逆向工程与快速成型(精选9篇)
逆向与快速成型课程设计说明书
设计人: 宋 旭
指导老师: 李庆 王炳森
班级: 计辅
3072
2009年9月10号
一、课程设计的作用和目的
课程设计是学生学习逆向工程课程后进行的一项综合训练,其主要目的是通过课程设计使学生巩固、加深在课程中所学到的知识,提高学生综合运用这些知识去分析和解决问题的能力,为今后学习专业技术知识打下必要的基础。这周的课程设计让我们直观的了解逆向与快速成型这项技术的原理与操作方法,达到会使用快速成型机,会操作的目的,并且能做出产品。
二、模型的建立
项目名称:电话机机座的设计。
我们已经得到电话机下部的3D数据(IGES格式),以及上部的产品图片。
通过使用UG5.0软件,建立上部模型。
1.使用取边命令取得如图所示蓝线,再使用N边曲面建立面。
2.拉伸刚才建立好的曲面,得到下图的实体。
3.隐藏刚才做好的实体,同样的方法做出内侧的实体。
4.取消隐藏后,布尔运算求差。
5.将部分实体隐藏或者删除后,将实体上部边缘取边,并以YZ面为投影面投影。在坐标原点,XZ平面画矩形做扫面截面,通过扫掠做出话机上部的长凹槽。
6.取边拉伸实体,并且拔模,最后和实体布尔运算求差。
7.移动坐标系到中间孔的上方,建立基准平面,拉伸实体后拔模,并且与原实体进行求差运算。
8.拉伸4个螺丝柱至下表面,求和后进行整体处理(细节修改,倒圆角,隐藏多余线面)。
三、与快速成型机连接
保存后,导出 STL文件。
用快速成型机软件载入此STL文件。
四、机器的操作
1、连接快速成形机,使软件读取系统预设参数
2、初始化:三维打印机——执行初始化操作。
3、调试:手动控制三维打印机/快速成型系统。开温控,主喷头的温度升到大约245度左右,副喷头温度大约在230度左右。温度升起来以后才可以进行主副材料的试喷。
4、载入STL文件,进行自动布局,并对其进行校验及修
5、选着零件在工作台上放置的表面,进行适当的模型变形。选着成型方向有几个原则:
6、开始打印模型。
7、后处理:打印完成,取出模型,用锉刀和砂子进行打磨,并用爽身粉和CA-50胶水混合的溶液进行涂覆,用细砂纸进行打磨。注意:
1、打印之前一定要把温度升起以后,方可进行其他操作。
2、分层参数尽量选着适中,以免做出不合格的模型。
五、感想体会
开学伊始,我们便开始了一周的逆向与快速成型课程设计,对于步入大三的我们来说,运用建模软件来构建模型应该是小菜一碟的事情,然而一个暑假让我竟然忘记了太多,那些软件陌生了,于是我慢慢开始,又一次来熟悉UG。
这次的课程设计并不难,我们第一次接触到快速成型机,操作并不觉得难度多大,利用它,我们可以加工出来我们可以想象的到的,用软件可以做出来的任何东西。真正有些难度的问题都集中在建模上了,那些面的生成,如何扫掠,都是有技巧,有讲究的。
快速成型技术借助计算机、激光、精密传动和材料等现代手段, 直接将计算机辅助设计 (CAD) 和计算机辅助制造 (CAM) 集成一体, 根据计算机上构造的三维模型, 能在很短时间内直接制造出产品样品。不需机加工设备或者模具即可快速制造形状极为复杂的工件, 从而在小批量产品生产或新产品试制时节省时间和初始投资。快速成型技术应用非常广泛, 尤其在汽车制造, 航天航空, 建筑, 家电, 卫生医疗及娱乐等领域有强大的应用。
在逆向工程设计过程的生产终端上结合目前先进的快速成型技术是目前的研究热点, 逆向工程和快速成型技术的综合应用目前已发展成为CAD/CAM系统中相对独立的研究领域。二者的结合应用既可节约设计时间, 又可节约设计成本, 同时提高了产品的设计质量和精度。
逆向工程和快速成型技术的综合应用主要在逆向工程技术应用过程中的实物或产品的三维数据测量、测量数据的预处理、三维模型的数据重构、数据误差分析及数据的对应格式输出和快速成型技术应用过程中快速成型方法和设备的选择、数据格式的转化、快速成型的加工及精度控制这些操作的结合和相互之间影响和制约。
1、实物或产品的三维数据测量
主要通常采用接触式或非接触式的测量设备, 如三坐标测量机、三维激光扫描仪, 结构光法扫描仪等测量装置来获取实物或产品的表面点的三维数据, 即点云。对于多数工业产品我们常采用非接触式的测量设备进行数据的采集。
2、测量数据的预处理
预处理主要为点云数据平滑, 噪声点、跳点数据的删除, 遗失点填补, 数据分块, 多次测量数据和图像的对齐拼合, 对称零件的对称基准重建等。
3、三维模型的数据重构
在逆向工程中曲面重构是最为重要的一步, 目前逆向工程中曲面重构的方法有很多种, 对应的适用软件有很多, 采用逆向工程曲面重构技术的综合评价和研究的结果中的评价系统, 对于不同应用实体正确地选择不同的应用软件, 对于三维处理的数据进行曲面模型和实体模型的构建, 并可在原型的基础上进行必要的优化和修改分析。我们常采用逆向工程软件Imageware软件进行数据重构处理, 在此基础上采用UG三维造型软件进行后期的曲面调整和优化设计, 最终得到三维数据模型。
4、数据误差分析及数据的对应格式输出
重建三维数据模型的检验与修正根据获得的模型与原始点云数据进行比较方法来检验重建的CAD模型是否满足精度或其它试验性能指标的要求, 对不满足要求者需改进重建方法以获取更高的精度, 直到满足产品设计要求。
5、快速成型方法和设备的选择
目前基于快速成型技术开发的工艺方法和对应的设备种类较多, 对应的国内外生产的快速成型设备也有很多, 可根据产品或实物的类型、尺寸大小和精度要求进行选择。
6、数据格式的转化
不同的快速成型方法和设备的数据格式进行三维数据的数据格式转化, 提高效率, 避免数据遗失。
7、快速成型的加工及精度控制
快速成型机加载成型数据文件, 选择工艺参数, 选择制作模式, 开始零件的加工工作。
逆向工程与快速成型技术综合应用, 是从根本上改变传统产品的开发设计、制造模式, 解决一些复杂形体的三维建模, 难以加工出实物模型的问题, 形成了一个包括设计、制造、检测的快速设计制造系统。大大缩短了产品的设计、生产周期, 成本也会随之大幅度的降低。逆向工程与快速成型技术综合应用研究为不断开发出新的工艺、材料及智能化相关技术, 朝着精密化、低成本、标准化方向发展, 提供帮助。
摘要:逆向工程和快速成型技术的综合应用研究是在实物或产品的三维数据测量、数据的预处理、三维模型的数据重构、数据误差分析及数据的对应格式输出过程中, 综合应用快速成型技术的快速成型方法和设备的选择、数据格式的转化、快速成型的加工及精度控制等技术, 本文在综合应用过程中探讨相互之间的影响制约。
关键词:逆向工程,快速成型,曲面重构
参考文献
[1]孙福辉, 席平, 唐荣锡.复杂产品集成逆向工程系统及其关键技术[J].北京航空航天大学学报, 2001, 27 (3) :351-355.
[2]李江雄, 柯映林, 程耀东.基于实物的复杂曲面产品反求工程中的CAD建模技术[J].中国机械工程, 1999, 10 (4) :390-393.
[3]田晓东, 史桂蓉, 阮雪榆.复杂曲面实物的逆向工程及其关键技术[J].机械设计与制造工程, 2000, 29 (4) :1-6.
[4]邢渊等, 集成反向工程系统研究.机械工程学报, 1998:34 (3)
[5]金涛, 童永光等.逆向工程技术, 机械工业出版社.
[6]李中海.反求工程中拟合曲面连续性的研究.沈阳工业大学硕士学位论文, 2005.
[7]孙家广.计算机图形学.北京.清华大学出版社, 2000.
[8]曹智军.自由曲面逆向工程技术的研究.郑州大学硕士学位论文, 2003.
[9]郑尚文, 逆向工程中曲线和曲面重构的研究.东南大学硕士学位论文, 2004.
(一)、在培养专业人才时,必须要制定完善的培养计划,以及确立定位的方向,在培养卓越工程师时最重要的必须要体现在三个方面:素质、知识以及个人能力。(1)我们看重的知识方面也就是指的是学习逻辑学以及数学教育的能力,由于工程技术再与科学知识是作为学习的前沿,也是作为重要的一门社会学科。但在学习艺术、历史以及艺术文学等方面则属于基本知识。所谓的专业知识是更具有针对性的一些服务知识。(2)在培养个人的能力方面,也就是我们所说的个人学习的能力,以及在分析和处理问题时的能力,必须要具有思考和批判事物的独特眼光以及良好的逻辑思维能力。此外,再与人合作时的沟通能力以及表述能力也是非常重要的,所以必须要提高工程技术的创新水平,学习更为深入的组织和管理能力。(3)对人才素质的培养,就必须要提高他们的价值观和人生观,这点作为培养的基础条件,对此,就要全面的提高学生的思想品德和职业道德,团结精神以及协作力量,提高学生的专业素养,同时也要全面的掌握行业标准,技术标准等方面,了解本专业对社会所造成的一些影响,从而可以适应时代的进步以及社会的多变需求。
(二)、在培养技术型人才时,学习材料成型与控制工程是属于一个机械化的专业学科,我们在培养卓越人才时应注重具有创新能力以及具有发展前景的技术人才,从而达到所需要的培养目标。学生在教育阶段,一般主要的就是提高基础知识以及提高科学文化知识,而我们所培养的人才是需要全方面发展的,这就需要强化他们的设计能力以及实践能力,同时把创新作为一个学习的核心力量,提高他们的研究能力,构造全新的课程体系,此外,也可以推动他们进行跨专业的进行全面学习,把他们培养成复合型人才。另一方面来看,我们在培养卓越工程师时,更要注重他们的专业技能以及他们的道德精神,从而引导他们有方向的成长。三、实现具体培养目标的要点
(一)、如果要培养出更为优秀的卓越性人才就必须要成立全面素质的学校教育,并且做好具有统筹培养计划的教育工作,在校内外做好协调和监管工作。同时也要提高在教学过程当中的检查指导工作。建立制定管理要求也是非常重要的,这对于培养人才的标准,教学大纲以及在质量监控等各个方面都起到了一个关键作用,良好的利用教学文件对于提高学生的创新能力也是很重要的。我们在培养人才时,最重要的一点就是师资力量,作为学校教育必须要具备良好的师资队伍,并且要具有全部的理论知识以及实践经验,在这个过程当中,作为教师还应逐步的完善自己的教育水平,达到一定的标准。从另一方面我们也可以看出,要想培养卓越的人才,经费也是非常重要的,只有不断的提高教改经费,才能更有力的推动教学改革的发展,对此,作为学校就必须要设立专门的教育基金,并且由具有经验的教师进入企业进行系统的学习,再把经验传授给学生,以达到培养的目的。对于质量工程进行教育改革时,必须要具有专业特色,同时也要建设专业的教学队伍,从而整合各个学科以及各个产业的教学资源,提高学习各企业之间的合作关系,这对于培养卓越型人才起到了一个积极的作用。
材料成型及控制工程有四个方向:焊接、铸造、热处理、锻压。随着科学技术的发展材料成型也变得越来越机械化和自动化。当今制造技术的主要发展趋势是:制造技术向着自动化、集成化和智能化的方向发展。
焊接:近20年来,随着数字化,自动化,计算机,机械设计技术的发展,以及对焊接质量的高度重视,自动焊接已发展成为一种先进的制造技术,自动焊接设备在各工业的应用中所发挥的作用越来越大,应用范围正在迅速扩大。在现代工业生产中,焊接生产过程的机械化和自动化是焊接机构制造工业现代化发展的必然趋势。焊接采用加热和加压或其他方法使热塑性塑料制品的两个或多个表面熔合成为一个整体的方法。自动化采用具有自动控制,能自动调节、检测、加工的机器设备、仪表,按规定的程序或指令自动进行作业的技术措施。其目的在于增加产量、提高质量、降低成本和劳动强度、保障生产安全等。自动化程度已成为衡量现代国家科学技术和经济发展水平的重要标志之一。现代自动化技术主要依靠计算机控制技术来实现。焊接生产自动化是焊接结构生产技术发展的方向。现代焊接自动化技术将在高性能的微机波控焊接电源基础上发展智能化焊接设备,在现有的焊接机器人基础上发展柔性焊接工作站和焊接生产线,最终实现焊接计算机集成制造系统CIMS。
在焊接设备中发展应用微机自动化控制技术,如数控焊接电源、智能焊机、全自动专用焊机和柔性焊接机器人工作站。微机控制系统在各种自动焊接与切割设备中的作用不仅是控制各项焊接参数,而且必须能够自动协调成套焊接设备各组成部分的动作,实现无人操作,即实现焊接生产数控化、自动化与智能化。微机控制焊接电源已成为自动化专用焊机的主体和智能焊接设备的基础。如微机控制的晶闸管弧焊电源、晶体管弧焊电源、逆变弧焊电源、多功能弧焊电源、脉冲弧焊电源等。微机控制的IGBT式逆变焊接电源,是实现智能化控制的理想设备。数控式的专用焊机大多为自动TIG焊机,如全自动管/管TIG焊机、全自动管/板TIG焊机、自动TIG焊接机床等。在焊接生产中经常需要根据焊件特点设计与制造自动化的焊接工艺装备,如焊接机床、焊接中心、焊接生产线等自制的成套焊接设备,大多可采用通用的焊接电源、自动焊机头、送丝机构、焊车等设备组合,并由一个可编程的微机控制系统将其统一协调成一个整体。
铸造:熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状、尺寸、成分、组织和性能铸件的成形方法。铸造是人类掌握比较早的一种金属热加工工艺,已有约6000年的历史。中国约在公元前1700~前1000年之间已进入青铜铸件的全盛期,工艺上已达到相当高的水平。铸造是指将室温中为液态但不久后将固化的物质倒入特定形状的铸模待其凝固成形的加工方式。被铸物质多为原为固态但加热至液态的金属(例:铜、铁、铝、锡、铅等),而铸模的材料可以是沙、金属甚至陶瓷。因应不同要求,使用的方法也会有所不同。随着科技技术的发展国内的铸造技术也飞速发展近年开发推广了一些先进熔炼设备,提高了金属液温度和综合质量,开始引进AOD、VOD等精炼设备和技术,提高了高级合金铸钢的内在质量。直读光谱仪和热分析仪,炉前有效控制了金属液成分,采用超声波等检测方法控制铸件质量。一些大中型铸造企业开始在熔炼方面用计算机技术,控制金属液成分、温度及生产率等。成都科技大学研制成砂处理在线控制系统,清华大学等开发了计算机辅助砂型控制系统软件,华中科技大学成功开发商品化铸造CAE软件。铸造业互联网发展快速,部分铸造企业网上电子商务活动活跃,如一些铸造模具厂实现了异地设计和远程制造。
铸造专家系统研究虽然起步晚,但进步快。先后推出了型砂质量管理专家系统、铸造缺陷分析专家系统、自硬砂质量分析专家系统、压铸工艺参数设计及缺陷诊断专家系统等。机械手、机器人在落砂、铸件清理、压铸及熔模铸造生产中开始应用。精确成形技术和近精确成形技术,大力发展可视化铸造技术,推动铸造过程数值模拟技术CAE向集成、虚拟、智能、实用化发展;基于特征化造型的铸造CAD系统将是铸造企业实现现代化生产工艺设计的基础和前提,新一代铸造CAD系统应是一个集模拟分析、专家系统、人工智能于一体的集成化系统。采用模块化体系和统一数据结构,且与CAM/CAPP?ERP/RPM等无缝集成;促使铸造工装的现代化水平进一步提高,全面展开CAD/CAM/CAE/RPM、反求工程、并行工程、远程设计与制造、计算机检测与控制系统的集成化、智能化与在线运行,催发传统铸造业的革命性进步。
锻压是锻造和冲压的合称,是利用锻压机械的锤头、砧块、冲头或通过模具对坯料施加压力,使之产生塑性变形,从而获得所需形状和尺寸的制件的成形加工方法。“锻压”作为金属加工的主要方法和手段之一,在国民经济中占有举足轻重的地位,是装备制造业,特别是机械、汽车行业,以及军工、航空航天工业中的不可或缺的主要加工工艺。随着经济结构调整的不断深化,作为支柱产业的汽车制造业的大发展,为我国的锻压行业发展营造了一个非常好的机会。近几年在设备制造技术和加工技术上都取得很大的进展,行业的竞争力得到提升,某些技术水平已进入世界先进行列。
但随着中国汽车工业的快速发展,国产锻造设备存在的不足日益凸显。其中,拥有中国自己产权的通用锻压设备多处于较低的水平,目前锻压设备发展趋势是集机械、电子、液压、气动及检测等方面的最新技术于一体,自动化程度高、换模快速、工作可靠、噪声低、防护完善、精度高。近年来又发展了数控系统,能和电子计算机、工业机器人、自动换模系统及自动仓库等相结合,构成多种系列的柔性制造单元(FMC)和柔性制造系统(FMS),并向电子计算机集成制造系统(CIMS)的方向逼近。
金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度在不同的介质中冷却,通过改变金属材料表面或内部的显微组织结构来控制其性能的一种工艺。在热处理过程中对温度的检测和记录非常的重要,温度控制的不好对产品的影响十分的大,所以温度的检测十分的重要,在整个过程的温度的变化趋势也显得十分的重要,导致在热处理的过程中必须对温度的变化进行记录,可以方便以后进行数据分析,也可以查看到底是哪段时间温度没有达到要求。这样对以后的热处理进行改进起到非常大的作用实现一定程度上的自动化。
日前,中钢邢机通过对热处理炉群的自动化控制系统进行创新改进,在所属异型公司成功完成单台炉体单机控制向整个炉群单机管控的“集中化”转变,实现企业炉群自动化控制的新突破。“集中化”管控就是由单台主机整体集中完成整个炉群的自动化控制工作,通过建立热处理炉群自动化控制的独立整体管控网络,改变每台热处理炉都有一台主机主控的传统模式。企业探索实施“热处理炉群控制集中化管理”,最初是基于对企业扩能上量后热处理炉数量增多、生产用电不易调配问题的解决。经过在异型公司试点进行实际改造实施后,使热处理炉群能够结合排产计划,对照峰谷用电时间段,实现对每台热处理炉作业的自动程序化科学调控,从而大大降低了作业用电成本。同时使企业设备管理更趋便捷科学,运行效率明显提升,目前每班只需2人即可完成17台热处理炉的日常作业管理。为了使工件在生产线上自如地完成整个所要求的热处理工艺过程,被特定设计的连续炉相互连接沟通。炉膛内可多方位贯通,并可使工件料筐90℃角转入下道加热区或过渡保温箱,经传送抵达下一工序或进入冷却室冷却。这种炉体结构和传送装置都具有相当高的水平。以可控气氛箱式炉为例,为满足渗碳、碳氮共渗、氮碳共渗、淬火或光亮淬火、等温淬火等热处理工艺的实施,料盘和料架上的工件以冷链驱动的方式自动送入、通过和送出炉膛,在各自的炉子中完成所要求的工艺。箱式炉与相应的计算机辅助测量、控制与调节系统连用,形成各个独立的模块单元,易于相互连接,构成完善、灵活、组合式自动热处理系统。
电子计算机在热处理中的应用,包括计算机辅助设计(CAD)、计算机辅助生产(CAM)、计算机辅助选材(CAMS)、热处理事务办公自动化(OA)、热处理数据库和专家系统等,它为热处理工艺的优化设计、工艺过程的自动控制、质量检测与统计分析等,提供了先进的工具和手段。计算机在热处理中的应用,最初主要用于热处理工艺程序和工艺参数(温度、时间、气氛、压力、流量等)的控制,现在也用于热处理设备、生产线和热处理车间的自动控制和生产管理,还有的用计算机进行热处理工艺、热处理设备、热处理车间设计中的各种计算和优化设计。在热处理中引入计算机,可实现热处理生产的自动化,保证热处理工艺的稳定性和产品质量的再现性,并使热处理设备向高效、低成本、柔性化和智能化的方向发展。计算机在热处理中的应用国外已十分普遍,例如,日本一家摩托车厂的热处理车间,有连续式渗碳炉、周期式渗碳炉、连续软氮化炉等共37台设备,从开始送料,到最终产品检验,全部由计算机控制,每班只需要三个人操作,一人在计算机室内负责全部生产、技术和质量管理,一人在现场巡回检查,一人负责产品质量检验,生产效率极高。我国在热处理行业中应用计算机还是近十多年的事情,目前国内研制生产的热处设备已越来越多地引入了微机控制,极大地提高了设备的自动化水平和生产效率。在热处理工艺过程的实时控制、计算机辅助设计、计算机模拟和数学模型的开发应用等方面,也取得了一定的成绩。
培养目标:培养具备材料加工基本原理、计算机控制及信息学科的知识和技能,掌握材料加工成形过程的自动化与人工智能、专家信息系统的建立与开发、机械零件及工模具的计算机辅助设计与制造、新材料制备与加工、先进成形加工技术与设备、材料组织与性能的分析及控制等专业知识,能够从事材料加工、计算机和信息技术应用领域的产品和技术开发、设计制造、质量控制、经营管理等方面的高级工程技术人才。
主要课程:材料科学基础、材料成型原理、材料组织与性能控制原理、先进材料加工技术、现代材料表面工程学、计算机辅助设计与制造、模具CAD/CAM、计算机数值模拟技术、控制工程基础、数控原理与编程、检测技术与控制工程基础、计算机网络与专家信息系统在材料加工中的应用、材料加工企业管理及计算机信息系统、材料加工品质分析与控制、材料微观分析及计算机图像处理。
对材料成型及控制工程专业方向的了解及如何对模具方向的学习
机电学院 材料成型及控制工程13-2 宋凌浩 1301040924 进入二十一世纪以来,模具技术已成为衡量一个国家产品制造水平的重要标志之一。模具是制造业的重要工艺装备,经过几十年的发展,我国模具技术已有很大进步,但总体来说与发达国家模具技术水平相比尚有10年以上的差距。模具技术落后已使制造业中许多产业的自主发展受到了制约,尽快发展模具技术已是当务之急。模具种类繁多,技术要求各异,前景广阔,对某些方面经过努力可以取得成果并可以产业化和推广。本文就材料成型及控制工程专业方向及以后如何学习做简要分析。
一、对材料成型及控制工程专业方向的了解
1、机械工程专业概论老师课上讲解
就老师上课讲解内容可大致分为模具技术发展指南和具体项目建议、模具技术具体制造方法、模具发展历史、电脑软件的应用、塑性成形新技术(板材成形新技术、3D打印技术)等五大方面。发展指南和具体项目建议:模具作为制造业的重要的工艺装备,必然决定该技术在制造业上占据一定地位,但是对这个刚接触材料成型及控制工程专业的大学生来说,还是一头雾水。模具技术不仅仅局限于我们从字面上的理解还有更深层的技术解读,大致的发展技术有以下:模具数字化设计制造及企业信息化管理技术、大型及精密冲模设计制造技术、大型及精密塑料模具设计制造技术、大型精密铸造模设计制造技术、高等级子午线轮胎活络模具设计制造技术等等,这些技术都是经过努力可以取得成果并可以产业化和推广的一些关键技术作为模具产业技术的发展指南。具体项目建议分为先进模具设计加工的基础理论和共性技术研究与开发;具有自主知识产权的模具设计制造和管理软件的研发、提高及推广应用;高档轿车和节能型汽车模具开发与产业化;汽车轻量化节能降耗材料成形工艺与模具开发等,切实深入了解到这些方面的含义,会加快对本专业的了解以及帮助学生以后的学习。
材料加工:模具方面,塑性、连接、锻造、锻压(三维成型锻造、三维成型冲压)等;材料学,材料的微观结构和性能等。液态材料加工以铸造为主,固态加工方法较多,有轧制、拉拔、锻压冲压、焊接、粉末冶金、切削等,半固态材料加工以挤压为主。
材料发展及科学形成:材料是当代文明的三大支柱之一,材料、能源、信息是当代社会文明和国民经济的三大支柱,材料是全球新技术革命的四大标志之一…… 老师针对铸造方面介绍古代青铜制造的优秀技术,从材料的结构、成分、定律原则等说明从古至今我国在模具制造方面的优秀工艺,更加肯定了学好本专业的信心。
老师还介绍了以Auto CAD为主的二维软件和proe、UG、solidworks等为主的三维软件,让我们对大体可应用的软件有所了解。在板材成形新技术上面可分为液压成形(板材充液拉伸成型、封闭壳体无膜液压成型)、激光热应力成形、高能率成形技术(液电成型、爆炸成型)、磁脉冲成形技术等四方面,并且老师通过打印的自己头像实物更加形象的展现了3D打印技术的魅力。
2、自己通过各方面的了解
材料成型及控制工程是研究热加工改变材料的微观结构、宏观性能和表面形状,研究热加工过程中的相关工艺因素对材料的影响,解决成型工艺开发、成型设备、工艺优化的理论和方法;研究模具设计理论及方法,研究模具制造中的材料、热处理、加工方法等问题。本专业能在机械、模具、材料成型加工等领域从事科学研究、应用开发、工艺与设备的设计、生产及经营管理等方面工作的高级工程技术人才和管理人才。山东科技大学的材料成型及控制工程主要是模具方面。
1. 制定完善的毕业设计教学大纲,严格审查毕业设计课题
毕业设计教学大纲是毕业设计的指导性文件。本专业毕业设计教学大纲体现了专业培养计划对应用型本科人才培养的要求,对毕业设计课题的类型、课题的难易程度、课题的工作量提出了明确的要求。大纲要求所有课题必须来自社会生产实际或科学技术研究项目。专业教师委员会和教授委员会依据毕业时间大纲,先后对申报的课题进行严格的审查与复审,而课题一经确定不得再行更改。毕业设计课题确定的完整程序是:教师申报课题—专业教师委员会评审—二级学院教授委员会复审—本专业所有毕业设计课题上网—学生根据网上公布的课题填报志愿—专业系统筹安排课题到学生。课题数目多于参加毕业设计的学生人数,部分课题会落选,这使课题的申报具有一定的竞争机制。
2. 强调毕业设计的重要性,调动学生做毕业设计的积极性
毕业设计是应用型本科四年培养过程中最浓墨重彩的一笔,必须使学生理解其重要性,引起重视。往往有学生因为种种因素的影响而不够重视毕业设计。学生若不能全力投入毕业设计,不能在毕业设计中得到充分的锻炼和到位的训练,其专业能力将大打折扣,何谈零距离接触培养。因此,本专业在毕业设计之初,就召开毕业设计动员大会,要求全体参加毕业设计的学生和指导教师出席,通过动员,使学生真正认识到毕业设计对其人生的重要,调动学生做毕业设计的积极性。在大会上提出纪律要求,同时号召学生做毕业设计要加班加点,放弃节假日,拿出最好的毕业设计成绩向学校汇报,向父母汇报。
3. 让学生提前进入毕业设计,加强对毕业设计过程的控制
目前,毕业生就业对毕业设计造成一定的冲击是不争的事实。有的就业单位要求学生在毕业设计期间就到单位上班,有的学生东奔西走落实就业单位,致使毕业设计的时间极大地缩水。为提高毕业设计质量,本专业安排学生在第七个学期末就进入毕业设计,将寒假时间加以利用。在毕业设计过程中加强指导与管理工作,要求指导教师保证每周的指导时间,学生与指导教师每周填写毕业设计(论文)进展情况记录。在毕业设计的中期,学院检查毕业设计进度与学生表现,对进度较慢、不够认真、不守纪律的学生,提出整改要求,同时要求班导师和辅导员协助做思想工作,以保证毕业设计的顺利进行,力争不让一个学生掉队。
4. 充分利用校外资源,致力于零距离工程师培养
自2002年以来,常州市模具工业协会挂靠常州工学院机电工程学院。本专业与常州新科精密机械有限公司、常州高氏塑料机械有限公司、江苏华生塑业有限公司、常州华威塑料模具有限公司、常州钣焊厂、常州常恒集团公司等模协会员单位建立了良好的合作关系。在毕业设计期间,本专业的学生可以带着问题到模协会员单位实习、调研,熟悉现代企业的生产方式、生产组织管理、设备配备及工艺技术水平,避免毕业设计闭门造车,使毕业设计与企业的生产实际零距离接近。
每年一届的国际模具技术与设备博览会多于春季在长江三角洲的某中心城市召开,例如上海、苏州、无锡、南京、杭州都曾先后多次召开该博览会。本专业都会组织学生参加博览会。学生可以在博览会上收集到丰富的专业资料,通过与参展专业人员的交谈可以提高学识水平和专业素质。国际水平的工艺技术、装备、材料、计算机软件等使学生极大地开阔了视野,弥补了校内教学的不足,对提高毕业设计质量大有裨益。
5. 聘请兼职教师,优化毕业设计指导教师队伍
强将手下无弱兵。学生的毕业设计做得如何,指导教师的作用是至关重要的。毕业设计大多属于工艺装备设计类型,指导教师自身必须具备这方面的工程师的素质。从学历职称方面看,指导教师应该是双师型教师。但也不能完全唯学历唯职称。即使同时具备了博士学位与高级工程师职称,而对学生设计的图纸既不能给以肯定也不能指出什么地方有错误,这样的教师也就不能算合格的指导教师。本专业本着务实的精神,从本专业教师中筛选称职的指导教师,同时从常州市模协会员单位聘请一部分专业能力强、实践经验丰富的专业技术人员做兼职的毕业设计指导教师,使得学生在毕业设计中能够获得到位的训练与锻炼。本专业每届毕业设计的整体成绩较好,每届都有多名学生的毕业设计分别获得常州工学院优秀毕业设计奖。
6. 建立成绩评定体系,客观公正地评定毕业设计成绩
客观公正地评价学生毕业设计的质量、给出合理的毕业设计成绩是一项复杂的工作。经过多年的实践与探索,本专业建立了一套完整的毕业设计成绩评定体系。该体系分四个层次对学生的毕业设计进行量化评分。第一个层次,指导教师对所指导的学生的毕业设计按百分制评分。依据课题准备和调研能力、方案设计与论证能力、加工与装配工艺性、工程计算和数据处理能力、工程制图能力(图样质量)、总结表达能力(论文或设计说明书质量)、独立分析与解决问题的能力、课题的难易程度、课题工作量大小、工作态度与纪律等指标打分。第二个层次,专业系指定的评阅教师对学生的毕业设计按百分制评分。依据毕业设计总体设计质量、零件设计质量、技术总结质量、工程制图技能、计算机应用能力、设计说明书写作规范性等指标打分。第三个层次,组织学生答辩,由答辩委员会对学生的毕业设计答辩按百分制评分,依据学生在答辩中表现出的专业基础知识水平、专业知识水平、答辩的应变能力等指标打分。遵循指导教师回避制,指导教师不参加自己所指导的学生所在的答辩组答辩。第四个层次,对学生的毕业设计和答辩进行总评,按优秀、良好、中等、及格和不及格给出总评成绩。其中,指导教师评定的成绩占总评成绩的30%,评阅教师评定的成绩占总评成绩的20%,答辩委员会评定的成绩占总评成绩的50%。评分指标既能比较准确地反映学生毕业设计的质量与水平,也便于量化打分。这些指标既是指导教师的指导参照,也是学生毕业设计的奋斗目标。
关键词:材料成型及控制工程 实践教学改革 应用型人才
中图分类号:G420 文献标识码:A 文章编号:1674-098X(2012)12(a)-0-02
1998年,教育部将原先的铸造、锻压、焊接以及部分热处理等专业合并为材料成型及控制工程专业一门新专业[1],目的是为了培养专业知识面宽、适应能力强的材料成型领域的专业技术人才,也是为了进一步满足国家对于综合素质全面的专业技术人才的需求,符合当前国家经济发展现状。武汉工程大学(原武汉化工学院)是一所以工科为主,兼有理学、法学、管理学、经济学等学科的多科性普通高等院校。武汉工程大学的材料成型及控制工程专业从2002年开始招生,主要设置铸造、锻压、焊接、热处理、模具设计等方面的课程。由于材料成型及控制工程专业包涵了铸造、锻压、焊接和热处理等诸多内容,这使得该专业具备了宽口径专业的典型特征,同时兼具专业的理论性和实践性,有人也形象的总结为该专业具有“机械特征和材料色彩”[2],很多高校也把该专业设在机械学院。这就意味着当学生进入工作岗位后,不仅要具备扎实的专业理论知识,而且要具备较强的动手操作的能力,也就是我们所说的实践能力。诚然,实践教学不仅仅局限在对理论教学内容的检验和扩充上,更重要的还要培养学生的实际动手操作能力和创新能力。因此,材料成型及控制工程专业作为一门相对较为年轻的综合专业,其很多方面都还处于摸索的阶段,对于开展材料成型及控制工程专业的实践教学的探索,必将具有重要的理论意义和现实意义。虽然我校在材料成型及控制专业的教学实践方面做了一定的工作,但是由于专业设置较为年轻,还存在一些问题亟待解决。
1 材料成型及控制工程专业实践教学现状分析
1.1 实践教学的体系不够完善
实践教学体系包括实践教学的组织、管理、评价等环节,并保证各环节有序开展。目前,我校材料成型及控制专业在实践教学的组织上缺乏实践教学的系统性、连贯性及协调性,往往很多实验环节都是独立的,实验课都是根据理论专业课程开设,并没有考虑到本专业的综合情况,各个实验间并没有很好地连贯性和延续性;另外,实践教学的规划和管理不够规范,还没有制定一套行之有效的评价机制,导致学生对于实践教学的积极性不高,实践教学的效果也受到很大影响。
1.2 实践教学的硬件相对薄弱
实践教学的基础是必须具备丰富的实践设备。目前,武汉工程大学机电工程学院已拥有现代化加工中心、金工实习基地、力学性能实验室、模具设计陈列室等,其中包括数控机床、力学性能实验设备等。但是随着学校和学院的不断发展,我院材料成型及控制工程专业的实践教学在实验设备还有待进一步的完善。有很多课程的实践教学所需的设备往往达不到要求,我院材料成型及控制工程专业有250多人,有些实验设备的数量只有一台,再加上实验课时有限,这样就不能够使学生得到很好的实际动手操作的机会,学生在课程上学到的理论知识不能和实际操作有机地联系起来。在这种情况下,实践教学的效果就大打折扣。
1.3 实践教学的内容相对陈旧、模式古板
实验教学设备除了相对薄弱以外,还存在实验设备较为陈旧落后的问题。然而,现代材料成形新技术在不断发展,很多新兴的材料成形新技术不断的涌现,在这种情况下,学生仅仅停留在很多年前相对较为古老的技术上,而很多企业的设备和技术都在不断的更新换代,待学生离开校门进入到工作岗位时,将很难适应新技术和新装备的要求。因此,实践教学的初衷就没有达到,仅仅成了为了实验而实验。另外,大多数学生在做实验时,基本都是按照给定的指导书进行实验,并没有给学生一定自由创造的空间,这样就在一定程度上抹杀了学生的创造性。因此,这与实践教学对创新能力的要求上也存在距离。
2 材料成型及控制工程专业实践教学的革新举措
2.1 完善实践教学体系,规范实践教学的组织、管理和评价机制
首先,应该完善实践教学体系,规范实践教学的组织、管理和评价机制。在开设每门实验课程时,应综合考虑本专业的具体情况,力争做到大多实验间具有一定的系统性、连续性和协调性。另外,为了使得学生对实验更加重视,必须实行严格的实验教学评价机制,应该把实验课与专业课放到同样重要的位置,实验课如果不及格,那么即使专业课再优秀,也算不合格
对待。
2.2 增大实践教学投入,扩大实践教学基地的建设
为了培养出更多的高素质应用型人才,学校应该不断增大实践教学的投入,不断改善实践教学的条件,如购买更多的实验设备、提供更多的实验场所等。同时,虽然我校目前已经有一定规模的工程实践中心,但是随着学校的发展,目前的规模已逐渐不能适应实践教学的需要,需要进一步扩大实践教学基地的建设。此外,也可以采取措施,通过多途径、多渠道的方式来筹措资金、进行资源共享,不断改善我校的实践教学条件。由于我校地处湖北省武汉市,湖北省是教育大省,仅武汉市目前在校大学生就有100多万,武汉市拥有众多高校,如华中科技大学、武汉大学、武汉理工大学、中国地质大学等。
因此,我校可以充分利用兄弟院校的丰富的实践教学资源,做到资源共享,将实践教学的效率发挥到最大,这必将是一个多赢的局面。另外,我校也可以与武汉市的诸多企业联合,共同建设实践教学基地,这不仅可以为学校提供良好的实践教学场所和条件,而且也可为企业提供学校丰富的智力资源和广阔的平台[3],最终达到产学研的发展道路,这也是目前国家政策指导
方向。
2.3 更新实践教学内容和教学模式
学校需不断更新材料成型及控制工程专业的实践教学和教学模式。具体做法为:一些实践教学设备需要不断更新,应该贴近当前材料成型及控制工程专业的发展方向和潮流。另外,实践教学的内容应该贴近当前本专业的发展方向,并结合企业的实际生产,设定一些可以锻炼学生的实际动手能力,并且又反映了当前本专业的前沿方向,与企业的实际应用也紧密结合,同时也能很好地激发学生的创新能力的实验。比如,目前本专业设置的其中一个实践教学环节为“低压铸造工艺设计”,该实验涉及到的内容有机械设计,机械制造,流体力学,材料力学,铸造工艺,合金熔炼,材料界面,传热传质学等,该实验涉及面广,同时是企业当前应用的热点。实践证明,学生对该实验具有很大的兴趣,能充分发挥自己的创造能力进行设计,取得了不错的实践教学效果。
2.4 加大科研促进实践教学的力度
当前,高校都在朝着研究型大学的方向发展,这充分说明科研目前已成为高校非常重视的一块阵地,作为高校的每位教师也把科研作为自己很重要的本职工作。由于每个高校教师都具有自己独立的研究方向,并且其研究课题始终追踪着当前研究热点和重点,具有重要的理论意义和应用价值。在这种背景下,专业课教师如果能将自己的研究课题与学生的毕业设计有机地结合起来。一方面,这可以解决学校实验教学设备和经费欠缺的问题,并且很好地培养学生的实际动手能力;其次,学生通过接触材料成型及控制工程专业前沿的研究方向,使学生很好地了解本学科发展的动态;也很好地培养了学生的科研创新能力和团队协作能力,并很好地掌握了进行科学研究的方法和过程。另一方面,学生对先进的研究课题具有很大的好奇心和求知欲,必将具有极大的兴趣和积极性,那么实践教学的效果将事半功倍。
3 结语
材料成型及控制工程专业牵涉到的方面广泛,具有宽口径的特性,结合我校材料成型及控制工程专业的情况介绍也可看出,其中容易出现的问题也较多,实践教学环节作为其中重要的一环,还存在诸多问题亟待解决,如果处理不当,将不利于培养学生的实际动手能力和创新能力。因此,实践教学需要不断的摸索和研究,应从材料成型及控制工程专业的自身特点、企业的需求和学科的发展动态等多方面不断完善实践教学的各个环节,才能实现材料成型及控制工程专业实践教学的使命,为国家培养出更多的具有创新能力的应用型
人才。
参考文献
[1]徐超辉,谭婷婷.基于天津滨海新区人才需求探讨模具教学改革[J].模具制造,2010(3):90-92.
[2]王悔改,宋延沛.材料成型及控制工程专业实践性教学环节的思考与探索[J].中国现代教育装备,2008(4):116-118.
班级:机自144 姓名:董
浩 学号:201406024407
金属材料在机械行业中的应用
一、金属材料的特性
1、机械性能
1.1强度
这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂。
1.2塑性
金属材料在外力作用下产生永久变形而不破坏的最大能力称为塑性,通常以拉伸试验时的试样标距长度延伸率δ(%)和试样断面收缩率ψ(%)表示。
1.3硬度
金属材料抵抗其他更硬物体压入表面的能力成为硬度,或者说是材料对局部塑性变形的抵抗力。根据硬度的测定方法,主要可以分为:布氏硬度和洛氏硬度。
1.4韧性
金属材料在冲击载荷作用下抵抗破坏的能力成为韧性。
2、化学性能
金属与其他物质引起化学反应的特性称为金属的化学性能。在实际应用中主要考虑金属的抗蚀性、抗氧化性(又称作氧化抗力,这是特别指金属在高温时对氧化作用的抵抗能力或者说稳定性),以及不同金属之间、金属与非金属之间形成的化合物对机械性能的影响等等。在金属的化学性能中,特别是抗蚀性对金属的腐蚀疲劳损伤有着重大的意义。
3、物理性能
3.1密度
ρ=P/V 单位克/立方厘米或吨/立方米,式中P为重量,V为体积。在实际应用中,除了根据密度计算金属零件的重量外,很重要的一点是考虑金属的比强度(强度σb与密度ρ之比)来帮助选材,以及与无损检测相关的声学检测中的声阻抗(密度ρ与声速C的乘积)和射线检测中密度不同的物质对射线能量有不同的吸收能力等等。3.2熔点
金属由固态转变成液态时的温度,对金属材料的熔炼、热加工有直接影响,并与材料的高温性能有很大关系。3.3热膨胀性
随着温度变化,材料的体积也发生变化(膨胀或收缩)的现象称为热膨胀,多用线膨胀系数衡量,亦即温度变化1℃时,材料长度的增减量与其0℃时的长度之比。热膨胀性与材料的比热有关。
在实际应用中还要考虑比容材料受温度等外界影响时,单位重量的(材料其容积的增减,即容积与质量之比),特别是对于在高温环境下工作,或者在冷、热交替环境中工作的金属零件,必须考虑其膨胀性能的影响。
3.4磁性
能吸引铁磁性物体的性质即为磁性,它反映在导磁率、磁滞损耗、剩余磁感应强度、矫顽磁力等参数上,从而可以把金属材料分成顺磁与逆磁、软磁与硬磁材料。3.5电学性能
主要考虑其电导率,在电磁无损检测中对其电阻率和涡流损耗等都有影响。
4、工艺性能
4.1切削加工性能:
反映用切削工具(例如车削、铣削、刨削、磨削等)对金属材料进行切削加工的难易程度。
4.2可锻性:
反映金属材料在压力加工过程中成型的难易程度,例如将材料加热到一定温度时其塑性的高低(表现为塑性变形抗力的大小),允许热压力加工的温度范围大小,热胀冷缩特性以及与显微组织、机械性能有关的临界变形的界限、热变形时金属的流动性、导热性能等。
4.3可铸性:
反应金属材料融化浇铸成为铸件的难易程度,表现为熔化状态时的流动性吸气性、氧化性、熔点,铸件显微组织的均匀性、致密性,以及冷缩率等等。
4.4可焊性:
反映金属材料在局部快速加热,使结合部位迅速熔化或半熔化(需加压),从而使结合部位牢固地结合在一起而成为整体的难易程度,表现为熔点、熔化时的吸气性、氧化性、导热性、热胀冷缩特性、塑性以及与接缝部位和附近用材显微组织的相关性、对机械性能的影响等。
二、金属材料的发展前景
金属制品行业包括结构性金属制品制造、金属工具制造、集装箱及金属包装容器制造、不锈钢及类似日用金属制品制造,船舶及海洋工程制造等。随着社会的进步和科技的发展,金属制品在工业、农业以及人们的生活各个领域的运用越来越广泛,也给社会创造越来越大的价值。
金属制品行业在发展过程中也遇到一些困难,例如技术单一,技术水平偏低,缺乏先进的设备,人才短缺等,制约了金属制品行业的发展。为此,可以采取提高企业技术水平,引进先进技术设备,培养适用人才等提高中国金属制品业的发展。
三、学习体会
老师将同学们分成十组,让每个同学动手制作PPT,上台演讲,使每个人都融入到课堂中。采用学生先讲,老师再补充的方法,让我们更加清楚的认识这门课。
多媒体教学打破了传统的教学格局,极大地调动了教师与学生的双边积极性。因其具有声音、图像和动画等功能,课堂教学气氛活跃,学生容易按老师的教学思维去回答问题,教师也容易按正常的规律从事教学活动,师生双方的潜能都得到应有的发挥,特别是调动了学生的内在学习动力,学生学习兴趣得到培养,同时也有利于素质教育的开展。但需要注意的是,在机械工程材料教学中,不是每堂课都需要在多媒体教室讲解,在确定教学内容时应注意一个问题,就是如何最大限度地发挥多媒体优势,就是说要让多媒体为教学内容雪中送炭,而不能画蛇添足。
教师要运用自己的知识和经验,理解和把握教材,有计划地组织学生走出校园,走进社会,下车间参观锻炼,多接触各种材料,了解金属材料加工工艺,掌握改善材料的力学性能的方法等,让学生在各个实践环节训练,通过这些实训,充分调动学生的主动性,提高学生运用知识和基本技能分析、解决实际问题的能力,开阔学生的视野,掌握更多的操作技能,使他们认识到机械工程材料知识的价值。
机械工程材料是一门实用型学科,其中每个理论都与生产实际密切相关,每种材料也都有特定的应用范围。因此,在教学过程中,教师针对学生的工种和状况,深入挖掘教材内容,将抽象的理论有意识地与生产实践相结合,有目的地设计兴奋点,让课本内容更贴近生产,并通过工作中的实例加以说明。
通过学习机械工程材料及成型技术基础这门课,让我们对金属材料、高分子材料、新型材料陶瓷材料、有色金属有了更深的认识,初步掌握了金属热处理技术、焊接技术、铸造技术、金属材料成型基本原理、金属材料的力学性能。
由于我们组的大课题是金属材料成型基本原理,所以我对这节的印象更加深刻。自己动手找材料制作课件,让我对其中的每个问题都有了深刻理解。如利用机械外力使构件产生与焊接变形方向相反的塑性变形,使两者互相抵消,称为机械矫正法;利用火焰对焊件局部进行加热。高温处的金属材料受热膨胀后,受到构件本身的刚性制约,产生局部的压缩塑性变形,当焊件冷却后发生收缩抵消了焊后在该部位的伸长变形,从而达到矫正目的称为火焰矫正法:常用的金属加工机器有车床、铣床、刨床、冲床、等等。