平行线的证明练习题
一、选择题
1、下列语句是命题的是()A、延长线段AB B、你吃过午饭了吗? C、直角都相等
D、连接A,B两点
2、如图,已知∠1+∠2=180º,∠3=75º,那么∠4的度数是()A、75º
B、45º
C、105º
D、135º
3、以下四个例子中,不能作为反例说明“一个角的余角大于这个角”
是假命题是()
A、设这个角是30º,它的余角是60°,但30°<60°
B、设这个角是45°,它的余角是45°,但45°=45°
C、设这个角是60°,它的余角是30°,但30°<60°
D、设这个角是50°,它的余角是40°,但40°<50°
4、若三角形的一个内角等于另外两个内角之差,则这个三角形是()
A、锐角三角形
B、直角三角形 C、钝角三角形
D、不能确定
5、如图,△ABC中,∠B=55°,∠C=63°,DE∥AB, 则∠DEC等于()
A、63°
B、118° C、55°
D、62°
6、三角形的一个外角是锐角,则此三角形的形状是()
A、锐角三角形
B、钝角三角形
C、直角三角形 D、无法确定
7、“两条直线相交,有且只有一个交点”的题设是().
A、两条直线
B、交点 C、两条直线相交
D、只有一个交点
8、如图,AB∥CD,∠A+∠E=75°,则∠C为()
A.60°
B.65°
C.75°
D.80°
二、填空题
9、在△ABC中,∠C=2(∠A+∠B),则∠C=________.10、如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分
∠BEF,若∠1=72º,则∠2=_______;
11、在△ABC中,∠BAC=90º,AD⊥BC于D,则∠B与∠DAC的大小关系是__________.12、写出“同位角相等,两直线平行”的题设为_________________,结论为_______________.
13、如图,已知AB∥CD,BC∥DE,那么∠B +∠D =__________.14、如图,∠1=27º,∠2=95º,∠3=38º,则∠4=_______.15、如图,写出两个能推出直线AB∥CD的条件________________________.16、满足一个外角等于和它相邻的一个内角的△ABC是_____________.三、解答题
17、如图,AD=CD,AC平分∠DAB,求证DC∥AB.18、如图,已知∠1=20°,∠2=25°,∠A=55°,求∠BDC的度数.
19、如图所示,已知直线BF∥DE,∠1=∠2,求证:GF∥BC.20、如图,已知点A在直线l外,点B、C在直线l上.
(1)点P是△ABC内一点,求证:∠P>∠A:
这个几何事实常常被忽视, 其实大有用处, 有时运用起来妙不可言.下面例举两道经典题供大家欣赏.
例1如图2, 在五边形A1A2A3A4A5中, B1是A1对边A3A4的中点, 连接A1B1, 我们称A1B1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.
求证:五边形的每条边都有一条对角线和它平行.
证明:如图3, 取A1A5中点B3, 连接A3B3、A1A3、A1A4、A3A5.
因为A3B1=B1A4,
所以S△A1A2A3=S△A1B1A4.
又因为四边形A1A2A3B1与四边形A1B1A4B5的面积相等,
所以S△A1A2A3=S△A1A4A5.
同理S△A1A2A3=S△A3A4A5,
所以S△A1A4A5=S△A3A4A5.
所以△A3A4A5与△A1A4A5边A4A5上的高相等,
所以A1A3∥A4A5.
同理可证A1A2∥A3A5, A2A3∥A1A4, A3A4∥A2A5, A5A1∥A2A4.
例2如图4, △ABC的面积是10, 点D、E、F (与A、B、C不同的点) 分别位于AB、BC、CA各边上, 而且AD=2, DB=3.如果△ABE的面积和四边形DBEF的面积相等, 求这个相等的面积值.
BC
2.如图,在中,∠B=120°,DE⊥AB,垂足为E,DF⊥BC,垂足为F.求
∠ADE,∠
EDF,∠FDC的度数.
3.如图,在平行四边形ABCD中,已知对角线
AC和BD相交于点O,ΔAOB的周长为
15,AB=6,那么对角线AC和BD的和是多少?
4.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.
5.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.
6.已知:如图,在平行四边形ABCD中,E,F分别是AB,CD上的两点,且AE=CF,AF,DE相交于点M,BF,CE相交于点N.
求证:四边形EMFN是平行四边形.(要求不用三角形全等来证)
7.已知:如图,在△
ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.
8.如图,已知,▱ABCD中,AE=CF,M、N分别是
DE、BF的中点.
求证:四边形MFNE是平行四边形.
9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.
已知:如图,△ABC中,D是AB的中点,E是AC上的一点,EF∥AB,DF∥BE.
(1)猜想:DF与AE间的关系是______.
命题一般由条件和结论组成。通常可以写成如果…那么…的形式。如果引出的是条件那么引出的是结论。
正确的为真命题不正确的为假命题
要证明一个命题是假命题通常要举一个例子,使它具备问题得条件不具备问题得结论,我们称这样的例子为反例。
经过证明的真命题为定理
平行线的判定:两条直线被第三条直线所截,如果内错角相等,那么两条直线平行。
(内错角相等,两直线平行)
两条直线被第三条直线所截,如果同位角相等,那么
两条直线平行。
(同位角相等,两直线平行)
两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行。
(同旁内角互补,两直线平行)
平行线的性质:两直线平行同位角相等
两直线平行内错角相等
两直线平行同旁内角互补
平行线及其判定练习题
一、选择题:
1.如图1所示,下列条件中,能判断AB∥CD的是()
A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD
A
D
AE
DA
E
C
(1)(2)(3)2.如图2所示,如果∠D=∠EFC,那么()
A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF3.如图3所示,能判断AB∥CE的条件是()
A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE4.下列说法错误的是()
A.同位角不一定相等B.内错角都相等
C.同旁内角可能相等D.同旁内角互补,两直线平行
5.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互()A.平行B.垂直C.平行或垂直D.平行或垂直或相交
二、填空题:
1.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.2.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.CD3.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A可以判断______∥______,根据是(2)由∠CBE=∠C可以判断______∥______,根据是
三、训练平台:(每小题15分,共30分)
1.如图所示,已知∠1=∠2,AB平分∠DAB,试说明DC∥AB.A
2.如图所示,已知直线EF和AB,CD分别相交于K,H,且EG⊥AB,∠CHF=600,∠E=•30°,试说明AB∥CD.E
AC
四、提高训练:
K
H
BD
如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为什么?
de
abc
五、探索发现:
如图所示,请写出能够得到直线AB∥CD的所有直接条件.24AC
B
657D
六、中考题与竞赛题:
(2000.江苏)如图所示,直线a,b被直线c所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为()
A.①②B.①③C.①④D.③④
c
41a
一、填空题(每题4分,共32分)
1.在△ABC中,∠C=2(∠A+∠B),则∠C=________.2.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分
∠BEF,若∠1=72º,则∠2=;
3.在△ABC中,∠BAC=90º,AD⊥BC于D,则∠B与∠DAC的大小关系是________ AEBCF
12GD
4.写出“同位角相等,两直线平行”的题设为_______,结论为_______. 第2题
5.如图,已知AB∥CD,BC∥DE,那么∠B +∠D =__________.A B EC D B E第7题 第5题 第6题
6.如图,∠1=27º,∠2=95º,∠3=38º,则∠4=_______
7.如图,写出两个能推出直线AB∥CD的条件________________________.8.满足一个外角等于和它相邻的一个内角的△ABC是_____________
二、选择题(每小题4分,共24分)
9.下列语句是命题的是【】
(A)延长线段AB(B)你吃过午饭了吗?(C)直角都相等(D)连接A,B两点
10.如图,已知∠1+∠2=180º,∠3=75º,那么∠4的度数是【】
(A)75º(B)45º(C)105º(D)135º
11.以下四个例子中,不能作为反例说明“一个角的余角大于这个角”是假命题是【】
(A)设这个角是30º,它的余角是60°,但30°<60°
(B)设这个角是45°,它的余角是45°,但45°=45°
第10题(C)设这个角是60°,它的余角是30°,但30°<60°
(D)设这个角是50°,它的余角是40°,但40°<50°
12.若三角形的一个内角等于另外两个内角之差,则这个三角形是【】
(A)锐角三角形(B)直角三角形(C)钝角三角形(D)不能确定
13.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于【】
(A)63°(B)118°
(C)55°(D)62° D 14.三角形的一个外角是锐角,则此三角形的形状是【】
(A)锐角三角形
(B)钝角三角形(C)直角三角形(D)无法确定
1三、(每小题10分,共20分)
15.如图,AD=CD,AC平分∠DAB,求证DC∥AB.16.如图,已知∠1=20°,∠2=25°,∠A=55°,求∠BDC的度数.
四、(每小题12分,共24分)
17.如图,BE,CD相交于点A,∠DEA、∠BCA的平分线相交于F.(1)探求:∠F与∠B、∠D有何等量关系?
(2)当∠B︰∠D︰∠F=2︰4︰x时,x为多少?
18.如图,已知点A在直线l外,点B、C在直线l上.
(1)点P是△ABC内一点,求证:∠P>∠A;
(2)试判断:在△ABC外又和点A在直线l同侧,是否存在一点Q,使∠BQC>∠A?试证明你的结论.
C
参考答案1、120°;
2、54°;
3、相等;
4、同位角相等,两直线平行;
5、180°;
6、20°;
7、如∠1=∠8或∠1=∠6或∠1+∠5=180º;8.直角三角形;
9、C;
10、C;
11、A;
12、B;
13、D;
14、B;
15、ADCD122CABDC平行AB;
16、100º; AC平分DAB1CAB
17、(1)连CE,记∠AEC=∠1,∠ACE=∠2,则∠D+∠2+∠1+∠DEA=180º,∠B+∠1+∠2+∠BCA=180º,∠F+∠1+∠2+11∠DEA+∠BCD=180º.2
2∵∠D+∠2+∠1+∠DEA+∠B+∠1+∠2+∠BCA=360º,111(∠D+∠B)+∠1+∠2+∠BCA+∠DEA=180º,222
111∴∠1+∠2+∠BCA+∠DEA=180º-(∠D+∠B),222
11即∠F+180º-(∠D+∠B)=180º,∴∠F=(∠B+∠D); 22
1(2)设∠B=2α,则∠D=4α,∴∠F=(∠B+∠D)=3α.2∴
又∠B︰∠D︰∠F=2︰4︰x,∴x=3.18、(1)延长BP交AC于D,则∠BPC>∠BDC,∠BDC>∠A故∠BPC>∠A;
这里以人教版一年级下册“找规律”为例, 见下图:
这里的一个“应”字, 就是不妥当的。它意味着找的规律只有一种 (两个一组间隔出现) , 第一排的第10面旗只能是黄色, 即“红、黄、红、黄、红、黄、红、黄、红, 黄”。
小学数学界一向认为, 此题的答案非“黄”不可, 必须让学生无条件地接受“两两间隔”这一规律。这妥当吗?
事实上, 我们可以找到许多其他的规律, 使得第10面旗是“红”。
例1: (9个一组, 周期重复) 于是第9、第10;第18、第19, 连续两面都是红旗, 即:
红、黄、红、黄、红、黄、红、黄, 红;红、黄、红、黄、红、黄、红、黄, 红;红、黄、红、黄、红、黄、红、黄, 红;红, ……
例2: (10个一组, 最后两面都是红旗) 第9、10、11连续地出现三面红旗, 即:
红、黄、红、黄、红、黄、红、黄, 红, 红;红、黄、红、黄、红、黄、红、黄、红、红;红、黄、红、黄、红、黄、红、黄, 红, 红;红……
你能说这不是规律吗?
实际上, 找规律问题是一个开放性问题。任何一个有限序列, 都可以生成无限的多种的规律。认为只有一个规律, 推断出“必须是什么”和“应该是什么”, 把开放题封闭成一个唯一答案的题目, 在数学上是不对的。
有人说, 小学生只能找最简单的一种, 多种规律是以后的事情。这可以理解。但问题在于, 小学数学的大量课件、教师用书都没有指出这是一个开放性问题。有些文章在讨论, 重复几次才算“规律”, 更是误导。
怎么办?只要改一个字:把“后面一个应是什么”改成“后面一个会是什么”就可以了。“应”和“会”一字之差, 意义完全不同。苏步青先生在指导中小学教材编写时, 提出“混而不错”的原则。用在找规律的时候是, 如果问“会是什么”, 其答案可以有许多种, 其意义比“应是什么”宽泛许多。至于将来在几年级将它当做一个开放性问题来处理, 可以讨论, 但是必须有这样一步才好。
让我们回到“三角形内角和为180度”的问题上。马建平和戎松魁两位老师的争论点, 在于矩形可否定义为“四个角都是直角的四边形”。马老师认为可以, 于是就认为由此可以证明三角形内角和定理, 而无需平行公理。戎老师认为不可以, 必须用平行四边形定义矩形, 由此说明三角形内角和定理不能绕开平行公理。
笔者认为, 两位老师都有对的部分, 也有不对的部分。马老师觉得矩形可以定义为“有四个直角的四边形”, 这是对的。但是, 以为由此定义出发, 可以避开平行公理来证明三角形内角和为180度, 则是错的。戎老师坚持三角形内角和定理, 必须使用平行公理, 这是对的。但是, 说矩形不能定义为“有四个直角的四边形”, 则是不对的。
实际上, 将矩形定义为“四个角都是直角的四边形”, 完全可以。属和种差式的逻辑定义方法, 并没有规定所从属的“属”必须是其外延最相近的。打个比方, 要定义“杭州人”, 可以说成“居住在杭州的中国人”, 没有错。也就是说, 并非一定要把“杭州人”定义为“居住在杭州的浙江人”, 因为二者是等价的。对于矩形的“四直角”定义, 一旦服从平行公理, 就和“有一个角是直角的平行四边形”定义等价 (如果没有平行公理, 那么两者是不等价的) 。
然而, 如同马建平老师和许多其他文章所说的那样, 可以从“四个角都是直角的四边形”出发, 绕开平行公理就能够直接推出“三角形内角和为180度”, 则是不可能的。理由如下。
依照四个角都是直角的矩形定义, 自然得出矩形的内角和是360度, 这毫无问题。矩形的对角线把矩形分为两个一样的直角三角形, 只要运用平移旋转的刚体运动也可以做到。小学生也知道一点平移、旋转、对称的知识, 可以直观地接受, 严密地逻辑证明需要引用合同公理得出两个三角形三边相等则全等的结论, 逻辑上引用就是了。于是, 得到了如下的结论:“矩形对角线分成的两个直角三角形, 每一个的内角和都是180度。”逻辑的正确性到此为止。问题在于, “任意的直角三角形, 是不是都能成为某一个矩形用对角线分成的直角三角形?”这需要证明, 不能想当然。马老师及许许多多作者都振振有词地把两者混为一谈, 犯了逻辑上的错误。
换句话说, 马老师等作者的所谓证明, 必须从任意的“直角三角形”出发, 作出一个矩形, 使其成为该矩形的一半。但是没有平行公理, 这是作不出来的。那个貌似正确的三角形内角和证明, 这一关过不去, 整个证明的逻辑链条就断裂了。
马建平老师可能会说, 从已知的直角三角形出发, 作一个和自身一样的直角三角形, 两者拼起来就是一个矩形。这是一厢情愿。这样拼起来的四边形只有两个直角;无法证明它有四个直角, 除非引进平行公理。
这就是说, 想从“矩形有四个直角”作为矩形的定义出发, 避开平行公理来证明三角形内角和为180度的企图, 是决然不可能实现的。
1、定义的概念:
对名称和术语的含义加以描述,作出明确的规定,就是给出它们的定义。例子:下列语句属于定义的是()
A、明天是晴天
B、长方形的四个角都是直角
C、等角的补角相等
D、平行四边形是两组对边分别平行的四边形
2、命题:
判断一件事情的句子,叫做命题。
注意:(1)命题必须是一个完整的句子,通常是陈述句,包括肯定句和否定句。
(2)命题必须对某件事情作出肯定或否定的判断。
(3)错误的判断性语句也是命题。
(4)一般命题都可以写成“如果....那么.....”的形式。
例子:下列语句中哪些是命题?哪些不是命题?
(1)相等的角不是对顶角
(2)同位角相等,两直线平行
(3)过点O作直线AB的平行线
(4)若x2=y2,则x=y
(5)老师今天表扬你了吗?
3、正确的命题称为真命题,不正确的命题称为假命题。
4、公认的真命题称为真理。
5、演绎推理的过程称为证明。
6、经过证明的真命题称为定理。
7、平行线的判定
(1)同位角相等两直线平行。
(2)同旁内角互补两直线平行。
(3)内错角相等两直线平行。
8、平行线的性质
(1)两直线平行,同位角相等
(2)两直线平行,内错角相等
(3)两直线平行,同旁内角互补
基础练习
一、选择题
1、下列图形中,由AB∥CD,能得到12的是()
A B A BCD D C 2
2、如图,直线A. LB C.
D.
1∥L2 ,则∠α为().A.1500B.1400C.1300D.12003、下列命题:
1①不相交的两条直线平行; ②梯形的两底互相平行;
③同垂直于一条直线的两直线平行; ④同旁内角相等,两直线平行.(第2题图)其中真命题有()
A.1个B.2个C.3个D.4个
4、下列命题:
①两个连续整数的乘积是偶数;②带有负号的数是负数;
③乘积是1的两个数互为倒数;④绝对值相等的两个数互为相反数.其中假命题有()
A.1个B.2个C.3个D.4个 A
5、如图,AB∥CD,那么∠BAE+∠AEC+∠ECD =()A.1800B.2700C.3600D.5400
6、下列说法中,正确的是()
A.经过证明为正确的真命题叫公理B.假命题不是命题
E
C
D
C.要证明一个命题是假命题,只要举一个反例,即举一个具备命题的条件,而不具备命题结论的命题即可
D.要证明一个命题是真命题,只要举一个例子,说明它正确即可.7、下列选项中,真命题是().A.a>b,a>c,则b=cB.相等的角为对顶角
C.过直线l外一点,有且只有一条直线与直线l平行D.三角形中至少有一个钝角
8、下列命题中,是假命题的是()
A.互补的两个角不能都是锐角B.如果两个角相等,那么这两个角是对顶角 C.乘积为1的两个数互为倒数D.全等三角形的对应角相等,对应边相等.9、下列命题中,真命题是()
A.任何数的绝对值都是正数B.任何数的零次幂都等于
1C.互为倒数的两个数的和为零 D.在数轴上表示的两个数,右边的数比左边的数大
10、如图所示,下列条件中,能判断AB∥CD的是()
A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD
二、填空题
11、观察如图所示的三棱柱.用符号表示下列线段的位置关系:
ACCC1 ,BCB1C1 ;
C
B(第13题图)(第12题图)
(第11题图)
12、如图三角形ABC中,∠C = 900,AC=23,BC=32,把
AC、BC、AB的大小关系用“>”号连接:.13、如图,直线AB、CD相交于点E ,DF∥AB,若∠AEC=1000,则∠D的度数等于.D
(第14题图)
14、如图,把长方形ABCD沿EF对折,若∠1=500,则∠
15、图中有对对顶角.三.解答题
16、如图,AB∥CD,AD∥BC,∠A﹦∠B.求∠A、∠B、∠C、∠D的度数.D
C17、如图,AB∥CD,直线EF交AB、CD于点G、H.如果GM平分∠BGF,HN平分∠CHE,那么,GM与HN平行吗?为什么?
EA B
CH
F 0018、如图,AB∥CD,∠BAE=30,∠ECD=60,那么∠AEC度数为多少?
A
E
D C19、如图,B处在A处的南偏西450方向,C处在B处的北偏东800方向.(1)求∠ABC.(2)要使CD∥AB,D处应在C处的什么方向?(12分)
D20、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为什么?(13分)
de
abc
参 考 答 案
一、1.B2.D3.B4.B5.C6.C7.C8.B9.D10.D
二、11.(1)⊥
12.AB >BC >AC13.80014.115015.9
三、16.1350,450,1350,450
提示:可以用方程.设∠B=x0 ,根据AD∥BC,得x+3x=180(两直线平行,同旁内角互补),解得x=45.以下略.17.GM∥HN.理由:因为GM平分∠BGF,HN平分∠CHE,所以∠MGF= ∠BGF,∠NHE=
∠CHE,又因为AB∥CD,所以∠BGF=∠CHE(两直线平行,内错角相等),所以∠MGF=2
∠NHE.所以GM∥HN(内错角相等,两直线平行).18.如图,过E作EF∥AB,则∠1=∠A=300
(„„);
因为AB∥CD,所以EF∥CD(如果两条直线 都与第三条直线平行,那么这
A平面垂直与一条直线,设平面和直线的交点为p
B平面垂直与一条直线,设平面和直线的交点为Q
假设A和B不平行,那么一定有交点。
设有交点R,那么
做三角形pQR
pR垂直pQQR垂直pQ
没有这样的三角形。因为三角形的内角和为180
所以A一定平行于B
证明:如果a‖b,a‖c,那么b‖c证明:假使b、c不平行则b、c交于一点O又因为a‖b,a‖c所以过O有b、c两条直线平行于a这就与平行公理矛盾所以假使不成立所以b‖c由同位角相等,两直线平行,可推出:内错角相等,两直线平行。同旁内角互补,两直线平行。因为a‖b,a‖c,所以b‖c(平行公理的推论)
2“两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。
一、怎样证明两直线平行证明两直线平行的常用定理(性质)有:1.两直线平行的判定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行.2、三角形或梯形的中位线定理.3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.4、平行四边形的性质定理.5、若一直线上有两点在另一直线的同旁).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用平行线判定定理可判断答案选C认六一值!小人﹃夕叱的一试勺洲洲川JLZE一B/(一、图月一飞/匕一|求且它们到该直线的距离相等,则两直线平行.例1(2003年南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(B).例2(2003年泉州市)如图2,△注Bc中,匕BAC的平分线AD交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF.(l)求证:EF//Bc
(1)根据定义。证明两个平面没有公共点。
由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。
(2)根据判定定理。证明一个平面内有两条相交直线都与另一个平面平行。
(3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。
2.两个平行平面的判定定理与性质定理不仅都与直线和平面的平行有逻辑关系,而且也和直线与直线的平行有密切联系。就是说,一方面,平面与平面的平行要用线面、线线的平行来判定;另一方面,平面
与平面平行的性质定理又可看作平行线的判定定理。这样,在一定条件下,线线平行、线面平行、面面平行就可以互相转化。
3.两个平行平面有无数条公垂线,它们都是互相平行的直线。夹在两个平行平面之间的公垂线段相等。
因此公垂线段的长度是唯一的,把这公垂线段的长度叫作两个平行平面间的距离。显然这个距离也等于其中一个平面上任意一点到另一个平面的垂线段的长度。
两条异面直线的距离、平行于平面的直线和平面的距离、两个平行平面间的距离,都归结为两点之间的距离。
1.两个平面的位置关系,同平面内两条直线的位置关系相类似,可以从有无公共点来区分。因此,空间不重合的两个平面的位置关系有:
(1)平行—没有公共点;
(2)相交—有无数个公共点,且这些公共点的集合是一条直线。
注意:在作图中,要表示两个平面平行时,应把表示这两个平面的平行四边形画成对应边平行。
2.两个平面平行的判定定理表述为:
4.两个平面平行具有如下性质:
(1)两个平行平面中,一个平面内的直线必平行于另一个平面。
简述为:“若面面平行,则线面平行”。
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
简述为:“若面面平行,则线线平行”。
(3)如果两个平行平面中一个垂直于一条直线,那么另一个也与这条直线垂直。
(4)夹在两个平行平面间的平行线段相等
用反证法
A平面垂直与一条直线,设平面和直线的交点为p
B平面垂直与一条直线,设平面和直线的交点为Q
假设A和B不平行,那么一定有交点。
设有交点R,那么
做三角形pQR
pR垂直pQQR垂直pQ
没有这样的三角形。因为三角形的内角和为180
[一]、平行线的判定
一、填空
1.如图1,若A=3,则∥;若2=E,则∥; 若+= 180°,则∥.c d A a E a 52 23 b B b C A B图4 图3 图1 图2
2.若a⊥c,b⊥c,则ab.
3.如图2,写出一个能判定直线l1∥l2的条件:.
4.在四边形ABCD中,∠A +∠B = 180°,则∥().
5.如图3,若∠1 +∠2 = 180°,则∥。
6.如图4,∠
1、∠
2、∠
3、∠
4、∠5中,同位角有;内错角有;同旁内角有.
7.如图5,填空并在括号中填理由:
(1)由∠ABD =∠CDB得∥();
(2)由∠CAD =∠ACB得∥();
(3)由∠CBA +∠BAD = 180°得∥()
A D Dl1 14 5 3l2 C B C
图7 图5 图6
8.如图6,尽可能多地写出直线l1∥l2的条件:.
9.如图7,尽可能地写出能判定AB∥CD的条件来:.
10.如图8,推理填空:
(1)∵∠A =∠(已知),A
∴AC∥ED();
(2)∵∠2 =∠(已知),2∴AC∥ED();(3)∵∠A +∠= 180°(已知),B D C
∴AB∥FD(); 图8(4)∵∠2 +∠= 180°(已知),∴AC∥ED();
二、解答下列各题
11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF. DF
1.已知正方体ABCD—A1B1C1D1,O是底ABCD对角线的交点. 求证:(1)C1O//平面AB1D1;(2)A1C⊥平面AB1D1.
ADBC
1D
B
C
2.如图,在长方体ABCDA1B1C1D1中,ADAA11,AB1,点E在棱AB上移动。求证:D1E⊥A1D;
3.如图平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且AF
A
E
B
C
AD2,G是EF的中点,2(1)求证平面AGC⊥平面BGC;(2)求空间四边形AGBC的体积。
4.如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABCA1B1C1中,AB8,AC6,BC10,D是BC边的中点.(Ⅰ)求证:
5.如图组合体中,三棱柱ABCA1B1C1的侧面ABB1A1 是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合一个点.(Ⅰ)求证:无论点C如何运动,平面A1BC平面A1AC;
(Ⅱ)当点C是弧AB的中点时,求四棱锥A1BCC1B1与圆柱的体积比.
6.如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F 为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=2MB,试在线段CE
上确定一点N,使得MN∥平面DAE.7.如图,在棱长为1的正方体ABCDA1B1C1D1中:(1)求异面直线BC1与AA1所成的角的大小;(2)求三棱锥B
1A1C
1B的体积。(3)求证:B1D
平面A1C1B
ABA1C;(Ⅱ)求证:AC1∥ 面AB1D;
8. 如图:S是平行四边形ABCD平面外一点,M,N分别是
SA,BD上的点,且
AMBN
=,求证:MN//平面SBC SMND
P
9. 如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,点E是PD的中点.
(Ⅰ)求证:AC⊥PB;(Ⅱ)求证:PB∥平面AEC.
E
A
B
D C
10.在多面体ABCDEF中,点O是矩形ABCD的对角线的交点,平面CDE是等边三角形,棱EF//BC且EF=
BC.
2(I)证明:FO∥平面CDE;
(II)设BC=CD,证明EO⊥平面CDF.
11. 如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱 PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(Ⅰ)证明PA//平面EDB;(Ⅱ)证明PB⊥平面EFD.
12.如图,四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点.
(1)求证:CDAE;(2)求证:PD面ABE.
13.如图在三棱锥PABC中,PA平面ABC,C E
C
P
B
A
DB
_P
ABBCCA3,M为AB的中点,四点P、A、M、C
都在球O的球面上。
(1)证明:平面PAB平面PCM;(2)证明:线段PC的中点为球O的球心;
14.如图,在四棱锥SABCD中,SAAB2,SBSD ABCD是菱形,且ABC60,E为CD的中点.
(1)证明:CD平面SAE;
(2)侧棱SB上是否存在点F,使得CF//平面SAE?并证明你的结论.
_A_C
_M
_B
D
C
课后练习
1.如图所示,在直三棱柱ABC—A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。(I)求证:B1C//平面A1BD;(II)求证:B1C1⊥平面ABB1A
(III)设E是CC1上一点,试确定E的位置,使平面A1BD⊥平面 BDE,并说明理由。
2.如图,已知AB平面ACD,DE平面ACD,三角形ACD 为等边三角形,ADDE2AB,F为CD的中点(1)求证:AF//平面BCE;
(2)求证:平面BCE平面CDE;
1. 如图,四棱锥P—ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直 角梯形,∠ABC=∠BAD=90°,PA=BC=
AD.2
(I)求证:平面PAC⊥平面PCD;
(II)在棱PD上是否存在一点E,使CE∥平面PAB?若 存在,请确定E点的位置;若不存在,请说明理由.5.如图,在四棱锥SABCD中,SAAB
2,SBSD底面ABCD是菱形,且ABC60,E为CD的中点.
(1)证明:CD平面SAE;
(2)侧棱SB上是否存在点F,使得CF//平面SAE?并证明你的结论.
D
C
【课后记】 1.设计思路(1)两课时;
(2)认识棱柱与棱锥之间的内在联系;(3)掌握探寻几何证明的思路和方法;(4)强调书写的规范性 2.实际效果:
(1)用时两节半课;
题型一:证明平行四边形
例
一、已知:如图,在四边形ABCD中,AC与BD相交于点O,AB∥CD,AO=CO. 求证:四边形ABCD是平行四边形.
例
二、如图,在△ABC中,D、E、F分别为边AB、BC、CA的中点.证明:四边形DECF是平行四边形.
例
三、如图,F、C是线段AD上的两点,AB∥DE,BC∥EF,AF=DC,连接AE、BD,求证:四边形ABDE是平行四边形.
1.如图,在□ABCD中,已知M,N是和AB和DC的中点,求证:四边形BNDM是平行
四边形.
M
B
2.如图,在□ABCD中,已知AE,CF分别是∠DAB,∠BCD的角平分线.
求证:四边形AFCE是平行四边形
AD
CDN
3.如图,在□ABCD中,E、F是对角线AC的两个三等分点,求证:四边形BFDE是平行四边形.
4.如图,在□ABCD中,已知AF=CH,DE=BG,求证:EG和HF互相平分.
H D
E
BF
5.如图,在□ABCD中,对角线上取两点G、H在AB、CD上分别取两点E、F,且
BH=DG,BE=DF,求证:EHFG是平行四边形.
FD
G H
B
2线面平行证明的常用方法
摘要:立体几何在高考解答题中每年是必考内容,线面平行的证明经常出现,很多同学总觉得证明方法很多很繁,在这里给大家用作辅助线的常用方法及空间坐标系的方法进行阐述。
关键词:找平行线;找第三个点;作平行平面;建立空间坐标系
立体几何在高考解答题中每年是必考内容,必有一个证明题;证明的内容包括以下内容:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨:
在线面平行这节里有三个重要的定理:
直线与平面平行的判定性定理:如果不在一个平面内的一条直线和平面内的一条
直线平行,那么这条直线和这个平面平行。
直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平
面和这个平面相交,那么这条直线和这个交线平行。
平面与平面平行的性质定理:如果两个平面是平行,那么在其中一个平面内的直
线和另一个平面平行。
从前面两个定理不难发现:要证线面平行(那么这条直线一定是平行于这个平面的),由性质定理可以得到这样一个结论:只要过这条直线作一个与平面相交的平面,那这个直线一定是与交线平行得。这样我们就可以找到与平面内的直线平行的直线。那么关键是怎样作一个平面与已知平面相交且过直线的平面。下面给大家介绍
方法一:两平行线能确定一个平面,过已知直线的两个端点作两条平行线使它们
与已知平面相交,关键:找平行线,使得所作平面与已知平面的交线。
(08浙江卷)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=90,AD=3,EF=2。求证:AE//平面DCF.分析:过点E作EG//AD交FC于G,DG就是平面
与平面DCF的交线,那么只要证明AE//DG即可。
证明:过点E作EGCF交CF于G,连结DG,可得四边形BCGE为矩形,又ABCD为矩形,∥EG,从而四边形ADGE为平行四边形,所以AD 故AE∥DG.
因为AE平面DCF,DG平面DCF,所以AE∥平面DCF.
方法二:直线与直线外一点有且仅有一个平面,关键:找第三个点,使得所作平
面与已知平面的交线。
(06北京卷)如图,在底面为平行四边形的四棱锥PABCD中,ABAC,PA平面ABCD,且PAAB,点E是PD的中点.求证:PB//平面AEC.分析:由D、P、B三点的平面与已知平面AEC的交线最易找,第三个点选其它的点均不好找交线.证明:连接BD,与 AC 相交于 O,连接
∵ABCD 是平行四边形,∴O 是 BD 的中点又 E 是 PD 的中点∴EO∥PB.又 PB平面 AEC,EO平面 AEC,∴PB∥平面 AEC.方法三:两个平面是平行, 其中一个平面内的直线和另一个平面平行,关键:作
平行平面,使得过所证直线作与已知平面平行的平面
(08安徽卷)如图,在四棱锥OABCD中,底面ABCD四边长为1的菱形,
ABC, OA底面ABCD, OA2,M为OA的中点,N为BC的中
点,证明:直线MN‖平面OCD 分析:M为OA的中点,找OA(或AD)中点,再连线。
证明:取OB中点E,连接ME,NE
ME‖AB,AB‖CD,ME‖CD
又NE‖OC,平面MNE‖平面OCD MN‖平面OCD
方法四:(向量法)所证直线与已知平面的法向量垂直,关键:建立空间坐标系
(或找空间一组基底)及平面的法向量。
(07全国Ⅱ•理)如图,在四棱锥SABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E,F分别为AB,SC的中点.证明EF∥平面SAD;
分析:因为侧棱SD⊥底面ABCD,底面ABCD是正方形,所以很容易建立空间直角坐标系及相应的点的坐标。
证明:如图,建立空间直角坐标系Dxyz.
0,0),S(0,0,b),则B(a,a,0),C(0,a,0),设A(a,Eaa,0
,F0ab222,
EFba,0
2.
因为y轴垂直与平面SAD,故可设平面的法向量为n
=(0,1,0)
则:EFnba,0
2
(0,1,0)
=0 因此EFn
【平行线的证明练习题】推荐阅读:
立体几何垂直和平行的证明练习题10-13
平行线的性质习题10-14
平行线的判定练习题(有答案)02-24
平行四边形的应用证明01-01
平行线与相交线证明题05-28
证明直线平行07-13
平行与垂直证明03-02
平行线及其判定与性质练习题09-24
证明面面平行01-16
平行四边形性质证明题06-23
注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com