解利用信息技术来探索函数图象及性质是一个重要途径。该内容安排一课时。

3、教学目标的确定

鉴于上述对教材的分析和新课程的理念确定如下教学目标:

⑴掌握幂函数的形式特征,掌握具体幂函数的图象和性质。

⑵能应用幂函数的图象和性质解决有关简单问题。

⑶加深学生对研究函数性质的基本方法和流程的经验。

⑷培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。

⑸渗透辨证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法分析问题、解决问题的能力。

4、教学方法和教具的选择

基于对课程理念的理解和对教材的分析,运用问题情境可以使学生较快的进入数学知识情景,使学生对数学知识结构作主动性的扩展,通过问题的导引,学生对数学问题探究,进行数学建构,并能运用数学知识解决问题,让学生有运用数学成功的体验。本课采用教师在学生原有的知识经验和方法上,引导学生提出问题、解决问题的教学方法,体现以学生为主体,教师主导作用的教学思想。

教具:多媒体。制作多媒体课件以提高教学效率。

5、教学重点和难点

重点是从具体幂函数归纳认识幂函数的一些性质并作简单应用。

难点是引导学生概括出幂函数性质。

6、教学流程

基于新课程理念在教学过程中的体现,教学流程的基线为:

考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和基本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的基本内容和方法为暗线,教学过程中同时展开。

明线:

暗线:

二、实施方案

问题导引 师生活动 设计意图

问题情境 ⑴写出下列y关于x的`函数解析式:

①正方形边长x、面积y

②正方体棱长x、体积y

③正方形面积x、边长y

④某人骑车x秒内匀速前进了1km,骑车速度为y

⑤一物体位移y与位移时间x,速度1m/s

学生口答,教师板书答案。幻灯片演示问题。

由具体问题入手,从熟悉的情景引入,提高学生的参与程度。符合学生认识特点。

⑵上述函数解析式有什么共同特征?是否为指数函数? 学生相互讨论,必要时,教师将解析式写成指数幂形式,以启发学生归纳。投影演示定义。 引导学生观察,训练学生归纳能力。并与前面知识进行区分,以进一步帮助学生明晰概念。

⑶判别下列函数中有几个幂函数?

①y= ②y=2x2③y=x ④y=x2+x ⑤y=-x3

学生独立思考,回答。学生鉴别。幻灯片演示题目。

巩固概念,强化学生对概念形式特征的把握。

⑷幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?

学生讨论,教师引导。学生回答。

引导学生回想前面学习指数函数与对数函数的研究内容和过程。启发学生用类比思想进行研究幂函数。

⑸幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域? 学生小组讨论,得到结论。引导学生举例研究。结论:幂指数 不同,定义域并不完全相同,应区别对待。

激发学生探讨的欲望,提高学生主动参与程度。

⑹写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x

学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。(幻灯片演示) 引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。

⑺上述函数的单调性如何?如何判断?

学生思考:作图 引发学生作图研究函数性质的兴趣。函数单调性的判断,既可以使用定义,也可以通过图象解决,直观,易理解。

⑻在同一坐标系内作出上述函数的图象。 学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示(附图1)通过超级链接几何画板演示。 训练学生作图的基本功,加强学生的实践,让学生在自己的经验中认识幂函数的图象。避免教师直接使用计算机演示图象,剥夺学生动手的机会。

⑼上述函数图象有哪些共同点? 学生讨论,总结。教师引导。可将学生已熟悉的函数y= ,y=x一同投影,帮助学生观察。(投影演示结论)

训练学生观察分析能力。

⑽回答第7个问题。

学生思考,回答。教师注意学生叙述的严密。 训练学生的语言叙述能力。再次体会与指数函数、对数函数性质的区别。体会幂指数的不同情况对函数单调性的影响。

⑾图象之间有什么区别?特别是在分布上。与常数 有什么联系?

教师通过几何画板演示图象在第一象限内的变化规律,以验证学生猜想。通过超级链接几何画板演示。(附图2)

这是较高要求,可以让学生自由猜想和发言。进一步提高学生观察,归纳能力。

⑿巩固练习写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x ②y=x ③y=x 。

学生独立思考并回答。

训练学生自觉运用幂函数图象性质的基本规律。

⒀简单应用1:比较下列各组中两个值的大小,并说明理由:

①0.75 ,0.76 ;

②(-0.95) ,(-0.96) ;

③0.23 ,0.24 ;

④0.31 ,0.31

学生思考,作答,教师引导学生叙述语言的逻辑性。

训练学生用函数性质进行解释,强化学生逻辑意识。其中第④小题是利用指数函数性质解决,注意区别。

⒁请学生考虑可以如何验证上述答案的正确。

学生实践。 使用计算器验证,提高学生使用学习工具的意识。

⒂简单应用2:幂函数y=(m -3m-3)x 在区间 上是减函数,求m的值。

学生思考,作答。教师板演。 对幂函数定义进一步巩固,对函数性质作初步应用。同时训练学生对初步答案进行筛选。

⒃简单应用2:

已知(a+1)<(3-2a) ,试求a的取值范围。

学生思考,作答。教师板演。

训练学生灵活使用性质解题。

数学交流 ⒄小结:今天的学习内容和方法有哪些?你有哪些收获和经验? 学生思考、小组讨论,教师引导。 让学生回顾,小结,将对学生形成知识系统产生积极影响。

数学再现

⒅布置作业:

课本p.73 2、3、4、思考5 思考5作为训练学生应用数学于实际的较好例子,应让能力较好学生得到充分发展。

几点说明:

⑴本节课开始时要注意用相关熟悉例子引入新课。

⑵画函数图象时,如果学生已能够运用计算器或相关计算机软件作图,可以让学生自己操作,以提高学生探索问题的兴趣和能力,并提高教学效率。

⑶由于课程标准对幂函数的研究范围有相对限制,故第11个问题要求较高,建议视具体情况选择教学。

⑷本设计相关课件采用PowerPoint演示文稿,其中部分使用超级链接至几何画板(4.06版本)进行演示。

描写数学的句子

1.我们能2113够期待,随着教育与娱乐的发展,将有更多的5261人欣赏音乐与绘画4102。但是,能够真正欣赏数学的人1653数是很少的。

2.数学指出函数的极大值往往在最不稳定的点取到,人追求极端就会失去内心的平衡。

3.数学科学呈现出一个最辉煌的例子,表明不用借助实验,纯粹的推理能成功地扩大人们的认知领域。

4.历史使人聪明,诗歌使人机智,数学使人精细。

5.数学能促进人们对美的特性:数值比例秩序等的认识。

6.学数学,绝不会有过份的努力。

7.自尊和愿望去认识真理,并由此而生活在上帝地大家庭中。正如文学诱导人们地情感与了解一样,数学则启发人们地想象与推理。

8.如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

9.数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的。

10.无论是别人在跟前或者自己单独的时候,都不要做一点卑劣的事情:最要紧的是自尊。

11.数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。

12.在数学定理的评价中,审美标准既重于逻辑的标准,也重于实用的标准:在对数学思想的评价时,美与优雅比是否严密正确,比是否有用都重要得多。

13.一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。

14.数学是一切知识中的最高形式。

15.在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。

如何学好高一数学

根据现在初中学生的心理特征、初中教学现状、高中规模的扩张等,影响高一数学学习障碍的主要因素有如下几个:

基础知识不扎实

初中教学同样受升学压力的影响,为了挤出更多的时间复习迎考,挤压新课学习时间,删减未列入考试的内容或自认为考试不重要的内容,造成学生知识结构不完整,基础知识掌握不扎实,如初中对函数和平面几何等内容的新课学习时间不够,学生感到困难,带着这样的阴影学生到高中碰到函数和立体几何等内容的学习就感到恐惧,没有学就产生了畏难情绪。

学习习惯和方法的指导不够

初中教学不太关注对学生学习习惯和方法的指导,忽视对数学思想方法的培养和渗透(现在学生的认知水平是可以接受的),热衷于通过大量的练习模仿来掌握解题方法,如对初中二次函数的学习。

初、高中教学内容、要求、教学方法的强烈反差

高一数学教案 篇5

重难点分析

本节的重点是二次根式的化简.本章自始至终围绕着二次根式的化简与计算进行,而二次根式的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.

本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.

教法建议

1.性质的引入方法很多,以下2种比较常用:

(1)设计问题引导启发:由设计的问题

1)、、各等于什么?

2)、、各等于什么?

启发、引导学生猜想出

(2)从算术平方根的意义引入.

2.性质的巩固有两个方面需要注意:

(1)注意与性质进行对比,可出几道类型不同的题进行比较;

(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.

(第1课时)

一、教学目标

1.掌握二次根式的性质

2.能够利用二次根式的性质化简二次根式

3.通过本节的学习渗透分类讨论的数学思想和方法

二、教学设计

对比、归纳、总结

三、重点和难点

1.重点:理解并掌握二次根式的性质

2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

四、课时安排

1课时

五、教B具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习对比,归纳整理,应用提高,以学生活动为主

七、教学过程

一、导入新课

我们知道,式子表示非负数的算术平方根.

问:式子的意义是什么?被开方数中的表示的是什么数?

答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.

二、新课

计算下列各题,并回答以下问题:

(1);(2);(3);

1.各小题中被开方数的幂的底数都是什么数?

2.各小题的结果和相应的被开方数的幂的底数有什么关系?

高一数学函数教案24 篇6

教学目的:

1.使学生适应各学科的横向联系.2.能够建立一些物理问题的数学模型.3.培养学生分析问题、解决问题的能力.教学重点:数学建模的方法

教学难点:如何把实际问题抽象为数学问题.教学过程:

一、例题

例1(课本第86页 例2)设海拔 x m处的大气压强是 y Pa,y与 x 之间的函数关系式是 ycekx,其中 c,k为常量,已知某地某天在海平面的大气压为1.01105Pa,1000 m高空的大气压为0.90105Pa,求:600 m高空的大气压强。(结果保留3个有效数字)

解:将 x = 0 , y =1.01105;x = 1000 , y =0.90105,代入 ycekx得:

(1)1.01105cek0c1.01105 5k100051000k(2)0.9010ce0.9010ce 将(1)代入(2)得:

0.901051.01105e1000kk10.90ln 10001.014 计算得:k1.15104 ∴y1.01105e1.1510

将 x = 600 代入, 得:y1.01105e1.151044600

计算得:y1.01105e1.1510=0.943×105(Pa)答:在600 m高空的大气压约为0.943×105 Pa.说明:(1)此题利用数学模型解决物理问题;(2)需由已知条件先确定函数式;(3)此题实质为已知自变量的值,求对应的函数值的数学问题;(4)此题要求学生能借助计算器进行比较复杂的运算.例2在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,„„, an共n个数据,我们规定所测量的物理量的“最佳近似值”a是这样一个量:与其他近似值比较a与各数据差的平方和最小.依次规定,从a1,a2,„„, an推出的a=________.(1994年全国高考试题)分析:此题应排除物理因素的干扰,抓准题中的数量关系,将问题转化为函数求最值问题.解:由题意可知,所求a应使y=(a-a1)2+(a-a2)2+„+(a-an)2 最小 由于y=na2-2(a1+a2+„+an)a+(a12+a22+„+an2)若把a看作自变量,则y是关于a的二次函数,于是问题转化为求二次函数的最小值.因为n>0,二次函数f(a)图象开口方向向上.1当a=(a1+a2+„+an),y有最小值.n1所以a=(a1+a2+„+an)即为所求.n说明:此题在高考中是具有导向意义的试题,它以物理知识和简单数学知识为基础,并以物理学科中的统计问题为背景,给出一个新的定义,要求学生读懂题目,抽象其中的数量关系,将文字语言转化为符号语言,即

y=(a-a1)2+(a-a2)2+„+(a-an)2,然后运用函数的思想、方法去解决问题,解题关键是将函数式化成以a为自变量的二次函数形式,这是函数思想在解决实际问题中的应用.例3某种放射性元素的原子数N随时间t的变化规律是N=N0et,其中N0,λ是正的常数.(1)说明函数是增函数还是减函数;(2)把t表示成原子数N的函数;(3)求N当N=0时,t的值.2解:(1)由于N0>0,λ>0,函数N=N0et是属于指数函数y=ex类型的,所以它是减函数,即原子数N的值随时间t的增大而减少(2)将N=N0et写成et=

N N0根据对数的定义有-λt=ln所以t=-1N N01NN11(3)把N=0代入t=(lnN0-lnN)得t=(lnN0-ln0)2211=(lnN0-lnN0+ln2)= ln2.

二、练习:

1.如图,已知⊙O的半径为R,由直径AB的端点B作圆的切线,从圆周上任一点P引该切线的垂线,垂足为M,连AP设AP=x ⑴写出AP+2PM关于x的函数关系式 ⑵求此函数的最值 解:⑴过P作PDAB于D,连PB 设AD=a则x22Ra

x2x2a PM2R

2R2R(lnN-lnN0)=(lnN0-lnN)

x2∴f(x)AP2PMx4R(0x2R)

R1R17R(x)2 R2417R当x时f(x)maxR

42⑵f(x) P D C B A D O A 当x2R时f(x)min2R

2.距离船只A的正北方向100海里处有一船只B,以每小时20海里的速度,沿北偏西60角的方向行驶,A船只以每小时15海里的速度向正北方向行驶,两船同时出发,问几小时后两船相 距最近?

解:设t小时后A行驶到点C,B行驶到点D,则BD=20 BC=100-15t 过D作DEBC于E DE=BDsin60=103t BE=BDcos60=10t ∴EC=BC+BE=100-5t CD=DE2CE2∴t=103t21005t=325t21000t10000

220203时CD最小,最小值为200,即两船行驶小时相距最近。

1313133.一根均匀的轻质弹簧,已知在600N的拉力范围内,其长度与所受拉力成一次函数关系,现测得当它在100N的拉力作用下,长度为0.55m,在300N拉力作用下长度为0.65,那么弹簧在不受拉力作用时,其自然长度是多少? 解:设拉力是 x N(0≤x≤600)时,弹簧的长度为 y m

0.55100kbk0.0005 设:y = k x + b 由题设: 0.65300kbb0.50 ∴所求函数关系是:y = 0.0005 x + 0.50 ∴当 x = 0时,y = 0.50 , 即不受拉力作用时,弹簧自然长度为 0.50 m。

高一数学必修四教案 篇7

1 掌握利用单位圆的几何方法作函数 的图象

2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期

3 会用代数方法求 等函数的周期

4 理解周期性的几何意义

二、学习重点与难点

“周期函数的概念”, 周期的求解。

三、学法指导

1、是周期函数是指对定义域中所有 都有

,即 应是恒等式。

2、周期函数一定会有周期,但不一定存在最小正周期。

四、学习活动与意义建构

五、重点与难点探究

例1、若钟摆的高度 与时间 之间的函数关系如图所示

(1)求该函数的周期;

(2)求 时钟摆的高度。

例2、求下列函数的周期。

(1) (2)

总结:(1)函数 (其中 均为常数,且

的周期T= 。

(2)函数 (其中 均为常数,且

的周期T= 。

例3、求证: 的周期为 。

例4、(1)研究 和 函数的图象,分析其周期性。

(2)求证: 的周期为 (其中 均为常数,

总结:函数 (其中 均为常数,且

的周期T= 。

例5、(1)求 的周期。

(2)已知 满足 ,求证: 是周期函数

课后思考:能否利用单位圆作函数 的图象。

六、作业:

七、自主体验与运用

1、函数 的周期为 ( )

A、B、C、D、

2、函数 的最小正周期是 ( )

A、B、C、D、

3、函数 的最小正周期是 ( )

A、B、C、D、

4、函数 的周期是 ( )

A、B、C、D、

5、设 是定义域为R,最小正周期为 的函数,

若 ,则 的值等于 ( )

A、1 B、C、0 D、

6、函数 的最小正周期是 ,则

7、已知函数 的最小正周期不大于2,则正整数

的最小值是

8、求函数 的最小正周期为T,且 ,则正整数

的值是

9、已知函数 是周期为6的奇函数,且 则

10、若函数 ,则

11、用周期的定义分析 的周期。

12、已知函数 ,如果使 的周期在 内,求

正整数 的值

13、一机械振动中,某质子离开平衡位置的位移 与时间 之间的

函数关系如图所示:

(1) 求该函数的周期;

(2) 求 时,该质点离开平衡位置的位移。

14、已知 是定义在R上的函数,且对任意 有

成立,

(1) 证明: 是周期函数;

高一数学必修一教案 篇8

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课 型:新授课

教学重点:集合的交集与并集、补集的概念;

教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;

教学过程:

六、引入课题

我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?

思考(P9思考题),引入并集概念。

七、新课教学

1. 并集

一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)

记作:A∪B

Venn图表示: 读作:“A并B” 即: A∪B={x|x∈A,或x∈B}说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。

问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。

2. 交集

一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

记作:A∩B

读作:“A交B” 即: A∩B={x|∈A,且x∈B}

交集的Venn图表示

说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。 拓展:求下列各图中集合A与B的并集与交集

3. 补集

全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。

A

说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,

记作:CUA

即:CUA={x|x∈U且x∈A}

补集的Venn图表示

说明:补集的概念必须要有全集的限制

4. 求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的

关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

5. 集合基本运算的一些结论:

A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A

A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A

(CUA)∪A=U,(CUA)∩A=?

若A∩B=A,则A?B,反之也成立

若A∪B=B,则A?B,反之也成立

若x∈(A∩B),则x∈A且x∈B

若x∈(A∪B),则x∈A,或x∈B

6. 课堂练习

(1)设A={奇数}、B={偶数},则A∩Z=A,B∩Z=B,A∩B=?

(2)设A={奇数}、B={偶数},则A∪Z=Z,B∪Z=Z,A∪B=Z

(3)集合A?{n|nm?1?Z},B?{m|?Z},则A?B?__________22

5(4)集合A?{x|?4?x?2},B?{x|?1?x?3},C?{x|x?0,或x? 2

那么A?B?C?_______________,A?B?C?_____________;

八、作业布置:(1) 已知X={x|x2+px+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且

X?A??,X?B?X,试求p、q;

(2) 集合A={x|x2+px-2=0},B={x|x2-x+q=0},若A?B={-2,0,1},求p、q;

高一数学分数指数幂数学教案 篇9

教学目标

1.理解分数指数幂的含义,了解实数指数幂的意义。

2.掌握有理数指数幂的运算性质,灵活的运用乘法公式进行有理数指数幂的运算和化简,会进行根式与分数指数幂的相互转化。

教学重点

1.分数指数幂含义的理解。

2.有理数指数幂的运算性质的.理解。

3.有理数指数幂的运算和化简。

教学难点

1.分数指数幂含义的理解。

2.有理数指数幂的运算和化简。

教学过程

一.问题情景

上节课研究了根式的意义及根式的性质,那么根式与指数幂有什么关系?整数指数幂有那些运算性质?

二.学生活动

1.说出下列各式的意义,并指出其结果的指数,被开方数的指数及根指数三者之间的关系

(1)=(2)=

2.从上述问题中,你能得到的结论为

3.(a0)及(a0)能否化成指数幂的形式?

三.数学理论

正分数指数幂的意义:=(a0,m,n均为正整数)

负分数指数幂的意义:=(a0,m,n均为正整数)

1.规定:0的正分数指数幂仍是0,即=0

0的负分数指数幂无意义。

3.规定了分数指数幂的意义后,指数的概念从整数指数推广到了有理数指数,因而整数指数幂的运算性质同样适用于有理数指数幂。

即=(1)

=(2)其中s,tQ,a0,b0

=(3)

四.数学运用

例1求值:

(1)(2)(3)(4)

例2用分数指数幂的形式表示下列各式(a0)

(1)(2)

例3化简

(1)

(2)(3)

例4化简

例5已知求(1)(2)

五.回顾小结

1.分数指数幂的意义。=(0,m,n)

无意义

2.有理数指数幂的运算性质

3.整式运算律及乘法公式在分数指数幂运算中仍适用

4.指数概念从整数指数幂推广到有理数指数幂,同样可以推广到实数指数幂,请同学们阅读P47的阅读部分

练习P47-48练习1,2,3,4

六.课外作业

P48习题2.2(1)2,4

英语试讲教案 篇10

课题:Unit 1 Our School 第二课时

教学目标:让学生熟练掌握单词art room, computer room, music room, TV room, wash room.教学重点、难点、:掌握part B部分的五个单词,以及这几个单词中room的构词功能。

教具准备:单词卡片,图片,多媒体课件,声音。教学过程:

一:课堂导入

(2分钟)

T: Hello, kids!Nice to meet you again!Last time, we have learned the part A of unit1 our school.Now ,let’s go over what we learn.二:复习

(5分钟)Guess, where am I? 1.T: Look at me.I am playing basketball.Where am I ? S: playground.T: Good!Playground.(教师出示卡片)2.T: Ok, listen carefully!Wow ,the flowers are so beautiful.Where am I? S: garden.T: garden?(教师怀疑的表情)T: yes, you are right.Garden.3.T: Be quiet!Many students are reading books.Where am I?

Who knows? Hands up, please!S: library.T: Is she right? T: You are so clever.4.T: Now, class is over.I’m so hungry, where should I go to

have dinner? S: canteen.T: very good!5.T: This is my homework.I must hand it in to teacher.Where should I go? Put up your hand, please.S: teacher’s office.T: oh!Wonderful.Let’s clap for her.教师总结上节课的单词,带读。三:呈现新课(12分钟)

1、过渡(2分钟)

T: Well done!You do a good job.Today, we continue our lesson, unit1 our school, part B.Open your book, turn to page7.let’s chant.Read the context and do the action.Do as I do.Let’s chant:

School days, School days.What a lot of fun!

Read in the library.Water flowers in the garden.Eat in the canteen.Play in the playground.School days, School days.What a lot of fun!

2、呈现新单词(2分钟)

T: well done.Please look at the picture.(1)T: what are they doing ? S: 画画

T: yes, we can say it art.(教师板书art)T: they draw pictures in a room.So it is an art room.教师板书art room,带读。(2)T: What are they?

S: they are computers.T: yes, it’s a computer room.(3)T: Listen!(教师播放音乐).what is she doing? S: singing.T: clever.Music.she is singing in a room.So it is music room.(4)T: what’s this?

S: TV.T: yes.And it’s a room.So it’s TV room.(5)T: what are they doing ?

S: wash.T: where is it?

S: wash room.T: yes, you are right.教师带读新单词。

3、Practice.(3分钟)T: Excellent, now , the class is divided into five parts.Art room,computer room, music room, TV room and wash room.When the teacher say art room, all of you say “art room, stand up” together.And the part stand up and say louderly “art room.Here.” Which part do better, they will get a big hand.Are you clear? T: ok!Stop here.Which part is better? Let’s give them a big hand.4、play a game(3分钟)

小组竞赛,分为两个小组,每组派一个记分员。当教师拿出图片时,两组站起来抢答,哪组答得又对又快就加分,答对加分,答错扣分。输的那组要表演唱歌。Ok?

5、读顺口溜,巩固新单词。(2分钟)

在读顺口溜时,遇到新单词要拍掌。

上一篇:高中英语作文:儿童类英语作文阅读下一篇:第九城市2012年第四季度财务报告