两级放大电路的总结

2024-06-26 版权声明 我要投稿

两级放大电路的总结(推荐8篇)

两级放大电路的总结 篇1

问题

一、在电子线路的分析计算中,哪些因素可以忽略,哪些因素不能忽略?

问题

二、在放大电路中,交流信号源为什么要标出正、负(+、-)? 问题

三、在下图的共射电路中,Cb1和Cb2的作用是什么?它们两端电压的极性和大小如何确定?

问题

四、如果用PNP型三极管组成的共射电路,直流电源和耦合电容的极性应当如何考虑?直流负载线的方程式有何变化?

问题

五、工作点是一个什么概念? 除了直流静态工作点之外,有没有交流动态工作点?

问题

六、什么是管子的静态功耗?如果交流输入信号幅值较大,如何减小这一功耗?

问题

七、放大电路负载最大的情况究竟是Ro→∞还是RL=0?为什么经常说RL愈小,电路负载愈大?

问题

八、交流电阻和直流电阻区别何在?线性电阻元件有没有这两种电阻?为什么rbe不能用于静态计算?

问题

九、在的放大电路中,如果RL→∞(空载),调节 使电路在一定的时产生最大不失真输出电压,问应为多大?怎样才能调到最佳位置?

问题

十、在采用NPN型管组成放大电路时,如何判断输出波形的失真是由于饱和还是截止?如果彩PNP型管,判断的结果又如何?

问题

十一、对于图(a)的放大电路如果要用图解法求最大不失真输出电压幅值,应该怎样进行?

问题十二、一般认为放大电路的输入电阻Ri愈大愈好,但在某些情况下则要求Ri小些。这些是什么情况?

问题

十三、“共射放大电路的交流输入量和输出量反相”,这种说法确切吗? 问题

十四、在用微变等效电路求放大电路的输出电阻时,对受控电流源应该如何处理?

问题

十五、共射放大电路的电压增益管子是否可以提高放大电路的电压增益?

。选择电流放大系数β大的答案如下:

一、在电子线路的分析计算中,哪些因素可以忽略,哪些因素不能忽略?

答:在电子线路的分析计算中,经常根据工程观点,采用近似的计算方法。这是为了简化复杂的实际问题,突出主要矛盾,使分析计算得以比较顺利地进行。在这里,过分追求严密,既无必要,也不可能。但是,近似计算又必须是合理的,必须满足工程上对计算精度的要求。例如,在固定偏置的放大电路中,偏置电流中如Vcc=12V,VBEQ=0.7V,则相对于Vcc,在计算时完全可以略去VBEQ,而认为

这样做,计算误差小于10%,满足工程要求。但是,如果 是两个数值较大而又比较接近的电流之差:

此时第一个除式中的VBEQ就 不能忽略,而且两个除式的计算都要比较精确,要有较多的有效数字位数,否则会得出不合理的结果。又如,在求两个电阻并联后的总电阻时,如果一个电阻比另一 个大10倍以上,则可认为总电阻近似等于较小的电阻,这样的近似计算误差也不大于10%。再如,在求放大电路的输出电阻时,管子的rec往往是和一个比它小得多的电阻(例如RC)并联。这时,因为rce>>Rc,在并联时rce就可略去,而认为输出电阻RO≈Rc。但是,在晶体管恒流源中,如果略去管子的rce,则恒流源的输出电阻Ro→∞。在这里,rce是和一个无限大的电阻并联,当然就不能略去。一个电阻是否可忽略,要看他和其他电阻相比所起作用的大小。

二、在放大电路中,交流信号源为什么要标出正、负(+、-)?

答:前面说过,放大电路的特点之一是交、直流共存。直流电压和电流的方向(极性)是固定的,而交流电压和电流的方向(极性)是随时间变化的。为了分析的方便,对交流电压和电流要标出假定的正方向,即参考方向。对交流电压,参考方向是以放大电路的输入和输出回路的共同端(⊥)作为负(-)端,其它各点为正(+)端。对交流电流,参考方向则是ic、ib以流入电极为正,ie以流出电极为正。对于微变等效电路中的受控源,受控量的参考方向取决于控制量的参考方向。例如,对双极型三极管,当ib的参考方向为从b极到e极时,ic的参考方向必为从c极到e极。对场效应管,当id的参考方向为 G(+)S(-)时,的参考方向为流入D极。参考方向是电路分析的重要工具,必须正确理解和掌握。

三、Cb1和Cb2的作用是什么?它们两端电压的极性和大小如何确定? 答:弄清这个问题有助于真正理解放大电路的工作原理和交、直流共存的特点,也是初学者容易产生疑问的地方。放大电路在静态(νi=0)和动态(νi≠0)时,各处的电压如上图所示。对Cb1:在静态时,+Vcc通过Rb对它充电,稳态时,它两端的电压必然等于VBEQ,而通过它的直流电流为零。电压极性是右正左负。所以,它的作用之一是“隔断直流”,不使它影响信号源。在动态时,如果电容量很大,而vi幅值很小,Cb1两端的电压将保持不变。这样,Cb1两端的交流电压将为零,而全部Vi都加在管子的b-e结上,使VCE=VCBQ+vi所以,Cb1的另一个作用是“传送交流”,使交流信号顺利通过。

对Cb2情况相似。在静态时,Vcc通过Rc对它充电。稳态时,它两端的电压必然等VBEQ,极性是左正右负,而通过它的直流电流为零,所以RL上的电压vo=0。这是Cb2的隔直作用。在动态时,如果电容量很大,Cb2两端的电压将保持不变,仍为VBEQ。这样,Cb2两端的交流电压将为零,而VCE=VCBQ+vce中的交流分量全部出现在RL上,即vo=vce。这是Cb2的传送交流作用。

四、如果用PNP型三极管组成的共射电路,直流电源和耦合电容的极性应当如何考虑?直流负载线的方程式有何变化? 答:这里也有初学者容易产生混淆的问题。

在采用PNP型管时,首先电源的极性要反接,耦合电容(一般用电解电容器)的极性也要反接。电路中IB、Ic和VCE的方向也要和NPN型管的相反。这样,直流负载线的的方程式应为-VCE=VCC-ICRC。它的形式与采用NPN管时略有不同。所以,建议放大电路中直流电压和电流的极性和方向以NPN管为准,对PNP管则全部反号。这时,直流负载线的方程式仍为 VCE=VCC-ICRC,式中VCE、VCC、IC都为负值。

五、工作点是一个什么概念? 除了直流静态工作点之外,有没有交流动态工作点? 答:工作点是放大电路分析中一个十分重要的概念,它指的是电路中二极管或晶体管的工作状态,经常用它们极间的电压和流入电极的电流的大小来表示。例如,二极管的VD、ID,三极管的VBE,ib,VCE,ic。管子的工作状态和工作点分两类。一类是不加交流输入信号,电路中只有直流量的工作状态和工作点,叫“静态”和“静态工作点”。另一类是加了交流输入信号后,电路中直流和交流量共存的工作状态和工作点。此时,电路和管子中的电压和电流都随时间变动,所以叫“动态”和“动态工作点”。前面说过,在直流电源、元件参数和管子特性(有时还包括负载电阻)确定之后,直流静态工作点只有一个。而在交流动态时,工作点随交流输入信号在时间上不断变化,它的变化轨迹就是交流负载线。在某一交流输入信号下,管子的交流动态工作点在交流负载线上的变化范围就是动态范围。

六、什么是管子的静态功耗?如果交流输入信号幅值较大,如何减小这一功耗? 答:管子的静态功耗PVQ就是在静态时管子集电极上消耗的功率:PVQ=VCEQICQ。为了减少这一功耗,就要尽量降低管子的静态工作点Q。但是,在交流输入信号幅度较大时,降低Q点会使放大电路输出信号失真。此时,可以采用新的电路组成方案来解决,如乙类推挽或互补对称电路(见功率放大器)。

七、放大电路负载最大的情况究竟是Ro→∞还是RL=0?为什么经常说RL愈小,电路负载愈大?

答:电路负载的大小是指负载上输出功率的大小。在中频时,放大电路可以等效画成交流空载输出电压与输出电阻的串联,如图所示,其中V∞是电路的空载输

出电压,RO是内阻,RL是负载电阻。不难求出,负载上的输出功率为

利用上式可求出Po为最

大值Pomax时,负载电阻RLo=Ro,而这就是说,从RL=0到RL=PLO,电路的输出功率P0随RL的增大而增大:从RL=PLO到RL→∞,P0则随RL的增大而减小,如图(b)所示。放大电路一般工作在RL>RLO=RO的情况,所以说负载电阻RL愈小,Po也就是电路负载愈大。如果RL→∞(空载)或RL=0(短路),则均有Po=0,是负载最小的情况。

八、交流电阻和直流电阻区别何在?线性电阻元件有没有这两种电阻?为什么rbe不能用于静态计算?

答:对线性电阻元件,只要工作频率不太高,它的电阻是个常数。也就是说,它在直流工作和交流工作时电阻相同,没有直流(静态)电阻与交流(动态)电阻之分。非线性电阻元件则不然。它的伏安特性I=f(V)不是直线,是曲线。即使是在直流工作时,只要电压和电流不同,或者说静态工作点不同,它的直流(静态)电阻R=也不同(见图)。如果直流信号上还叠加着交流小信号,则非线性电阻元件对交流小信号的交流(动态)电阻就是伏安特性在静态工作点处切线斜率的倒数,即。所以,非线性电阻元件的交流(动态)电阻随工作点的不同而不同。从几何上说,非线性电阻元件的直流电阻由伏安特性在静态工作点处的割线斜率决定,而交流电阻则由伏安特性在静态工作点处的切线斜率决定。晶体管的发射结是PN结,它的伏安特性是非线性的。,其中第二部分就是PN结的伏安特性在静态工作点处切线斜率的倒数折合到基极回路后的值,是发射结的交流(动态)电阻,当然不能用,也不能由静态的VBEQ和IBQ来求来求静态电流。否则,就是混淆了放大电路中直流量和交流量的区别,混淆了非线性元件直流(静态)电阻和交流(动态)电阻的区别。

九、在的放大电路中,如果RL→∞(空载),调节Rb使电路在一定的vi时产生最大不失真输出电压,问Rb应为多大?怎样才能调到最佳位置?

答:在RL→∞时,放大电路的直流负载线与交流负载线重合。为了产生最大不失真输出电压,Q点应选在负载线中央。此时必有

即所以。在实际工作中,通过调节Rb来调整Q点是比较简单可行因而也是经常使用的方法。在调节时,应使输出电压既无饱和失真(对NPN型管是波形底部削平),又无载止失真(对NPN型管是波形顶部削平)。同时,在充分加大Vi时,输出波形又同时在预部和底部出现失真。

十、在采用NPN型管组成放大电路时,如何判断输出波形的失真是由于饱和还是截止?如果是PNP型管,判断的结果又如何?

答:这也是初学时容易混淆而又不易记住的问题。实际上,由于采用NPN管和PNP管时,电压的极性相反,所以判断的方法也将相反。在左图,画出了两种管子工作在截止失真的情况。对于NPN 管,因为电压极性为正,截止失真发生的输出波形正半周的顶部。对于PNP管,因为电压极性为负,截止失真发生在输出波形负半周的底部。如果是饱和失真,则 判断结果与上述相反。

十一、对于图(a)的放大电路如果要用图解法求最大不失真输出电压幅值,应该怎样进行?

答:这里的主要问题在射极上有电阻Re和R`e。在动态时,R`e被短路,但Re还在。画交流负载线时应该考虑它,而且用交流负载线上的动态范围决定出来的最大不失真电压幅值不是(Vcm)M,而是(Vcem)M,两者还相差Re上的电压。

1.作直流负载线,如图(b)上的虚线。用分析射极偏置电路的方法求出ICQ=2.71mA,用它和直流负载线的交点定出Q点。

2.作交流负载线

过Q点作斜率为的直线(如图(b)上的交流负载线。注意:对应于这条线,横坐标表示的将是vo而不是vCE)。由此定出(Vom)M=12.3-6.9=5.4V。十二、一般认为放大电路的输入电阻Ri愈大愈好,但在某些情况下则要求Ri小些。这些是什么情况?

答:一般情况下,放大电路的信号源是一个电压源,它的内阻ro很小。为了使放大电路的输入电压Vi尽可能不失真地复现信号源电压Vs,希望放大电路的输入电阻Ri尽可能大,使。在把放大电路用在测量电压的仪器内时,这一点尤为重要。在阴极射线示波器内用放大电路驱动磁偏转线圈时,也是这样。但是,当信号源是一个内阻Ro很大的电流源时,就要求放大电路的输入电阻Ri比信号源内阻Ro小得多,使流入放大电路输入端的电流Ii尽可能接近信号源电流

。例如,光电管和硅光电池都以高内阻提供电流。为了把电流变换为低内阻电压源,就使用输入电阻小的放大电路。另外,为了减小外界干扰对放大电路的影响时,也 希望放大电路的输入电阻小。必须指出:输入电阻的要领是对静态工作点附近的变化信号来说的,属于交流动态电阻,不能用来计算放大电路的静态工作点。

十三、“共射放大电路的交流输入量和输出量反相”,这种说法确切吗?

答:这种说法不确切,因为它没有指明输入量和输出量是什么。在放大电路的分析中,经常是讲电压增益。这时,输出量和输入量都是电压。在这种情况下,共射 放大电路从集电极输出的交流电压是和从基极输入的交流电压反相的。如果讲的是基极输入电压和射极输出电流(约等于集电极输出电流)的相位关系,则在共射放 大电路中两者是同相的。

十四、在用微变等效电路求放大电路的输出电阻时,对受控电流源应该如何处理?

答:对不同接法组态的放大电路,决定输出电阻的微变等效电路不同,对受控电流源的处理也不同。例如,对

共射电路决定输出电阻的等效电路如图,图中的Rs是信号源内阻,rce是三极管的输出电阻.在这个电路中,由于流过rbe的,受控源β

也是零。所以,输出电阻又如,对上图的共基电路,决定输出电阻的等效电路如下图(a).如果不考虑rbe,则因,而Ro=Rc。如果考虑rbe,则可将有内阻rbe的受控电流源变换为有内阻rbe的受控电压源,其方向为左正右负(图(b)).令R=Rs//Re//rbe,则得,所以或从而求得

可见Ro很大,是(1+β)rce量级,而

十五、共射放大电路的电压增益是否可以提高放大电路的电压增益? 答:从

。选择电流放大系数β大的管子的表达式看,似乎加大β就可以提高

。实际上还应考虑到管子的参数rbe和β有关,即。如果不考虑rbb’,并认为1+β≈β,则。提高

两级放大电路的总结 篇2

关键词:液体点滴监控,差分电路,四阶有源带通滤波器,有效值检测,TTL电平信号

0 引言

静脉输液以稳定持续的药物浓度、快速有效地补充体内所需液体的优点以及操作直接、见效快的特点,已经逐渐成为临床医学中最为常用的治疗手段。然而,在我国由于医护人员不足,工作强度过大,一旦无法及时更换液体,容易引发护理安全隐患,导致医患纠纷[1,2]。目前国内外用于输液监控的方法中,运用最为广泛的是脉冲计数法,利用光电传感技术对液滴进行计数,这种方法不仅可以计算输液速度,也可以用来计算已输液量[3,4]。该方法需使用红外对管作为光电传感器的发射与接收端,系统功耗较大,终端电池需要经常更换。本文设计了一种电路,以环境光源(自然光和灯光)作为光源,采用双传感器探测,基于差分放大技术将液滴滴落产生的光强度变化转变为可计数的电脉冲,可实现低功耗输液监控。

1 系统方案

由于该系统应用于医疗输液系统,需要注意系统不能存在卫生与安全隐患,设计方案中不能与液体有接触[5],不能影响正常查看点滴滴落状况等。该系统硬件部分设计可以分为信号传感电路,信号处理电路,电压比较电路几大模块。

1.1 信号传感方案

方案一:采用光敏二极管方案。利用光敏二极管反向饱和漏电流随着入射光强的变化将光强信号转变为电信号。此方案采集光强变化信号灵敏度高,但是由于光敏二极管是圆柱形状且具有全方位受光的特点,并不适合在输液器滴斗处使用。

方案二:采用光敏电阻方案。利用光敏电阻阻值随着入射光强的变化将光强信号转变为电信号。此方案电路设计简单,且扁平薄片形状以及单面受光的特点,容易贴合输液器滴斗传感信号。

通过比较,采用方案二,使用光敏电阻分压电路将点滴经过滴斗引起的光强变化转变为电压信号变化。

1.2 信号处理方案

采用差分放大电路方案。系统接收光源为自然光和灯光,两者的干扰光源频率成分复杂,灯光下还有100 Hz的强干扰,差分放大电路可以有效地抑制共模干扰,从而大大减弱干扰信号的影响,再经滤波处理,即可得到有效信号。

1.3 电压比较方案

方案一:采用峰值保持电路方案。此方案电路简单,较为容易确定比较电压,但峰值保持电路实时性较弱,难以处理高速脉冲信号,发生错误的几率也相对较高。

方案二:采用真有效值转换电路(RMS/DC)方案。此方案精度高,实时性好,对点滴速度变化的适应能力强,易于提取比较电压。

通过比较,采用方案二,即采用真有效值转换电路确定比较电压。

综上所述,系统硬件部分总体设计框图如图1所示。

2 电路设计

硬件电路整体设计主要分为差分电路的设计、带通滤波器的设计、电压比较电路的设计三大块,使用3.6 V纽扣电池作为电源,经低压差线性稳压器稳压至3.3 V对整个电路进行供电。

2.1 差分电路设计

为了保证并排差分效果更好,设计中将两个光敏电阻上下紧贴放置在输液器滴斗一侧,考虑到试验电路中电压的范围以及单电源供电的形式,采用LM358D运放芯片,设计的传感电路及差分电路如图2所示。

电路中,取R3=R4=10 kΩ,R7=R8=51 kΩ,经该差分放大电路后,输出电压与输入电压的关系为:

2.2 带通滤波设计

按图2所示的分压传感电路,分别在自然光和灯光下做分压试验,两种情况的信号经FFT处理后归一化(分别除以FFT后最大电压绝对值Vmax),得到频谱如图3所示。可以看出,目标频率范围在10 Hz~35 Hz。

设计中采用有源滤波电路,以隔离输入与输出,减少负载对电路的影响,同时可以进行一定放大,能够更好的维持信号传输的稳定性。设计的有源滤波电路如图4所示。

滤波电路的截止频率f0:

可以算出,图4所示二阶滤波电路分别为放大2倍信号的f0=34 Hz的二阶低通滤波电路和f0=10 Hz的二阶高通滤波电路。

考虑到灯光下存在100 Hz的强干扰,拟采用串联形式得到四阶有源带通滤波电路进行滤波。另外,由于采用单电源供电,为了减少波形失真,并且保持一定的直流偏置,因此选择输入信号先进行四阶低通滤波,再进行四阶高通滤波。

2.3 电压比较电路设计

为了提高系统的自适应能力,选用LTC1966真有效值转换器[6]将波形转换为有效值输出,再利用同相比例电路将信号放大1.5倍,作为比较电压。

采用电压比较器LM393,使用单电源供电,将滤波后的信号整形为TTL电平输出,滤波后,信号波形呈现良好的半正弦波形,为了便于送入其他设备的I/O接口,常用电压比较电路,将滤波后的波形整形为TTL电平输出。设计的电压比较电路如图5所示。

经设计和测试,液体点滴监控系统整体电路原理图如图6所示。

3 实验结果

按照图6所示原理图,制作出PCB电路板,将电路板固定在输液器滴斗上,采用4通道示波器显示输出波形。实验分别在自然光和灯光下进行,实验结果显示系统能准确捕捉每一次液滴滴落,并输出一个TTL电平。

图7为灯光下实验输出波形,其中通道2为滤波后的电压信号,通道1为电压真有效值的1.5倍,而通道3为电压比较后的输出脉冲信号。

实验中,对系统硬件电路的性能进行测试,得到以下功能指标:

系统能稳定检测液滴滴落的间隔时间最小为50 ms/滴,即可以测得最大输液速度为1 200滴/分钟,满足输液最大滴速120滴/分钟的要求。

系统正常工作电流为2.21 m A,使用的3.6 V纽扣电池容量为40 m Ah,可连续工作20 h,实现了检测系统的低功耗。

系统输出波形为TTL波形,便于接入单片机处理就算得到输液滴速、输液量等信息。

4 结束语

为了实现对液体点滴的监控,重新研究了输液监控系统硬件电路方案,通过仿真与实际测试,设计了相关硬件电路,并制作了满足要求的电路板。

该硬件电路基于差分放大电路,以环境中的自然光和灯光为光源,并选用真有效值作为比较电压等创新性设计,可以准确的捕捉到液体滴落的现象,输出TTL脉冲。系统具有较强的抗干扰能力,和较低的电路功耗。

参考文献

[1]王致杰,孙霞.医用输液监控装置设计[J].教育教学论坛,2012,4(40):175-176.

[2]刁惠民,詹宪凤,季兵.静脉输液监控系统的研制[J].解放军护理杂志,2009,26(3):73-74.

[3]陈宇,王玺.基于光电技术智能输液监控系统设计[J].核电子学与探测技术,2009,29(5):1149-1154.

[4]付蓉,方安安,卢宗武,等.一种基于输液速度与温度实时监控的输液监护仪设计[J].科学技术与工程,2015,15(15):183-188.

[5]夏淑丽.智能液体点滴监控系统的设计[J].电子技术应用,2011,37(9):57-59.

两级放大电路的总结 篇3

关键词 电子电路设计;语音放大电路;Multisim仿真

中图分类号:TP391.9 文献标识码:B

文章编号:1671-489X(2015)16-0037-02

1 设计任务与技术指标

设计任务 设计并制作一个由集成运算放大器组成的语音放大电路,其作用是不失真地放大输入的音频信号。为此,语音放大电路应由输入电路、前置放大器、有源带通滤波器、功率放大器和扬声器几部分构成。

技术指标

1)前置放大器:输入信号Uid≤10 mV,输入阻抗Ri≥100 kΩ,共模抑制比KCMR≥60 dB。

2)有源带通滤波器:带通频率范围300 Hz~3 kHz。

3)功率放大器:最大不失真输出功率Pom≥5 W,负载阻抗RL=4 Ω。

2 工作原理

由于话筒的输出信号比较小,为此需用前置放大器对话音进行放大。声音是通过空气传播的一种连续的波,说话的信号频率通常在300 Hz~3 kHz之间,这种频率范围的信号称为语音信号。声音在空气中传播会产生谐波失真,为了提高输出信号的高保真性能,需要设计频率范围在300 Hz~

3 kHz之间的带通滤波器,用于滤除语音信号频带以外的噪声。功率放大器用于对语音信号进行功率放大驱动扬声器输出,要求输出功率尽可能大,转换效率尽可能高,非线性失真尽可能小[1]。

3 设计方案

根据技术指标要求,可由输入信号、最大不失真输出功率、负载阻抗,求出系统总电压放大倍数Au=894。由于实际电路中存在损耗,故取Au=900。根据各单元电路的功能,各级电压放大倍数分配为:前置放大器11倍,有源带通滤波器2.5倍,功率放大器33倍。

前置放大器 前置放大器为测量用小信号放大电路。由于传声器输出信号的最大幅度仅有若干毫伏,而共模噪声可能高到几伏,在设计中要考虑放大器输入漂移、噪声以及放大器本身的共模抑制比对设计精度的影响,前置放大器应该是一个高输入阻抗、高共模抑制比、低漂移的小信号放大电路。本设计采用具有很高输入阻抗、能与高阻话筒配接的同相比例运算电路作为前置放大器,电路如图1所示,其电压放大倍数Au为:

所以取R1=10 kΩ,R2=100 kΩ,R3=R4=200 kΩ。

有源带通滤波器 由有源器件和RC网络组成的滤波器称为有源滤波器。按照滤波器工作频带的不同,可分为低通、高通、带通和带阻四种滤波器。根据语音信号的特点,语音滤波器应该是一个二阶有源带通滤波器,其频率范围应在300 Hz~3 kHz之间。

1)二阶有源低通滤波器。二阶有源低通滤波器如图2所示。

电压放大倍数为:

设品质因数Q=0.707,得通带放大倍数Aup=1.58,故取R3=47 kΩ,R4=27 kΩ。由于f0=3 kHz,若取C1=C2=6.8 nF,

则有R1=R2=8.2 kΩ。

2)二阶有源高通滤波器。高通滤波器与低通滤波器具有对偶性,若把图2中的C1、C2和R1、R2位置互换,就可得到二阶有源高通滤波器。电压放大倍数为:

设品质因数Q=0.707,得Aup=1.58,故取R3=47 kΩ,R4=

27 kΩ。由于f0=300 Hz,若取C1=C2=68 nF,则有R1=R2=

8.2 kΩ。

3)宽带带通滤波器。当低通滤波器的截止频率大于高通滤波器的截止频率时,将二阶低通滤波器和二阶高通滤波器串联,就可得到通带较宽的二阶带通滤波器。该方法构成的带通滤波器多用作测量信噪比的音频带通滤波器,其带宽由两个滤波器的截止频率决定,且通带截止频率易于调整[2]。

功率放大器 功率放大器的作用是给语音放大电路的负载(扬声器)提供所需的输出功率。LM386是一种低电压音频集成功放,具有电源电压范围宽、静态功耗低、电压增益可调、外接元件少和低失真度等优点。

LM386的典型应用电路如图3所示。LM386的电源电压范围为4~15 V,静态电源电流为4 mA,输入阻抗为50 kΩ。

电路由单电源供电,输出端经输出电容C5接负载,以构成OTL电路。RP1和C6阻容网络用来设定电压增益,即调节电位器RP1,可使电压增益在20~200之间变化;C2为去耦电容,用来滤掉电源的高频交流成分;C3为旁路电容,起滤除噪声的作用;R1和C4校正网络用来进行相位补偿,防止电路高频自激;C5为耦合电容,起隔直流通交流作用。

4 电路实现

利用Multisim软件画出各单元电路的仿真电路图,先对各单元电路进行分级调试,再将各单元电路级联进行整机调试;然后进行电路焊接与装配,对实际电路进行性能指标测试;最后进行实际系统音质效果试听,即将话筒或收音机的耳机输出口接语音放大电路的输入端,用扬声器代替负载电阻,应能听到音质清晰的声音。

参考文献

[1]于卫.模拟电子技术综合实训教程[M].武汉:华中科技大学出版社,2013.

差动放大电路实验报告 篇4

1.实验目的(1)

进一步熟悉差动放大器的工作原理;

(2)

掌握测量差动放大器的方法。

2.实验仪器

双踪示波器、信号发生器、数字多用表、交流毫伏表。

3.预习内容

(1)

差动放大器的工作原理性能。

(2)

根据图3.1画出单端输入、双端输出的差动放大器电路图。

4.实验内容

实验电路如图3.1。它是具有恒流源的差动放大电路。在输入端,幅值大小相等,相位相反的信号称为差模信号;幅值大小相等,相位相同的干扰称为共模干扰。差动放大器由两个对称的基本共射放大电路组成,发射极负载是一晶体管恒流源。若电路完全对称,对于差模信号,若Q1的集电极电流增加,则Q2的集电极电流一定减少,增加与减少之和为零,Q3

和Re3等效于短路,Q1,Q2的发射极等效于无负载,差模信号被放大。对于共模信号,若Q1的集电极电流增加,则Q2的集电极电流一定增加,两者增加的量相等,Q1、Q2的发射极等效于分别接了两倍的恒流源等效电阻,强发射极负反馈使共射放大器对共模干扰起强衰减作用,共模信号被衰减。从而使差动放大器有较强的抑制共模干扰的能力。调零电位器Rp用来调节T1,T2管的静态工作点,希望输入信号Vi=0时使双端输出电压Vo=0.差动放大器常被用作前置放大器。前置放大器的信号源往往是高内阻电压源,这就要求前置放大器有高输入电阻,这样才能接受到信号。有的共模干扰也是高内阻电压源,例如在使用50Hz工频电源的地方,50Hz工频干扰源就是高内阻电压源。若放大器的输入电阻很高,放大器在接受信号的同时,也收到了共模干扰。于是人们希望只放大差模信号,不放大共模信号的放大器,这就是差动放大器。运算放大器的输入级大都为差动放大器,输入电阻都很大,例如LF353的输入电阻约为1012Ω量级,0P07的输入电阻约为107Ω量级。

本实验电路在两个输入端分别接了510Ω电阻,使差动放大器的输入电阻下降至略小于这一数值,这是很小的输入电阻。其原因是,本实验电路用分列元件组成,电路中对称元件的数值并不是完全相等;其集电极为电阻负载,而不是恒流源负载;其发射极为恒流源负载,而不是镜像电流源负载,所以本实验电路的共模抑制比并不高。若本实验电路在输入端不接510Ω电阻,其输入电阻将较大,而共模抑制比不够高,实验环境中存在的高内阻共模干扰将进入输入端,那么输出端的共模干扰将较大,以致使验证差动放大器特性的实验难以进行。由于实验中所用信号源都为低输出电阻信号源,所以输入端接上510电阻后几乎不影响实验电炉接受来自信号源的信号,而高内阻共模干扰因实验电路输入电阻大大下降而基本上被拒之输入端外,从而使得输出端的共模干扰很小,实验得以顺利进行。输入端接510Ω电阻并不改变差动放大器的共模抑制比。

由此可见,在可以降低差动放大器输入电阻时,降低差动放大器输入电阻,可提高差动放大器的抗高内阻共模干扰的能力。

实验这弱的到教师的同意,可去掉实验电炉中的两个510欧电阻,再做实验就会发现,实验电路输出端的共模干扰明显增加。

(1)

静态工作点的调整与测量

将两个输入端Vi1、Vi2接地,调整电位器Rp使VC1=VC2,测量并填写下表。由于元件参数的离散,有的实验电路可能只能调到大致相等。静态调整的越对称,该差动放大器的共模抑制比就越高。

测量中应注意两点,一是所有的电压值都是对“地”测量值。二是应使测量的值有三位以上的有效数字。

静态工作点调整

对地电压

VB1

VB2

VB3

VC1

VC2

VC3

VE1

VE2

VE3

测量值(V)

0

0

-7.9012

6.4711

6.4501

-0.7817

-0.63985

-0.64013

-8.5650

由以上数据可得交流放大倍数为:

(2)

测量双端输入差模电压放大倍数

在实验箱上调整DC信号源,使得OUT1大约为0.1V,OUT2大约为-0.1V,然后分别接至Vi1、Vi2,再调整,使得OUT1为0.1V,OUT2为-0.1V,测量,计算并填写下表。

双端输入差模电压放大倍数

测量值(V)

计算值

VC1

VC2

VO

AD1

AD2

AD

3.1555

9.7610

-6.6055

-16.58

-16.55

-33.0

仿真测量值(V)

仿真计算值

2.304

10.367

-8.063

-20.84

-19.58

-40.31

这样做的原因是,实验电路的输入端对地有510欧的电阻,实验箱上的可变直流电压源是用1kΩ的可变电阻对5V、0.5V直流电压分压实现的,即直流电压信号源内阻于实验电路输入电阻大小可比。直流电压信号源接负载使得电压将明显小于未接负载时的电压,所以必须将直流电压信号源于实验电炉连接后,再把输入电压调到所需要的电压值。

这里,双端输入差模电压单端输出的差模放大倍数应用下式计算:

差模放大倍数实验值与仿真值误差为:

差模放大倍数的理论值可由以下公式计算:,其中

(3)

测量双端输入共模抑制比CMRR

将两个输入端接在一起,然后依次与OUT1、OUT2相连,记共模输入为ViC。测量、计算并填写下表。若电路完全对称,则VC1-VC2=Vo=0,实验电路一般并不完全对称,若测量值有四位有效数字,则Vo不应等于0.这里双端输入共模电压单端输出的共模放大倍数应用下式计算:

建议CMRR用dB表示

测量双端输入共模抑制比CMRR

输入(V)

测量值(V)

计算值

VC1

VC2

VO

AC1

AC2

AC

CMRR

+0.1001

6.4743

6.4469

0.0247

0.032

-0.032

0.247

42.52

输入+0.1仿真

6.327

6.327

0

0.02

-0.02

0

无穷

-0.1003

6.4917

6.4328

0.0589

0.206

-0.383

0.589

34.96

输入—0.1仿真

6.329

6.329

0

0.04

-0.04

0

无穷

由于理想状态下(正如仿真所得),所以共模放大倍数理论值为0,因此共模抑制比CMRR理论值为无穷。

事实上,电路不可能完全对称,因此,共模输入时放大器的∆V

不等于0,因而

AC也不等0,只不过共模放大倍数很小而已。共模输入时,两管电流同时增大或减小,Re3上的电压降也随之增大或减小,Re3起着负反馈作用。

由此可见,Re3

对共模信号起抑制作用;Re3

越大,抑制作用越强。晶体管因温度、电源电压等变化所引起的工作点变化,在差动放大器中相当于共模信号,因此,差动放大器大大抑制了温度、电源电压等变化对工作点的影响。

(4)

测量单端输入差模电压放大倍数

将Vi2接地,Vi1分别于OUT1、OUT2相连,然后再接入f=1KHz,有效值为50mV的正弦信号,测量计算并填写下表。若输入正弦信号,在输出端VC1、VC2的相位相反,所以双端输出Vo的模是它们两个模的和,而不是差。

单端输入差模电压放大倍数

输入

测量值(V)

单端输入放大倍数AD

VC1

VC2

VO

直流+0.1V

4.8068

8.1128

-3.306

-33.06

直流-0.1V

8.1683

4.7584

3.4099

-34.10

正弦信号

0.768

0.774

1.542

30.84

仿真如下:

输入

测量值(V)

单端输入放大倍数AD

VC1

VC2

VO

直流+0.1V

4.225

8.434

-4.209

-42.09

直流-0.1V

8.436

4.224

4.212

-42.12

正弦信号

1.06

1.06

2.12

42.4

实验值与仿真值的误差为:

单端输入的差模放大倍数理论上应该与双端输入的相近,因此其理论值也是-105.4

5.思考题

(1)

实验箱上的双端输入差动放大器的共模抑制比不算高,若要进一步提高共模抑制比,可采取哪些办法?

1)

提高差动放大器的输入阻抗或提高闭环增益。

2)

可以用一个晶体管恒

流源取代

Re3。因为工作于线形放大区的晶体管的Ic

基本上不随

Vce

变化(恒流特性),所以交流

电阻=△Vce

/△Ic

很大,大大提高了共模抑制比。

(2)

图3.1中的电阻Rb1、Rb2在电路中起到什么作用,若去除上述两个电阻,按实验(3)步骤和方法再测CMRR,两次测量的结果是否会有较大差别?为什么?

在两个输入端分别接了510Ω电阻,使差动放大器的输入电阻下降至略小于510Ω,这是很小的输入电阻。其原因是,本实验电路用分列元件组成,电路中对称元件的数值并不完全相等;其集电极为电阻负载,而不是恒流源负载;其发射极为恒流源负载,而不是镜像电流源负载,所以本实验电路的共模抑制比并不高。若本实验电路在输入端不接510Ω电阻,其输入电阻将较大,而共模抑制比不够高,实验环境中存在的高内阻共模干扰将进入输入端,那么输出端的共模干扰将较大,以致使验证差动放大器特性的实验难以进行。由于实验中所用信号源都为低输出电阻信号源,所以输入端接上510Ω电阻后几乎不影响实验电路接收来自信号源的信号,而高内阻共模干扰因实验电路输入电阻大大下降而基本上被拒之输入端外,从而使得输出端的共模干扰很小,实验得以顺利进行。输入端接510Ω电阻并不该变差动放大器的共模抑制比。

去掉实验电路中的两个510Ω电阻,再做实验就会发现,实验电路输出端的共模干扰明显增加。

(3)

归纳差动放大器的特点与性能,并于共射放大器比较。

放大器电路设计学习心得 篇5

反馈深度

如图1所示的反相(左)和同相(右)电路中,反馈深度的表达式为FZfZs3V10ZL0V13ZL021Zs2Zf1Zf。

ZsZf0

图1放大器同相与反相接法

虚短的条件

F|1是虚短成立的必要条件。所以如图2的电路中,由于F=|AopenRs0,RsRf因此虚短不成立,此时的放大器类似于比较器。从输入输出波形可以知道,放大器同相端的电位和反相端不相同,输出(蓝色)变为方波。

Zf+XSC1_A2V1ZL001+_B+Ext Trig_

图2“虚短”成立条件测试 跟随器的反馈深度最大

任何放大电路都是反馈量越大,越容易发生振荡。而且,输出有电容连接时,振荡的可能性还会增加。跟随器的反馈深度最大,为全反馈,此时F1,输出全部反馈到输入端。

1++_XSC1A3V1ZL0_B0+Ext Trig_

图3反馈深度最大的跟随器电路

零点与极点—感性认识

问题的提出

电路中经常要对零极点进行补偿,想问,零点是由于前馈产生的吗?它产生后会对电路造成什么样的影响?是说如果在该频率下,信号通过这两条之路后可以互相抵消还是什么??极点又是怎么产生的呢?是由于反馈吗?那极点对电路的影响又是什么?产生振荡还是什么??

对于零点,个人认为零点的产生是与前馈有关,前馈路径与主信号通路的叠加以及相消产生了零点,当叠加时产生左半平面零点有助于稳定性,当相消时产生右半平面零点,这对系统的稳定性很不利,因此要抵消它。并不是所有的前馈都会产生零点,要看它前馈入径是否有并联的电阻。零点的产生

零点可以由两条环路产生,原理是两条环路的滞后不同时,就形成了相对的前馈。也可以由电阻串电容产生,其实说到底都是相位超前的原因。零点在CMOS中往往是由于信号通路上的电容产生的,即信号到地的阻抗为0,在密勒补偿中,不只是将主极点向里推,将次极点向外推(增大了电容),同时还产生了一个零点(与第三极点频率接近)。

极点的产生与影响

极点又是怎么产生的呢?是由于反馈吗?那极点对电路的影响又是什么?产生振荡还是什么??

极点决定的是系统的自然响应频率,通常在电路中就是对地电容所看进去的R和对地电容C共同决定的。

极点的产生就是由于引入电容与电阻的并联,产生极点的频率就是1/RC。这个与反馈无关,虽然反馈可以产生极点,但是,并不是所有的极点都是反馈产生的。

极点从波特图上看两个作用:延时和降低增益,在反馈系统中作用就是降低反馈信号幅度以及反馈回去的时间,所以如果某个节点存在对地电容,必然会对电容充电,同时电容和前级输出电阻还存在分压,所以这个电容会产生极点!极点对OP放大器的增益是以-20 db/dec减小,相移是增加90度。

环路是否震荡,直接原因是环路的相位裕度是否>0。大于则系统稳定,小于0则系统震荡。

极点和环路没有关系,极点只是一个相位滞后,至于经常和环路被一起提到,是因为极点对环路的稳定性有决定性的影响。

其他人的经验

经验上来讲,放大器电路中高阻抗的节点都要注意,这点上即使电容很小,都会产生一个无法忽略的极点。零点一般就不那么直观了,通常如果两路out of phase的信号相交就会产生零点,但这不能解释所有的零点。

极点是由于结点和地之间有寄生电容造成的,零点是由于输入和输出之间有寄生电容造成的,一般输入和输出之间的零极点考虑多一点,主要是因为输入输出有较大的电阻,造成了极点偏向原点。

一般的说,零点用于增强增益(幅度及相位),极点用于减少增益(幅度及相位),电路中零点极点一般是电容倒数的函数(如1/C)。当C变大时,比如对极点来说,会向原点方向变化,造成增益减少加快(幅度及相位)~

一般运放电路的米勒效应电容就是这个原理,当增益迅速下降倒-3dB时,其他的零点极点都还没对系统增益起到啥作用(或作用很小,忽略了),电路就算OK了~你就可以根据自己的需要补上带宽,多少多大的裕度就KO了。

自激振荡的来源与抑制

自激振荡的根本原因在于放大器存在附加相移。在低频时,附加相移主要决定于输入电容、输出电容及发射极旁路电容;高频时,主要决定于极间电容和接线分布电容。

消除自激的指导思想是:希望极点数少些,极点频率拉开些,-20dB/dec段长些。

图4单级阻容耦合放大器的频率特性

放大器自激的判断

的波特图查看:当相移180时,若|AF|0)|1(即20lg|AF从AF,则电

|1时起振,振荡稳定后|AF|1。路不稳定,会产生自激,如图5(a)所示。|AF

|0)|1(即20lg|AF当相移180时,若|AF,则电路稳定,不会产生自激,如图5(b)所示。当然,还要考虑裕度。

图5负反馈放大器幅频特性和相频特性曲线 用示波器或电平表检测:将宽频(或选频)电平表或示波器接于放大器的输出端,观察放大器无输入信号时,其输出是否有信号。

用自制振荡表头检查:表头的制造如图6所示,C1的取值由被测放大器的上限工作频率而定:上限工作频率为10MHz左右时,选10~20pF为宜;上限工作频率小于10MHz时,选20~30pF为宜;当上限工作频率高于10MHz时,选5~10pF。

C1300pF电流表

图6自制振荡表头原理图

用“表头”检查放大器稳定与否的方法:使“表头”的探针触碰放大器的某处(如输出 级的集电极C),同时人为地刺激放大器的另一处(如第一级的基极b)使放大器起振;然后去除刺激,观察电流表的指示是否自动回零。如指示为零,则放大器是稳定的,若指示不为零,则放大器不稳定。

放大器自激振荡的抑制方法

低频振荡是由于各级放大电路共用一个存在较大内阻的直流电源引起的,消除方法是在放大电路各级之间加上“退耦电路”。这种正反馈的形成原因:如图7所示,若直流电源V1存在着较大的内阻r0,当Q1的输入信号瞬时极性为正时,各级输入电压极性如图中标记所示。Ic1和Ic3是相同的,它们流过r0时就会产生瞬时极性为上负下正的交流压降,该压降通过R1、C1及Q2的输入电阻反馈到第二级的输入端,显然此反馈信号与输入信号同相,故形成了寄生正反馈。

6R11-Q1+C12R23+Q2C24-5Q37V1R3r00

图7直流电源的内阻造成寄生正反馈

高频振荡主要是由于安装及布线不合理引起的.对此应从工艺方面着手,如元件布置紧凑、接线要短等;也可以在电路的合适部位找到抑制振荡的最灵敏点,在此处外接合适的电阻电容或单一电容,进行高频滤波。

消除的方法是在放大器中加入高频旁路电容,或加高频相校正网络,要求电容的数值比较小。以形成高频旁路或高频负反馈,对高频信号进行相移,从而破坏自激振荡的条件。

低频自激的抑制方法

低频振荡是由于各级放大电路共用一个直流电源引起的消除方法是在放大电路各级之间加上“退耦电路”,使前后级之间的影响减小。如图8所示,R3一般为几百欧,C1选几十微法或更大。

AR3BR5R4C2GND退藕电容C1R1退藕电阻R2+Q2ER0-Q1-+GNDGNDGND

图8退藕电路

高频校正方法一:利用电容元件

这是一种主极点校正的方法,这是一种采用米勒电容进行补偿的方法,如图9所示。在极点频率最低的一级接入校正电容C,使主极点频率降低,-20dB/dec段拉长,尽量获得单极点结构,以破坏幅度条件,使电路稳定。

|f中的最小转折频率变得更此补偿电容C的引入能使放大器的幅频特性20lg|AF小,这样,幅频特性高频段下降得更快,如图10中特性C所示。

图9放大器引入电容补偿元件消除高频自激

图10引入补偿元件后幅频特性的变化情况

高频校正方法二:利用R、C组成宽带补偿

也叫RC校正(极点—零点校正),用RC串联网络代替电容C,这一方面使原来的主极

点降低,另一方面引入了一个新的零点,此零点与原来第二个极点抵消,使极点数减少,而且极点也拉开了。如图10中特性RC所示,这种补偿可获得较宽的通频带。其电路如图11所示。

图11采用RC元件消除高频自激

高频校正方法三:反馈电容校正

实际上,这里采用的是米勒补偿方法,如图12所示。如果将电容C并联在相应放大电路中管子的b-c极之间,形成该级的电压并联负反馈,这种校正方法可用较小的电容达到消振目的。这实际上是以附加高频负反馈来降低集成运放在高频段的增益,以使附加相移虽达180°而变成正反馈时,其回路增益被降至小于1。这样,即使放大器在谐波干扰下出现正反馈振荡,因回路增益过小,振荡无法维持,电路也就稳定了。

图12反馈电容消除高频自激

高频校正方法四:利用反馈电容C 进行超前补偿

前面三种方法均属于滞后补偿(校正),而超前补偿的指导思想是设法将0dB点的相位向前移,破坏其相位条件。这种方法是在放大器反馈电阻中,并接适当容量的反馈电容C,如图13所示。利用反馈电容来校正波特图的曲线形状,使相频特性AFf在频率f0附近向上提升,使|AF|180,见图14所示,从而破坏产生自激振荡的相位条件,达到消除自激振荡的目的。

图13放大器中引入反馈电容进行超前补偿

两级放大电路的总结 篇6

摘要:简要分析了UC3637双PWM控制器和IR2110的特点,工作原理。由UC3637和IR2110共同构建一种高压大功率小信号放大电路,并通过实验验证了其可行性。

关键词:小信号放大器;双脉宽调制;悬浮驱动;高压大功率

引言

现有的很多小信号放大电路都是由晶体管或MOS管的放大电路构成,其功率有限,不能把电路的功率做得很大。随着现代逆变技术的逐步成熟,尤其是SPWM逆变技术,使信号波形能够很好地在输出端重现,并且可以做到高电压,大电流,大功率。SPWM技术的实现方法有两种,一种是采用模拟集成电路完成正弦调制波与三角波载波的比较,产生SPWM信号;另一种是采用数字方法。随着应用的深入和集成技术的发展,已商品化的专用集成电路(ASIC)和专用单片机(8X196/MC/MD/MH)以及DSP,可以使控制电路结构简化,集成度高。由于数字芯片一般价格比较高,所以在此采用模拟集成电路。主电路采用全桥逆变结构,SPWM波的产生采用UC3637双PWM控制芯片,并采用美国IR公司推出的高压浮动驱动集成模块IR2110,从而减小了装置的体积,降低了成本,提高了系统的可靠性。经本电路放大后,信号可达3kV,并保持了良好的.输出波形。

图1

1 UC3637的原理与基本功能

UC3637的原理框图如图1所示。其内部包含有一个三角波振荡器,误差放大器,两个PWM比较器,输出控制门,逐个脉冲限流比较器等。

UC3637可单电源或双电源工作,工作电压范围±(2.5~20)V,特别有利于双极性调制;双路PWM信号,图腾柱输出,供出或吸收电流能力100mA;逐个脉冲限流;内藏线性良好的恒幅三角波振荡器;欠压封锁;有温度补偿;2.5V阈值控制。

UC3637最具特色的是三角波振荡器,三角波产生电路如图2所示。三角波参数按式(1)及式(2)计算。

Is=[(+VTH)-(-Vs)]/RT    (1)

f=Is/{2CT[(+VTH)-(-VTH)]}    (2)

式中:VTH为三角波峰值的转折(阈值)电压;

Vs为电源电压;

RT为定时电阻;

CT为定时电容;

Is为恒流充电电流;

f为振荡频率。C3637具有一个高速、带宽为1MHz、输出低阻抗的误差放大器,既可以作为一般的快速运放,亦可作为反馈补偿运放。UC3637实现其主要功能的就是两个

语音放大电路的设计与实现 篇7

音频功率放大器是音响系统中的关键部分, 已广泛应用于日常生活中, 具有很强的实用性[1], 但是在部分场合依然没有合适的语音功放, 比如大教室上课, 中型会议室开会, 小型广场集会等场合。市场上卖的语音功放一般为家庭使用, 对于大教室来说功率不足, 使用专业的音响设备, 成本太高。所以需要一款功率较大、成本低的语音放大器来满足小范围的使用, 因此设计了一种电路简单、成本较低的语音放大电路。该电路克服了专业设备成本高的问题, 又克服了市场上低端语音放大器功率不足的问题, 对于满足实际的学习工作有着重要的研究意义。

1 系统总体设计

语音放大电路主要由带通滤波电路、初级功率放大电路、后级功率放大电路、直流稳压电源等电路构成。其原理框图如图1 所示。

2 系统硬件设计

2.1 带通滤波电路

带通滤波电路的主要作用就是对音频信号进行一些预处理, 使之更符合后级功放电路的要求。带通滤波电路使用电阻电容滤波[2], 效果稳定调试方便。它主要由声道平衡电路和音调控制电路两部分组成。具体电路如图2 所示。

2.1.1 声道平衡电路

图2 中滑动变阻器R1, 起到均衡器作用平衡左右声道的大小, 滑动变阻器中间引脚和地相连同时并联一个电容C1, 这个电容的作用是滤掉高输入音频中的高频信号。

2.1.2 音调控制电路

音调控制电路是使听音者根据自己的需要对声音的某些频率段进行提升或者衰减, 更符合听音者的听觉习惯[3]。本设计使用多频段音调电路, 进来的音频信号分别进入中低高音频控制电路调节后再叠加进入功率放大电路, 使校正的频响更细致, 效果更出色。

(1) 高音控制:变阻器R5及周围元件组成高音调音电路。电容C3可以通过高音频信号, 变阻器往上滑动时高音频信号增强, 往下滑动时高音频信号减弱。

(2) 中音控制:变阻器R8及周围元件构成中音调音电路。电路中部分高频信号经过R7, C4, R9等元件被滤除, C5可以通过音频中的中频信号, 变阻器R8往上滑动时中音频信号增强, 往下滑动时中音频信号减弱

(3) 低音控制:变阻器R12及周围元件构成低音调音电路。音频信号进入R12可以调节其幅度大小, 再和调节后的高音、中音叠加进入功率放大电路, 就可以构成完整高中低调音电路。

2.2 初级功率放大

初级功率放大由NE5532 组成, NE5532 是高性能低噪声双运放, 它具有较好的噪声性能, 优良的输出驱动能力及相当高的小信号与电源带宽。用作音频放大时音色温暖, 保真度高, 曾被音响发烧友们誉为“运放之皇”[4,5], 其电路如图3 所示。

放大倍数由R14和R15来控制, 因为电路中有后级功率放大, 本级放大为保证音质将R14定为1 kΩ, R15定为10 kΩ, 即10 倍。 R16和C8构成负反馈电路, 电路中调节R16和C8可以使音质柔和、清晰更通透, 经过反复调试R16定为1 MΩ, C8定为33 μF, 达到自己满意的效果。

2.3 后级功率放大

后级功率放大电路由差分放大电路和复合管放大电路组成, 复合管放大电路使用大功率晶体管2N3055[6]。具体电路如图4 所示。

2.4 直流电源

任何一个电路, 电源都是非常重要的一部分, 对于一个语音放大器来说更是重中之重。本电路将电网电压220 V (有效值) 50 Hz的交流信号经过桥式整流电路变成单向直流电, 由于其脉动成分大须经过滤波电路变成平滑的直流电, 最后通过7812 和7912 稳压器将电路稳压成±12 V直流电, 供给负载[7]。电源电路如图5所示。

2.5 语音放大电路整体原理图及实物图

语音放大电路的整体原理图和实物图如图6, 图7所示。

2.6测试数据

经过对语音放大电路实物的反复调试, 最终达到比较满意的效果。测试数据见表1。

3 结论

经过理论分析和实践检验, 设计的语音放大电路电路简单、工作稳定, 最大输出功率达到40 W, 与现在主流的集成电路语音放大器相比具有发热量小、稳定性好、成本低、功率大的特点, 具有较好的使用价值。

参考文献

[1]骆旭坤.基于Proteus的音频功率放大器的设计与仿真[J].佛山科学技术学院学报:自然科学版, 2011, 29 (1) :59-60.

[2]杨素行.模拟电子技术基础教程[M].北京:高等教育出版社, 2004.

[3]陈光明, 施金鸿.电子技术课程设计与综合实训[M].北京:北京航空航天大学出版社, 2007.

[4]赵久华.易于制作的全集成Hi-Fi功放[J].电子世界, 2000 (5) :4-6.

[5]韦发清.基于LM4766和NE5532的音频功率放大器[J].信息技术, 2011, 35 (4) :200-202.

[6]周惠潮, 孙晓峰.常用电子器件及应用[M].北京:电子工业出版社, 2007.

两级放大电路的总结 篇8

【关键词】翻转课堂 教学设计 教学策略

【基金项目】无锡市陶研会2015年度立项课题“翻转课堂在电子专业课程中的应用研究”(项目编号:2015-12-16)。

【中图分类号】TM774 【文献标识码】A 【文章编号】2095-3089(2016)06-0069-01

本文基于翻转课堂学习理念以《电子技术》课程中的一个章节《功率放大电路的设计与制作》为例进行教学设计。

一、教学内容分析

电子技术课程是电子专业系列课程的一门专业基础课,具有自身的专业性和很强的实践性。

1.所授内容在整门课程中的地位和作用:本单元教学内容是本课程的一个重要知识点,是对放大电路知识进一步的延伸和拓展。

2.所授内容中重点和难点的分析:重点是功放的特点及主要技术指标,OCL电路特点及工作原理,甲乙类OTL功放电路结构与原理。难点是OCL电路工作原理及甲乙类OTL功放的电路调试。

二、教学目标设计

1.知识和技能目标:了解功率放大器和电压放大器的区别,掌握功率放大器的特点,理解OCL功率放大电路的组成、工作原理及效率的估算,掌握甲乙类OTL功放静态工作点的调节方法和中点电位的调节方法。

2.过程和方法:初步学会采用互联网学习、自主学习、合作学习的方法来学习,通过合作学会使用仿真软件对电路进行仿真,通过电路制作能识别与检测元器件,正确安装电路。

3.情感态度和价值观:体验自主学习、合作学习的乐趣,体会电子专业知识与生活的紧密联系,培养安全操作的意识,养成规范的操作习惯。

三、学生情况分析

学生在学习本教学内容的难易程度上为中等偏难,其主要原因是由于学生的入学成绩较低,逻辑思维能力较差,与此同时,电子技术课它的涉及面非常广,基本概念、基本原理、分析方法比较多,因此学生在学习中,总是觉得很吃力,致使学生学习热情不高,教学质量不理想。学生虽已接触了一些电子专业的基础知识,但基础相当薄弱,且学生的学习习惯也不够理想,没有较好的学习基础,对学生的学习有着比较大的影响。

四、教学策略、教学过程和教学资源设计

1.教学环境设计:电子实验室、多媒体、万用表、焊接工具、功放电路套件、导线等。

2.教学策略设计:在教学中以课前准备明确要求——观看视频自主学习——合作交流收集资料——课内相关知识学习——任务实践师生互动——释疑解惑点评分析——课后练习巩固新知为主线,综合的运用多种教学方式来充分调动学生学习的主动性和积极性,体现其主体地位,通过互联网学习,使学生学习更具开放性和主动性。由于学生学习能力较弱,且对于图解分析法掌握得很差,所以对于学生较难理解的内容,我做了处理:一笔带过。而是重点强调电路的结构和工作原理,并通过仿真软件讲解交越失真。

3.教学过程设计:首先,教师向学生发送上课要求,包括上课课题、时间、地点、需要准备的知识、学习工具等。同时学生进行分组,每4人为1小组,并选取一人作为组长,学生通过视频自主学习,解决教师提出的问题。搜索关于功率放大器的实际应用例子,并把相关资料以小组为单位上传给教师。

其次,创设情境质疑引新。先通过投影仪投影展示预习结果,并进行新课预习评价,表扬优秀的学习小组。接着以两段实验视频(视频一:MP3输出的音频信号直接给扬声器;视频二:MP3输出的音频信号先输入到功率放大器的输入端,再把功率放大器的输出信号给扬声器)来引入新课。

再次,讲授新课提出问题解决问题。以提问、练习贯穿全程,结合讲授法和启发式教学法,让学生通过自主学习、合作学习、探究学习的方法在回答问题的过程中掌握新知识。例如:教师演示功率放大和电压放大两个实验,让学生比较它们的输出功率。根据甲类功放的功能及性能指标提问:如何提高其性能指标?学生通过电路仿真验证甲乙类功放能消除交越失真等。

第四,使用焊接工具制作OTL甲乙类互补对称功率放大电路。采用任务驱动和项目式教学的方法,学生按小组以团队方式进行制作,教师在旁指导,通过制作,提高了学生的动手操作能力,并通过实践分析、验证相关知识,化解了难点,也提高了学生的学习积极性。

最后,布置作业,让学生通过课后作业进一步巩固所学知识。

五、教学反思

本节课探究答疑贯穿始终,自主探究与合作学习相配合,观察与动手操作兼容并重,充分体现了学生的主体地位。采用翻转课堂教学模式,学生在课前的视频学习中,就可以自主学习,遇到困难,可以跟同学进行合作交流,既培养了学生的自学能力,又激发了团队合作精神。这样,在课堂上就会节约出大量的时间进行师生互动、生生互动,共同探索学习中的疑点和难点,提高教学效率。在教学过程中开展了互学、互练、互查、互评活动,使学生在检查对方的过程中学会检查自己,在评价对方的过程中学会评价自己。另外,通过多媒体课件的演示和动手制作功放电路把抽象的知识形象化,突破了重难点,学生们亲身体验并测量了信号,能更好地理解功放的特点。但是如果多媒体在这节课中师生交互性方面的功能再强一点会更好。还有在教学中也出现个别学生不愿参与教学活动,对活动缺乏兴趣的情况,还需要进一步做好思想教育工作。

总之,翻转课堂教学模式是一种在计算机技术广泛普及的社会形势下而产生的与时俱进的教学模式。翻转课堂是一种手段,增加了学生和教师之间的互动和个性化的学习时间;是让学生对自己学习负责的环境;是为了让教师成为学生身边的“教练”而不是在讲台上的“圣人”;是混合了直接讲解与建构主义的学习;是学生虽课堂缺席但不被甩在后面的学习;是课堂的内容得以永久存档,可用于复习或补课的学习;是所有的学生都积极学习的课堂;更是让所有学生都能得到个性化教育的学习。[2]当然这种教学模式对学生的自主学习习惯提出了更高的要求,但它作为传统教学的有效补充,翻转课堂教学模式更有利于培养学生的合作精神和自主学习能力,使学生终身受益。

参考文献:

[1]张金磊,王颖,张宝辉.翻转课堂教学模式研究[J].远程教育杂志,2012,(4):46-51.

上一篇:职能部门预算表下一篇:中学暑假社会实践活动总结