数控钻铣床电气系统控制毕业设计

2024-09-06 版权声明 我要投稿

数控钻铣床电气系统控制毕业设计(精选8篇)

数控钻铣床电气系统控制毕业设计 篇1

设计说明书

课 题:

数控钻铣床电气系统控制毕业设计

子课题:

同课题学生姓名:

学生姓名

指导教师

完成日期

前言

随着社会生产和科学技术的发展与进步,PLC技术正在不断地深入到各个领域并迅速地向前推进,特别是近几年来在机械加工领域引起了许多深刻的改革。《双面钻孔组合机床在运用》就是运用了PLC技术与机床电气的过程及注意事项,实现了机电一体化的运用,这便使双面组合钻床操作更加方便,大大提高了工作效率。

目前,在机械制造业中已不再是仅仅要求单机自动化,而是要求实现一条生产线,一个车间、一个工厂甚至更大规模的全盘自动化,这便体现PLC技术的重要性。在设计中,参考了机电一体化技术方面和PLC方面的教材和资料,在书后的参考文献中列出,这些宝贵的资料对我完成毕业设计起到了重要的作用,在设计中有许多不妥之处,敬请老师提出宝贵指正.摘要

数控钻铣床是现代工业生产中不可缺少的部分,可以高速、精确的切削零件。本文就对钻铣床的机械结构、电气控制和数控三部分进行了设计,基本可以满足钻铣床的运行。本系统采用的数控装置集成进给轴接口、主轴接口、手持单元接口、内嵌式PLC接口、远程I/O板接口于一体,支持硬盘、电子盘等程序存储方式以及软驱、DNC、以太网等程序交换功能,具有高性能、配置灵活、结构紧凑、易于使用、可靠性高的特点。详细给出了主/控制回路图及一些元件的选择。

关键字:数控装置

PLC 主/控制回路

目 录

第一章 绪论„„„„„„„„„„„„„„„„„„„„„„„„„„„„

1.1数控机床的发展史„„„„„„„„„„„„„„„„„„„„„ 1.2数控机床的现状„„„„„„„„„„„„„„„„„„„„„„ 1.3数控机床的特点和用途„„„„„„„„„„„„„„„„„„„

1.4 PLC相关技术的发展入应用领域„„„„„„„„„„„„„„„ 1.4.1 PLC技术简介„„„„„„„„„„„„„„„„„„„„„„ 1.4.2 PLC的基本结构„„„„„„„„„„„„„„„„„„„„„ 1.4.3 PLC应用领域„„„„„„„„„„„„„„„„„„„„„„ 第二章 电气系统控制设计„„„„„„„„„„„„„„„„„„„„„„

2.1可编程器的选择和可行性的论证„„„„„„„„„„„„„„„ 2.1.1设计的内容及任务„„„„„„„„„„„„„„„„„„„„ 2.1.2可行性论证„„„„„„„„„„„„„„„„„„„„„„„ 2.2总体方案的拟订和论证„„„„„„„„„„„„„„„„„„„ 2.2.1总体设计方案的拟订„„„„„„„„„„„„„„„„„„„ 2.3电气部分设计„„„„„„„„„„„„„„„„„„„„„„„ 2.3.1选件„„„„„„„„„„„„„„„„„„„„„„„„„„ 2.3.2电源„„„„„„„„„„„„„„„„„„„„„„„„„„ 2.3.3数控装置与软驱单元的连接„„„„„„„„„„„„„„„„ 2.3.4数控装置与外部计算机的连接„„„„„„„„„„„„„„„ 2.3.5数控装置开关量的输入/输出„„„„„„„„„„„„„„„„ 2.3.6数控装置与手持单元的连接„„„„„„„„„„„„„„„„ 2.3.7数控装置与主轴装置的连接„„„„„„„„„„„„„„„… 2.3.8数控装置与进给驱动装置的连接„„„„„„„„„„„„…… 2.3.9急停与超程解除的设计„„„„„„„„„„„„„„„„„„ 2.3.10电磁兼容设计„„„„„„„„„„„„„„„„„„„„„„ 2.3.11数控机床系统总体设计„„„„„„„„„„„„„„„„„„

第三章 伺服电机的选择与计算„„„„„„„„„„„„„„„„„„„„„ 3.1伺服电机的选择计算„„„„„„„„„„„„„„„„„„„„ 3.2惯量匹配计算„„„„„„„„„„„„„„„„„„„„„„„ 第四章 数控部分设计„„„„„„„„„„„„„„„„„„„„„„„„

4.1基本结构与主要功能„„„„„„„„„„„„„„„„„„„„ 4.1.1基本配置„„„„„„„„„„„„„„„„„„„„„„„„ 4.1.2主要技术规格„„„„„„„„„„„„„„„„„„„„„„ 4.2操作装置„„„„„„„„„„„„„„„„„„„„„„„„„ 4.2.1操作台结构„„„„„„„„„„„„„„„„„„„„„„„ 4.2.2显示器„„„„„„„„„„„„„„„„„„„„„„„„„ 4.2.3NCP键盘„„„„„„„„„„„„„„„„„„„„„„„„

第五章 外文翻译„„„„„„„„„„„„„„„„„„„„„„„„„„ 第六章 参考文献„„„„„„„„„„„„„„„„„„„„„„„„„„

第一章 绪论

1.1数控机床的发展史:

1949年帕森斯公司正式接受美国空军委托,在麻省理工学院伺服机构实验室的协助下,开始从事数控机床的研制工作。经过三年时间的研究,于1952年试制成功世界第一台数控机床试验性样机。这是一台采用脉冲乘法器原理的直线插补三坐标连续控制铣床,这便是数控机床的第一代。

1953年,美国空军与麻省理工学院协作,开始从事计算机自动编程的研究。这就是APT自动编程的开始。

1958年美国克耐·杜列克公司在世界上首先研制成功了带自动换刀装置的数控机床,称为“加工中心”。

1959年,计算机行业研制出晶体管元器件,因而数控装置中广泛采用晶体管和印制电路板,从而跨入第二代数控时代。

1965年,出现了小规模的集成电路。由于它体积小、功耗低,使数控系统的可靠性得以进一步提高,标志数控系统发展到第三代。

随着计算机技术的发展,小型计算机的价格急剧下降。小型计算机开始取代专用数控计算机,数控的许多功能由软件程序实现。这样组成的数控系统称为计算机数控系统(CNC)。1970年,在美国芝加哥国际机床展览会上,首次展出了这种系统,称为第四代数控。

1974年美国、日本等国首先研制出以微处理器为核心的数控系统。近20年来,微处理器数控系统的数控机床得到了飞速发展的广泛应用,这就是第五代数控系统。

1.2数控机床的现状:

数控技术是制造业实现自动化、柔性化、集成化生产的基础,现代的CAD/CAM、FMS、CIMS等,都是建立在数控技术之上,离开了数控技术,先进制造技术就成了无本之木。同时,数控技术关系到国家战略地位,是体现国家综合国力水平的重要基础性产业,其水平高低是衡量一个国家制造业现代化程度的核心标志,实现加工机床及生产过程数控化,已经成为当今制造业的发展方向。

国产数控机床始终处于低档迅速膨胀,中档进展缓慢,高档依靠进口的局面,特别是国家重点工程需要的关键设备主要依靠进口,技术受制于人。我国进口的数控系统基本为德国西门子(SIMENS)和日本法那克(FANUC)两家公司所垄断,这两家公司在世界市场的占有率超过80%。

1.3数控机床的特点和用途:

(1)具有较强的适应性和通用性

数控机床的加工对象改变时,只需要新编制相应的程序,输入计算机就可以自动地加工出新的工件。同类工件系列中不同尺寸、不同精度的工件,只需要局部修改或增删零件程序的相应部分。随着数控技术的迅速发展,数控机床的柔性也在不断扩展,逐步向多工序集中加工方向发展。

(2)获得更高的加工精度和稳定的加工质量

数控机床是按以数字形式给出的指令脉冲进行加工。目前增量值普遍到达了0.001mm。进给传动链的反向间隙与丝杠导程误差等均可由数控装置进行补偿,所以可获得较高的加工精度。

(3)具有较高的生产率

数控机床不需人工操作,四面都有防护罩,不用担心切削飞溅伤人,可以充分发挥刀具的切削性能。因此,数控机床的功率的刚度都比普遍机床性能高,允许进行大切削用量的强力切削。这有效地缩短了切削时间。

(4)改善劳动条件,提高劳动生产率

应用数控机床时,工人不需直接操作机床,而是编好程序调整好机床后由数控系统来控制机床,免除了繁重的手工操作。一人能管理几台机床,提高了劳动生产率。当然,对工人的文化技术要求也提高了。数控机床的操作者,既是体力劳动者,也是脑力劳动者。

(5)能实现复杂零件的加工

普通机床难以实现或无法实现轨迹为二次以上的曲线或曲面的运动,如螺旋桨、气轮机叶片之类的空间曲面。而数控机床由于采用了计算机插补技术和多坐标联动控制,可以实现几乎是任意轨迹的运动和加工任何形状的空间曲面,适用于各种复杂曲面的零件加工。(6)便于现代化的生产管理

用计算机管理生产是实现管理现代化的重要手段。数控机床的切削条件、切削时间等都是由预先编好的程序决定,都能实现数据化。这就便于准确地编制生产计划,为计算机管理生产创造了有利条件。数控机床适宜与计算机联系,目前已成为计算机辅助设计、辅助制造和计算机管理一体化的基础。

1.4PLC相关技术的发展入应用领域

1.4.1 PLC技术简介:

随着微处理器:计算机和数字通信技术发展,计算机控制已经扩展到几乎所有领域。当前用于工业控制的计算机可分为几类,例如,可编程序控制器,基于单片机的测控装置,用于模拟量闭环控制的可编程序调节器,集散控制系统。PLC由于应用面广、功能强大、使用方便,所以成为当代工业自动化的主要设备之一,PLC已经广泛地应用在各种机械设备和生产过程的自动化的控制系统中。

1.4.2 PLC的基本结构

PLC主要由CPU模块、输入模块、输出模块和编程装置组成。

1、CPU模块:

CPU模块主要由微处理器(CPU芯片)和存储器组成,在PLC控制系统中,CPU模块相当于人的大脑和心脏,不断地采集输入信号执行用户程序,刷新系统的输出,存储器用来存储程序和数据。

2、I/0模块:

输入(input)模块和输出模块简称I/0模块,它是系统的眼、耳、手、脚是联系外部现场设备和CPU模块的桥梁,输入模块用来接收和采集输入信号,开关量输入模块用来接收按钮选择开关、限位开关等。

3、编程器:

编程器用来生成用户程序,并用它进行编程修改和监视用户程序的执行情况,使用编程软件可以在主算机上直接生成编辑梯形图或指令表程序,并可实现不同编程语言的相互转换,程序被编译后下载到PLC,也可以将PLC中的程序上传到计算机。

4、电源:

PLC一般使用AC220V电源或DC24V电源,内部的开关为各模块提供不同电压等直流电源,小型PLC可以为输入电路和外部的电子传感器提供DC24V电源驱动PLC负载的直流电源一般用户提供。

1.4.3 PLC应用领域:

在发达的工业国家,PLC已经广泛地应用所有的工业部门,随着其性能价格比的不断提高,应有范围不断扩大,如

1、运动控制、金属切削机床、金属成形机械、装配机械、机器人、电梯。

2、闭环控制如:塑料挤压成形机、加热炉以及轻工化工机械冶金电力。

3、数据处理:可用于通信功能传送到智能装置或者将他们打印制表。

4、通信联网:PLC与其它智能控制设备一起可以组成集中管理、分散控制的分布式控制系统。

第二章电气系统控制设计

2.3.1选件:

2.3.1.1数控装置(选件):

选择华中“世纪星”HNC-21 系列数控装置(HNC-21T HNC-21M)特点:“世纪星”HNC-21系列数控装置(HNC-21T、HNC-21M)采用先进的开放式体系结构,内置嵌入式工业PC机、高性能32位中央处理器,配置7.5彩色液晶显示屏和标准机床工程面板,集成进给轴接口、主轴接口、手持单元接口、内嵌式PLC接口、远程I/O板接口于一体,支持硬盘、电子盘等程序存储方式以及软驱、DNC、以太网等程序交换功能,主要适用于数控车、铣床和加工中心的控制。具有高性能、配置灵活、结构紧凑、易于使用、可靠性高的特点;

图1所示为NNC-21数控装置与其他装置、单元连接的总体框图。

注:图中除电源接口外,其他接口都不是必须使用的。

图1 总体框图

图2 HNC-21数控装置接口图

XS1:电源接口

XS2:外接PC键盘接口 XS3:以太网接口

XS4:软驱接口

XS5:RS232接口

XS6:远程I/O板接口 XS8:手持单元接口

XS9:主轴控制接口

XS10、XS11:输入开关量接口

XS20、XS21:输出开关量接口 XS30~XS33:模拟式、脉冲式(含步进式)进给轴控制接口 XS40~XS43:串行式NSV-11型伺服轴控制接口

若使用软驱单元则XS2、XS3、XS4、XS5为软驱单元的转接口。2.3.1.2软驱单元(选件):

软驱单元为系统的数据交换单元,该单元可为系统扩展软盘数据交换、外接键盘、RS232、DNC和以太网接口等功能。需要通过转接线与HNC-21数控装置连接使用。

软驱单元接口如图3所示:

图3 软驱单元接口图

前视图接口用于和外部计算机连接,后视图接口用于和HNC-21连接。2.3.1.3手持单元(选件):

手持单元提供急停按钮、使能按钮、工作指示灯、坐标选择(OFF、X、Y、Z、4)、倍率选择(X1、X10、X100)及手摇脉冲发生器。手持单元仅有一个DB25的接口。如图4所示:

图4 手持单元接口图 手持接口插头连接但HNC-21数控装置的手持控制接口XS8上。

2.3.1.4I/O端子板(选件):

I/O端子板分输入端子板和输出端子板两种,通常作为HNC-21数控装置XS10、XS11、XS20、XS21接口的转接单元使用,以方便连接及提高可靠性。输入端子板与输出端子板均提供NPN和PNP两种端子。

每块输入端子板含20位开关量输入端子;每块输出端子板含16位开关量输出端子及急停(两位)与超程(两位)端子。

图5 输入端子板接口图

图6 输出端子板接口图

2.3.1.5远程I/O端子板(选件):

远程I/O端子板分远程输入端子板与远程输出端子板两种,HNC-21数控装置通过XS6控制。最多可连接4块远程输入端子板与4块远程输出端子板。每块远程输入端子板提供32位输入开关量端子,并且支持NPN和PNP两种信号类型。每块远程输出端子板提供32位NPN开关量输出端子。

图7 远程输入端子板接口图

J1:与数控装置或上级远程I/O端子板连接接口; J2:与下级远程I/O端子板连接接口;

J3:输入开关量(NPN和PNP)和直流24V电源端子。

J1:与数控装置或上级远程I/O端子板连接接口; J2:与下级远程I/O端子板连接接口;

J3:输出开关量(NPN型)和直流24V电源端子。

2.3.2电源:

2.3.2.1供电要求

电源容量:数控装置(外部电源1):AC24V或DC24V 100W。

PLC电路(外部电源2):DC24V 不低于50W。

电 源 线:采用屏蔽电缆或双绞线。

外部电源1采用交流AC24V电源时(参见供电方式一),建议数控装置不与其他外部设备共用电源。

外部电源2建议采用直流DC24V/50W开关电源。若开关量输出信号控制的直流24V继电器较多,可适当增加电源容量,或另外提供电源,但必须与外部电源2共地。若Z轴抱闸和电磁阀也虚DC24V供电,尽量不要与外部电源2共用,以减少电磁阀等器件对数控装置的干扰。

外部电源1采用直流DC24V电源时,可以与外部电源2共用一个容量不低于150W的直流24V开关量(参见供电方式二)。

外部电源1,2经过数控装置内部电路,由XS8向手持单元上的开关元件及手摇脉冲发生器提供电源,如图11所示。

远程I/O端子板上的输入/输出开关量可在本地单独使用电源。2.3.2.2供电方式一:

采用交流24V+直流24V供电:

图9 供电方式一

2.3.2.3供电方式二:

采用直流24V供电:

图10 供电方式二

2.3.2.4接地:

2.3.2.4.1接大地:

XS1的6脚在内部已与数控装置的机壳接地端子接通。由于电源线电缆中的地线较细,因此,必须单独增加一根截面积不小于2.5平方毫米的黄绿铜导线作为地线与数控装置的机壳接地端子相连。2.3.2.4.1接信号地:

XS1的4脚在数控装置内部已与XS10、XS11、XS20、XS21开关量接口的1、2、14、15脚连通。但为了提高开关量信号的抗干扰能力,XS10、XS11、XS20、XS21开关量接口的1,2,14,15脚应采用单独的电线连接到外部DC24V电源地上,以减少流过XS1的4脚(24V地)的电流,如图11所示。

若某些输入/输出开关量控制或接收信号的电气元件(如继电器、按钮灯、接近开关、霍尔开关)的供电电源是单独的,则其供电电源必须与输入输出开关量的供电电源共地。否则,数控装置不能通过输出开关量可靠地控制这些元器件,或从这些元器件接收信号。

2.3.3数控装置与软驱单元的连接

软驱单元含3.5软驱驱动器及标准PC键盘接口(小圆口)、RS232接口、以太网接口。各接口的功能和引脚定义与HNC-21数控装置完全相同。图12为软驱单元与数控装置的连接图。

图12 与软驱单元的连接框图

图中连接软驱单元的四根扩展线接线方式,均以相应引脚一一对应焊接,如图13所示。

图13 软驱单元的接线图

软驱单元与HNC-21数控装置之间的距离主要是受软驱连接电缆的长度限制,所以二者之间的电缆长度不宜超过1米。2.3.4数控装置与外部计算机的连接:

HNC-21数控装置可以通过RS232或以太网与外部计算机连接,并进行数据交换与共享。在硬件连接上,可以直接由HNC-21数控装置背面的XS3、XS5接口连接,也可以通过软驱单元上的串口接口进行转接。2.3.4.1通过RS232口与外部计算机连接:

图15 数控装置通过RS232口与PC计算机连接(有软驱单元的情况)

2.3.4.2连接以太网:

通过以太网与外部计算机连接是一种快捷、可靠的方式。可以是与某台外部计算机直接电缆连接(见图16和图17),也可以是先连接到HUB(集线器),再经HUB连入局域网,与局域网上的其他任何计算机连接(见图18和图19)。在硬件上,可以直接使用HNC-21背面的以太网连接,也可以通过软驱单元转接后,用软驱单元上的以太网口连接。

连接电缆请使用网络专用电缆。以太网接口插头型号均为RJ45。直接电缆连接:

图16 数控装置通过以太网口与外部计算机直接电缆连接(没有软驱单元的情况)

图17 数控装置通过以太网接口与外部计算机局域网连接(没有软驱单元的情况)

图18 数控装置通过以太网口与外部计算机局域网连接(有软驱单元的情况)

2.3.5数控装置开关量的输入/输出

2.3.5.1开关量输入输出接口

世纪星HNC-21数控开关量输入/输出接口,有本机输入/输出(可通过输入/输出端子板转接)和远程输入输出两种,其中本机输入有40位,本机输出32位,远程输入/输出各128位(选件)。2.3.5.1.1开关量输入接口特性

1.等效电路

NPN开关量输入:

图20 输入开关量接口等效电路—NPN型

PNP开关量输入:

图21 输入开关量接口等效电路—PNP型

注: 1.HNC-21本机输入为NPN开关量输入;

2.输入端子板可提供NPN和PNP两种开关量输入端子; 3.远程输入板可提供NPN和PNP两种开关量输入端子。

2.技术参数:

(1).采用光电耦合技术,最大隔离电压2500VRMS(一分钟)

(2).电源电压24V

(3).导通电流IF=5~9mA

(4).最大漏电流≤0.1mA

(5).滤波时间约2毫秒

注:用有源开关器件(如无触点开关、霍尔开关等)时,必须采用DC24V规格。

2.3.5.1.2开关输入接口引脚定义:

1.HNC-21本机开关量输入接口:

图22 HNC-21本机开关量输入接口图

2.输入端子板接口:

图23 输入端子板接口图

图24

3.远程输入端子板接口:

图25 远程输入端子板接口图

J1:与数控装置或上级远程I/O端子板连接接口; J2:与下级远程I/O端子板连接接口;

J3:输入开关量(NPN和PNP)和直流24V电源端子。

对于同一位,N型和P型不能同时使用。

图26 2.3.5.1.3开关量输出接口特性

1.等效电路

NPN开关量输出接口:

图27 输出开关量接口等效电路—NPN型

PNP型开关量输出接口:

图28 输出开关量接口等效电路—PNP型

注:1.HNC-21本机输出为NPN型输出;

2.输出端子板可同时提供PNP和NPN型输出;

3.远程输出端子板分为两种,可分别提供NPN型和PNP型两种端子。

2.技术参数

(1).采用光电耦合技术,最大隔离电压2500VRMS(一分钟)

(2).电源电压24V

(3).最大输出电流100mA 2.3.5.1.4开关量输出接口引脚定义

1.HNC-21本机开关量输出接口:

图29 HNC-21本机开关量输出接口图

2.输出端子板接口:

图30 输出端子板接口图

图31

注:对应于同一位,N型和P型不可同时使用。

3.远程输出端子板接口:

图32 远程输出端子板接口图

J1:与数控装置或上级远程I/O端子板连接接口; J2:与下级远程I/O端子板连接接口;

J3:输出开关量(NPN型)和直流24V电源端子。

图33

注:对于端子为PNP型的远程输出端子板,J3端子3~34脚的信号为P0~P31。3.5.2直接连接到数控装置:

可将外部的输入/输出信号,直接连接到世纪星HNC-21装置上的X10、X11插座。这种连接方式一般用于所需I/O点较少,数控装置与电气柜一体的情况。具有成本低,连接简单的特点,缺点是不方便电缆拆装,没有PNP型输入、输出端子。

图34 开关量输入接线图

图35 开关量输出接线图

2.3.5.3通过I/O端子板连接:

如图36 所示,分线电缆将HNC-21数控装置的XS10、XS11与输入端子板的J1、XS20、XS21与输出端子板的J1相连。NPN或PNP型开关量输入/输出元器件连接杂端子板的J2上。

该连接方式适用于所需用的I/O点不多,且数控装置与强电控制电路分装在不同机柜内的情况;具有电路调试、维护方便的优点。

图36 通过I/O端子板连接输入/输出开关量

输入端子板上J1与J2各信号的对应关系如下表所示:

输出端子板上J1与J2个信号的对应关系如下表所示:

端子板每位开关量都有NPN、PNP两种接线端子,以及发光二级管指示灯,便于系统的调试和故障检测。

输入/输出端子板的J1接口与HNC-21数控装置的XS10、XS11、XS20、XS21接口之间互连电缆的连接方式如图37 所示。

图37 输入/输出端子板与数控单元互联线缆图

2.3.5.4通过远程I/O端子板连接

采用通讯方式工作,通过HNC-21数控装置的XS6接口连接到各远程I/O端子板。通讯电缆将HNC-21数控装置的XS6与远程I/O端子板的J1相连,再通过J2与下一块远程I/O端子板相连。如图38 所示。

该连接方式适用于需用的I/O点很多,需要扩展I/O点数的状况。其优点是所有远程I/O端子板与HNC-21数控装置只需要一根通讯电缆串联连接,简化了系统结构,有效距离可以达到50米,且板上每位开关量都有发光二级管指示灯,便于系统的调试和故障检测。最多可分别连接4块远程I/O输入端子板和4块远程I/O输出端子板。

图38 通过远程端子板连接输入/输出开关量

远程I/O端子板上的输入/输出开关量,按板卡的连接顺序排列。远程输入端子板的开关量从第六组即I48开始(HNC-21占用五组:I0~I39,I40~I47保留)。远程输出端子板的开关量,从第四组即032开始(HNC-21占用四组:00~031)。

最后一块远程I/O端子板J2接口必须接入一个终端插头(DB9头孔)。接线图见图39。

图39 远程I/O端子板与HNC-21数控装置互联线缆图

如图39 所示,数控装置的XS6接口与远程I/O端子板的J1接口之间管脚一一对应连接;远程I/O端子板的J2接口与另一块远程I/O端子板J1接口之间管脚一一对应连接;最后一块远程I/O端子板的J2借口,应接入一个终端插头,将1—

9、4—6管脚短接。

2.3.6数控装置与手持单元的连接

2.3.6.1HNC-21手持接口定义:

HNC-21数控装置通过XS8接口(DB25座孔)与手持单元连接。

XS8的引脚定义如下:

图40

手持单元中坐标选择、增量倍率选择、使能按钮、指示灯等需要占用PLC输入/输出开关量。因此,手持接口(XS8)占用了数控装置的开关量输出中的4路输出(028—031)、开关量输入中的8路输入(I32—I39)。

注意:若系统中未选用手持单元,或所选手持单元上没有急停按钮时,应该通过DB25头针插头将XS8上的第4、17脚短接。2.3.6.2连接标准手持单元:

标准手持单元,接口为DB25头针插头,可以直接连接到HNC-21数控装置的XS8接口上。

针对标准手持单元,HNC-21手持接口提供标准引脚定义(主要涉及输入/输出开关量),引脚定义见表:

表.手持接口标准引脚定义(输入/输出开关量)

若未安装手持单元,则需要通过一个DB25插头短接手持单元控制接口XS8上的4(ESTOP2)、17(ESTOP3)脚。否则,HNC-21数控装置将会因面板上的急停按钮不起作用,而导致数控装置出现急停报警。

图41 数控装置与手持单元连接图

2.3.7数控装置与主轴装置的连接:

HNC-21数控装置通过XS9主轴控制接口和PLC输入/输出接口,可连接各种主轴驱动器,实现正、反转、定向,调速等控制,还可以外接主轴编码器,实现铣床上的刚性攻线功能。2.3.7.1与主轴相关的接口定义

2.3.7.1.1主轴控制接口XS9

XS9主轴控制接口,包括主轴速度模拟电压指令输出和主轴编码器反馈输入,其信号定义如下表。

信号特性:

1.主轴速度模拟电压信号

电压范围:AOUT1

-10V~+10V

AOUT2

0~+10V 负载电流:最大10mA 2.主轴编码器接口

电源输出:+5V

最大200mA 编码器信号:RS422电平

使用主轴变频器或主轴伺服单元时,在连接前一定要确认主轴单元模拟指令电压接口的类型,若为-10V~+10V,应使用AOUT1(6脚)和GND;若为0~+10V,应使用AOUT2(14脚)和GND。

2.3.7.1.2与主轴控制相关的输入/输出开关量

连接主轴装置时需要使用输入/输出开关量控制主轴电机的启停、及接收相关的状态与报警信息。

与主轴控制有关的输入/输出开关量信号的定义如下:

表.与主轴控制有关的输入/输出开关量信号

2.3.7.2主轴启停:

主轴启停控制由PLC承担,标准铣床PLC程序中关于主轴启停控制的信号如下表所示。

表.与主轴启停有关的输入/输出开关量信号

利用Y1.0、Y1.1输出即可控制主轴装置的正、反转及停止,一般定义接通有效,这样当Y1.0接通时可控制主轴装置正转,Y1.1接通时,主轴装置反转,二者都不接通时,主轴装置停止旋转。在使用某些主轴变频器或主轴伺服单元时也可用Y1.0、Y1.1作为主轴单元的使能信号。

部分主轴装置的运转方向由速度给定信号的正、负极性控制,这时可将主轴正转信号用作主轴使能控制,主轴反转信号不用。

部分主轴控制器有速度到达和零速信号,由此可使用主轴速度到达和主轴零速输入,实现PLC对主轴运转状态的监控。2.3.7.3主轴速度控制:

HNC-21通过XS9主轴接口中的模拟量输出可控制主轴转速,其中AOUT1的输出范围为-10V~+10V用于双极性速度指令输入的主轴驱动单元或变频器,这时采用使能信号控制主轴的启、停;AOUT2的输出范围为0~+10V,用于单极性速度指令输入的主轴驱动单元或变频器,这时采用主轴正转、主轴反转信号控制主轴的正、反转。2.3.7.4主轴定向控制:

实现主轴定向控制的方案一般有:

1.采用带主轴定向功能的主轴驱动单元; 2.采用伺服主轴即主轴工作在为控方式下; 3.采用机械方式实现。

对应于第一种控制方式,标准铣床PLC程序中定义了相关的输入/输出的信号。

表.与主轴定向有关的输入/输出开关量信号

由PLC发生主轴定向命令即Y1.3接通,主轴单元完成定向后送回主轴定向完成信号X3.3。

第二种控制方式,主轴作为一个伺服轴控制,可在需要时可由用户PLC程序控制定向到任意角度。

第三种控制方式,根据所采用的具体方式,用户可自行定义有关PLC输入/输出点,并编制相应PLC程序。2.3.7.5主轴换档控制:

主轴自动换档通过PLC控制完成,标准铣床PLC程序中关于主轴换档控制的信号如下表所示。

表.与主轴换档控制有关的输入/输出开关量信号

使用主轴变频器或主轴伺服时,需要在用户PLC程序中根据不同的档位确定主轴速度指令(模拟电压)的值。

车床通常为手动换档,如果安装了主轴编码器,则需要在用户PLC程序中根据主轴编码器反馈的主轴实际转速自动判断主轴目前的档位,以调整主轴速度指令(模拟电压)的值。2.3.7.6主轴编码器连接:

通过主轴接口XS9可外接主轴编码器,用于螺纹切割、攻丝等,本数控装置可接入两种输出类型的编码器,差分TTL方波或单极性TTL方波。

一般使用差分编码器,从而确保长的传输距离的可靠行及提高抗干扰能力。编码器规格要求:

1.+5V电源(200mA以内,若超过200mA需要设计外部电源供电); 2.TTL电平输出;

3.差分A、B、Z信号输出。

常用主轴编码器型号为:LEC-□BM-G05D(L、H)2.3.8数控装置与进给驱动装置的连接:

HNC-21数控装置提供了三类轴控制接口:串行接口、脉冲接口、模拟接口,可与目前流行的大多数驱动装置连接,其对应关系如表。

表.2.3.8.1接口定义:

2.3.8.1.1串行进给驱动接口:

串行进给驱动接口是与HSV-11系列交流伺服驱动装置连接的专用接口。它的特点是连接简便,抗干扰能力强,无漂移。

HNC-21□C和HNC-21□F最多可提供4个串行进给驱动接口XS40、XS41、XS42、XS43(第4轴是选项)。1.信号定义:

2.技术规格: 电平:RS232 通讯波频率:9600 2.3.8.1.2脉冲进给驱动接口:

脉冲式接口使用脉冲信号,传递位置指令,可控制各种步进电机驱动装置、脉冲接口伺服驱动装置。其特点是通用性强,信号传递抗干扰能力强,不会发生漂移,但构成全闭环需在驱动装置中完成。

HNC-21□D和HNC-21□F最多可提供4个脉冲进给驱动接口,连接插座为XS30、XS31、XS32、XS33(第4轴是选项)。1.信号定义:

注:OUTA模拟指令信号在HNC-21□D型号中无效。

2.技术规格:

最高脉冲频率:800KHZ; 编码器电源:+5V

150mA; 编码器信号:RS422电平; 3.等效电路:

脉冲指令输出:

图42 脉冲指令输出接口等效电路

码盘信号输入:

图43 码盘信号输入接口等效电路

4.脉冲形式:

在数控装置内部,通过修改硬件配置参数,可以将脉冲输出形式设定为脉冲加方向,双脉冲,两项正交三种模式。

2.3.8.1.3模拟进给驱动接口:

模拟式接口使用模拟量信号传递速度指令控制控制伺服驱动装置,可连接各种交、直流伺服驱动装置。其特点是通用性强,可构成全闭环控制;缺点是容易被干扰,发生漂移,不适合长距离连接。

HNC-21□A和HNC-21□F最多可提供4个模拟量轴接口,连接插座为与脉冲式接口相同,为XS30、XS31、XS32、XS33(第4轴是选项)。

1.信号定义:

注:CP+、CP-、DIR-脉冲指令信号在HNC-21□A型号中无效。

2.技术规格:

速度指令输出范围:-20mA~+20mA(电流型);

编码器电源:+5V 150mA;

编码器信号:RS422电平;

3.等效电路:

速度指令输出:

图44 速度指令输出接口等效电路

码盘信号输入接口的等效电路见图43。2.3.8.2连接HSV-11系列交流伺服驱动装置

使用HSV-11系列交流伺服驱动装置,需选用HNC-21□C或HNC-21□F数控装置,通过XS40~XS43轴通讯接口连接HSV-11伺服驱动装置,最多可连接4台伺服驱动装置。

图45 为HNC-21连接HSV-11伺服驱动装置的总体框图。

图45 HNC-21控制HSV-11系列交流伺服驱动器的总体框图

图46 是HNC-21连接HSV-11伺服驱动的一个实例。图46 HNC-21与HSV-11型伺服驱动器的连接

2.3.9急停与超程解除的设计

HNC-21数控装置操作面板和手持单元上,均设有急停按钮,用于: 当数控系统或数控机床出现紧急情况,需要使数控机床立即停止运动或切断动力装置(如伺服驱动器等)的主电源;

当数控系统出现自动报警信息后,须按下急停按钮。待查看报警信息并排除故障后,再松开急停按钮,使系统复位并恢复正常。该急停按钮及相关电路所控制的中间继电器(KA)的一个常开触点应该接入HNC-21数控装置的开关量输入接口,以便为系统提供复位信号。

HNC-21数控装置操作面板设有超程解除按钮,用于机床压下超程限位开关后,手工操作解除超程状态。

HNC-21数控装置为此设计了接口电路,相关信号如表所示。

表.内部电路关系和外部电路的设计如图47 所示。

除数控装置操作面板和手持单元处的急停按钮外,系统还可根据实际需要,设置更多急停按钮。所有急停按钮的常闭触点以串联方式,连接到系统的急停回路中。在正常情况下,急停按钮处于松开状态,其触点处于常闭状态。按下急停按钮后,其触点断开,使得系统的急停回路所控制的中间继电器KA断电,而切断移动装置(如进给轴电机、主轴电机、刀库/架电机等)的动力电源。同时,连接在PLC输入端的中间继电器KA的一组常开触点,向系统发出急停报警。此信号在打开急停按钮时则作为系统的复位信号。

图47 急停与超程解除信号内部电路关系和外部电路建议接法

系统中,各轴的正向、负向的超程限位开关的常闭触点以串联方式,连接到系统的超程回路中。同时,每个超程限位开关另有一个常开触点连接PLC输入端,是系统能够判断各超程限位开关的状态。在正常情况下,超程限位开关处于松开状态。若用户操作机床,不慎将某轴的超程限位开关压下,其常闭触点断开,使得系统的超程回路断开,同时,使急停回路中的中间继电器KA断电,而自动切断移动装置的动力电源。超程限位开关连接在PLC输入端的常开触点向系统发出超程报警信息(发生超程的坐标轴及超程方向),并使超程解除按钮上的指使灯发光。

与急停报警一样,发生超程时,中间继电器KA断电也会断电,中间继电器KA的一组常开触点也会通过PLC输入端,向系统发出急停报警信号。但系统的PLC除检测中间继电器KA的常开触点外,还检测各超程限位开关的常开触点的状态,以此区分急停报警和超程报警。

发生超程后,系统处于超程报警状态,各进给装置的动力电源已被切断。为了解除超程,用户应该按以下步骤操作:

1)按住数控装置操作面板上的超程解除按钮,使系统复位。在解除超程前,不得松开超程解除按钮;

2)手动操作机床的进给轴按正确的方向移动,使被压下的超程限位开关松开(此时,超程解除按钮上的指示灯将熄灭); 3)松开超程解除按钮。设计建议:

以上涉及的如系统复位信号、超程按钮灯点亮与熄灭、超程的坐标轴及方向的判别需要有PLC程序实现。

在编制PLC程序,应保证操作者解除超程时,若按错解除超程的方向,其进给轴不得移动。只有操作者按解除超程的正确方向时,进给轴才会移动。否则,可能会出现滚珠丝杠严重损坏的故障。3.10电磁兼容设计

为了保证数控系统在工业环境中能够正常工作,系统必须达到GB8832-1999.5“数控系统通用技术条件”中的电磁兼容性要求。

电磁兼容性(EMC)是指:

电气设备产生的电磁干扰不应超过其预期使用场合允许的水平。

设备对电磁干扰应有足够的抗扰度水平,以保证电气设备在预期使用环境中可以正确运行。

数控系统电磁兼容性主要内容:

数控系统电磁兼容性主要包括以下四个方面:

 电压中断和电压暂降

在交流输入电源任一周期内的任一时刻中断半周期;电压暂降时间不超过一个周期,幅值降为额定值的40%,数控系统应能正常工作。 快速瞬变电脉冲群抗扰性

1.数控系统工作时,在交流供电电源端和保护地端之间进行快速瞬变电脉冲群抗扰性试验,加入脉冲电压峰值2KV,重复率5KHz,实验时,数控系统应能正常工作。

2.数控系统工作时,在I/O信号、数据和控制端口电缆用耦合加入峰值为1KV,重复率5KHz脉冲群,系统应能正常工作。

 浪涌抗扰性

在交流输入电源中叠加峰值为1KV浪涌电压,在交流输入电源对地端叠加峰值为2KV浪涌电压,系统应能正常工作。 静电放电抗扰性

数控系统工作时,对操作人员经常触及的所有部位进行静电放电试验,接触放电电压6KV,空气放电电压8KV,放电试验中,系统应能正常工作。

2.3.11数控铣床系统总体设计: 2.3.11.1系统简介:

机床:四坐标铣床,X、Y、Z直线坐标轴+A旋转坐标轴(选项);

控制柜结构:强电控制柜+吊挂箱;

主轴:变频器,液压换档,分高速、低速两档。

表.数控系统设计主要器件

2.3.11.2总体框图:

图48 数控系统设计总体框图

2.3.11.3输入输出开关量的定义:

以下为典型铣床数控系统对输入输出开关量的定义,有些开关量虽然给出了定义但并未使用。

XS8插座中的I30—I39、028—031信号与XS11和XS21插座中各同名信号均为并联关系,留给手持单元使用,直接由XS8引出。对输入I和输出0重新标号为X和Y,是为了与PLC状态显示相一致,在PLC编程中也更方便。X0.0、X0.1…X1.2与I00、I01…I10相对应。即X0代表PLC输入第0个字节,X1代表PLC输入第1个字节;X1.3代表PLC输入第1个字节的第三位,即输入开关量的I11。

XS21(DB25/F)未用。

XS8(DB25/F头针座孔)手持单元接口: 引脚号 信号名 标号 信号定义 13 5V地

手摇脉冲发生器+5V电源地 25 +5V 手摇脉冲发生器+5V电源 12 HB 手摇脉冲发生器B相 24 HA 手摇脉冲发生器A相 11 O28 Y3.4 未定义; 23 O29 Y3.5 未定义; 10 O30 Y3.6 手持单元工作指示灯,低电平有效; 22 O31 Y3.7 未定义; 9 I32 Y4.0 手持单元坐标选择输入X轴,常开点,闭合有效; 21 I33 Y4.1 手持单元坐标选择输入Y轴,常开点,闭合有效; 8 I34 Y4.2 手持单元坐标选择输入Z轴,常开点,闭合有效; 20 I35 Y4.3 手持单元坐标选择输入A轴,常开点,闭合有效; 7 I36 Y4.4 手持单元增量倍率输入X1,常开点,闭合有效; 19 I37 Y4.5 手持单元增量倍率输入X10,常开点,闭合有效; 6 I38 Y4.6 手持单元增量倍率输入X100,常开点,闭合有效; 18 I39 Y4.7 手持单元使能输入,常开点,闭合有效; 5 空

ESTOP3 ES3 手持单元急停按钮串接到急停回路的端子 4 ESTOP2 ES2 手持单元急停按钮串接到急停回路的端子 3.16 +24V 24V 为手持单元的输入输出开关量供电的DC24V电源

为手持单元的输入输出开关量供电的DC24V电源1.2.14.15 24V地 24G

XS10(DB25/F头针座孔)PLC输入接口(I0~I19): 引脚号 信号名 标号 信号定义 13 I0 X0.0 X轴正向超程限位开关,常开点,闭合有效; 25 I1 X0.1 X轴负向超程限位开关,常开点,闭合有效; 12 I2 X0.2 Y轴正向超程限位开关,常开点,闭合有效; 24 I3 X0.3 Y轴负向超程限位开关,常开点,闭合有效; 11 I4 X0.4 Z轴正向超程限位开关,常开点,闭合有效; 23 I5 X0.5 Z轴负向超程限位开关,常开点,闭合有效; 10 I6 X0.6 A轴正向超程限位开关,常开点,闭和有效; 22 I7 X0.7 A轴负向超程限位开关,常开点,闭和有效; 9 I8 X1.0 X轴回参考点开关,常开点,闭合有效; 21 I9 X1.1 Y轴回参考点开关,常开点,闭合有效; 8 I10 X1.2 Z轴回参考点开关,常开点,闭合有效; 20 I11 X1.3 A轴回参考点开关,常开点,闭合有效; 7 I12 X1.4 冷却系统报警,常闭点,断开有效;(未用)19 I13 X1.5 润滑系统报警,常闭点,断开有效; 6 I14 X1.6 压力系统报警,常闭点,断开有效; 18 I15 X1.7 未定义; 5 I16 X2.0 主轴一档(低速)到位,常闭点,断开有效; 17 I17 X2.1 主轴二档(高速)到位,常开点,闭合有效; 4 I18 X2.2 未定义; 16 I19 X2.3 未定义; 3 空

1.2.14.15 24V地

外部直流24V电源地

XS11(DB25/F头针座孔)PLC输入接口(I20~I39): 引脚号 信号名 标号 信号定义 13 I20 X2.4 外部运行允许,常开点,闭合有效; 25 I21 X2.5 伺服电源准备好,常开点,闭合有效; 12 I22 X2.6 伺服驱动模块OK,常开点,闭合有效; 24 I23 X2.7 电柜空气开关OK,常开点,闭合有效; 11 I24 X3.0 主轴报警,常闭点,断开有效; 23 I25 X3.1 主轴速度到达,常开点,闭合有效; 10 I26 X3.2 主轴零速,常开点,闭合有效 22 I27 X3.3 主轴定向完成,常开点,闭合有效;(未用)9 I28 X3.4 未定义; 21 I29 X3.5 未定义; 8 I30 X3.6 未定义; 20 I31 X3.7 未定义;

与XS8并联,用于手持单元的坐标选择输入、增7、16-19 I32-I39 X4.0-X4.7

量倍率输入、使能按钮输入; 空

1.2.14.15 24V地

外部直流24V电源地

XS20(DB25/F头孔座针)PLC输出接口(O0~O15): 引脚号 信号名 标号 信号定义 13 OOO Y0.0 运行允许,低电平有效; 25 O01 Y0.1 系统复位,低电平有效; 12 O02 Y0.2 伺服允许,低电平有效; 24 O03 Y0.3 SV-CWL(伺服减电流),低电平有效 11 O04 Y0.4 升降轴抱闸,低电平有效; 23 O05 Y0.5 冷却开,低电平有效; 10 O06 Y0.6 刀具松,低电平有效; 22 O07 Y0.7 未定义; 9 O08 Y1.0 主轴正转(主轴使能),低电平有效; 21 O09 Y1.1 主轴反转(主轴使能),低电平有效; 8 O10 Y1.2 主轴制动,低电平有效;(未用)20 O11 Y1.3 主轴定向,低电平有效;(未用)7 O12 Y1.4 主轴一档(低速),低电平有效; 19 O13 Y1.5 主轴二档(高速),低电平有效;(未用)6 O14 Y1.6 未定义;(主轴三档备用,低电平有效。)18 O15 Y1.7 未定义;(主轴四档备用,低电平有效。)5 空

ESTOP3 急停回路驱动KA继电器控制动力电源的输出端子 4 ESTOP1 急停回路与超程回路的串联的接入端子 16 OTBS2 超程限位开关的接入端子 3 OTPS1 超程限位开关的接入端子 1.2.14.15 24V地

外部直流24V电源地 2.3.11.4电气原理图简介:

下面以示意图的形式,给出电气原理图的主要部分。对于线号,仅给出了在不同的页面均出现的线缆的线号。2.3.11.4.1电源部分:

在本设计中,照明灯的AC24V电源和HNC-21的AC24V电源是各自独立的;工作电流较大的电磁阀用DC24V电源与输出开关量(如继电器、伺服控制信号等)用的DC24V电源也是各自独立的,且中间用一个低通滤波器隔离开来。

总电源进线、变压器输入端等处的抗干扰磁环和高压瓷片电容未在图中表示出来。

图49 中QF0~QF4为三相空气开关;QF5~QF11为单相空气开关;KM1~KM4为三相交流接触器;RC1~RC3为三相阻容吸收器(灭弧器);RC4~RC7为单相阻容吸收器(灭弧器);KA1~KA10为直流24V继电器;V1、V2、V3、VZ为续流二极管;YV1、YV2、YV3、YVZ为电磁阀和Z轴电机抱闸。

图49数控系统电气原理图-主、控制回路 ☆

表示该部分信号在其他原理图中需要使用。

2.3.11.4.2继电器的输入输出开关量:

继电器主要是由输出开关量控制的,输入开关量主要是指进给装置、主轴装置、机床电气等部分的状态信息与报警信息。

图50 数控系统电气原理图-继电器部分

图中KA1~KA10为中间继电器;

SQX-

1、SQX-3分别为X轴的正、负超程限位开关的常闭触点;

SQY-

1、SQY-3 分别为Y轴的正、负超程限位开关的常闭触点;

SQZ-

1、SQZ-3 分别为Z轴的正、负超程限位开关的常闭触点;

440为来自伺服电源模块与伺服驱动模块的故障连锁;

100为图49 中DC24V 50W开关电源的地;

图51 数控系统电气原理图-输入输出开关量1

图中100,为图49中DC24V 50W开关电源的地;

手持单元的部件标识为31,并由PLC系统参数中按其部件号来引用该设备。

图52 数控系统电气原理图-输入输出开关量2 2.3.11.4.3主轴单元接线图:

图53 数控系统电气原理图-主轴单元

2.3.11.4.4伺服驱动器接线图:

图54 数控系统电气原理图-伺服驱动电路

用HSV-11型伺服驱动器驱动1FT6系列伺服电机时要特别注意: 伺服电机电源线V、W应该与图54 所示的接法交换。各电缆线的连接见图55

图55 数控系统电气原理图-伺服驱动电缆连接

第三章伺服电机的选择计算

3.1伺服电机的选择计算:

伺服电动机是伺服系统控制的直接对象,它是将电信号转变为机械运动的关键元件。数控机床目前使用的主要是各种类型的伺服电动机,如步进电动机、各种惯量的直流伺服电动机以及交流伺服电动机。本系统采用的为兰州电机厂出产的1FT6074型伺服电机。

为了满足数控机床的加工质量和生产率等方面的要求,伺服电动机应具有下列的性能;调速范围宽,并具有良好的稳定性,尤其是低速时的稳定性;负载特性硬,特别是低速时应具有足够的负载能力;响应速度快;可频繁启动、停止及换向。

根据牛顿第二定律,进给传动系统所需的驱动力矩T,等于系统的总的转动惯量J乘以电动机的角加速度ε,即T=Jε。当进给伺服电动机已选定,则T的最大值基本不变。如果希望ε的变化小,则应使转动惯量J的变化尽量小些。

进给系统的总的转动惯量J,是由伺服电动机的转子惯量JM和负载惯量JL两部分组成,即

J=JM+JL

负载惯量JL由丝杠的转动惯量和工作太折算到电动机轴上的转动惯量组成,它会因夹具、工件或刀具的不同而有所变化。如果希望J的变化小些,则最好使JL所占的比例小些。这就是惯量匹配原则。因此机床伺服电动机的选择计算,应从保证伺服电动机所需转距,满足传动系统惯量匹配的角度进行。初选1FT6074型伺服电动机,然后进行惯量匹配计算和转距计算,验证其是否满足要求。

3.2.惯量匹配计算:

通常,JM应不小于JL,但JM应有所限制,以免使J过大。否则,为了足够大的角加速度ε而采取过大的伺服电动机和伺服系统,这将是不合理的。对此,可按下式确定:

0.25<JL/JM<1

由电机产品目录可知,伺服电动机的转动惯量为:

JM=215.8N·cm 代入上式得:

JL/JM=0.566 故所选电动机满足惯量匹配原则。

2.2.2伺服电动机转距计算:

快速空载启动时所需力矩为:M=Mamax+Mf+Mo

最大切削负载时所需力矩为:M=Mat+Mf+Mo+Mt

快速进给时所需力矩为:

M=Mf+Mo 式中:

Mamax:空载启动时折算到电机轴上的加速度力矩;

Mf:

折算到电机轴上的摩擦力矩;

Mo:

由于丝杠预紧所引起,折算到电机轴上的附加摩擦力距;

Mat:

切削时折算到电机轴上的加速度力矩;

Mt:

折算到电机轴上的切削负载力矩;

当n=namax时,namax=Vamax/L0,得:

Mamax=Jnmax/9.6t×10-4=19.55kgf·cm 式中:

J:系统总的转动惯量;

t:传动系统的启动加速时间(s),t=(3~4)tM=3×0.02=0.06s, tM为电动机机械时间常数。

当n=nt时,nt=n主f/L0,n主=1000V/ПD,得:

Mat=Jnt/9.6t×10-4=1.173kgf·cm

又:

Mf=F0L0/2∏η=fWL0/2∏η

当η=0.8,fˊ=0.16时,得:

Mf=0.729kgf·cm

又:

M0=P0L0/2∏η×(1-η02)

当η0=0.9时,预加载荷P0=FX/3,则:

M0=0.378kgf·cm Mt=FXL0/2∏η=9.122kgf·cm

所以,快速空载启动时所需力矩:

M=Mamax+Mf+M0=216.6N·cm

切削时所需力矩:

M=Mat+Mf+M0+Mt=124N·cm

快速进给时所需力矩:

M=Mf+M0=11.07N·cm

由以上分析计算可知,所需最大力矩Mmax发生在快速空载启动时。由伺服电动机工作特性得知,机床进给部件快速空载启动所虚的加速度,取决于伺服电动机所能提供的最转距。而本系统选用1FT6074型伺服电机的最大转距为14N·cm,连续转距为2.8N·cm,因此能够满足系统的需求。

第四章数控部分设计

4.1基本结构与主要功能:

4.1.1基本配置

(1)数控单元

a)工业控制机:

中央处理器板:原装进口嵌入式工业PC机 中央处理器:高性能32位微处理器

存储器:4MB RAM加工缓冲区,采用CF卡,容量大、抗干扰性强 程序断电保护与存储:1MB 显示器:5.7英寸LCD RS232接口:最大传输速率为11.52kb 网络接口:以太网接口

b)控制轴数:钻铣床(HNC-21,3轴)

c)伺服接口:数字量,可选配各种脉冲接口交流伺服单元或步进电机

驱动单元。

d)开关量接口:输入32点,输出24点

e)其他接口:控制面板:防静电薄膜标准机床控制面板 f)手持单元:3轴MPG一体化手持单元(选件)

g)NC键盘:包括精简型MDI键盘、七个主菜单功能键和F1~F6六个子菜单功能键

h)软件:华中世纪星HNC-21高性能钻铣床数控软件(2)进给系统

HSV-11系列交流永磁伺服驱动与伺服电机 各种伺服电机驱动单元与电机 各种脉冲接口伺服电机驱动系统

(3)主轴系统

接触器+主轴电机 变频器+主轴电机

主轴伺服单元+主轴电机

4.1.2主要技术规格

主轴数:1

直线、圆弧、螺旋线、极坐标插补

小线段连续高速插补

CNC通信功能:RS-232和以太网

内部已提供 标准PLC程序,也可按要求自行编程PLC

4.2操作装置

4.2.1操作台结构

华中世纪星数控系统操作台大致可分为:机床操作面板、NCP键盘、主菜单功能键、子菜单功能键、显示器。4.2.2显示器

操作台左上部为5.7英寸液晶显示器,用于汉字菜单、系统状态、故障报警的显示和加工轨迹的图形仿真等。4.2.3NCP键盘

NCP键盘包括45个按键,标准化的字母、数字键、编辑操作键和亮度调节键,其中的大部分具有上档键功能。NCP键盘用于零件程序的编制、参数输入、MDI及系统管理操作等。

数控钻铣床电气系统控制毕业设计 篇2

可编程控制器 (PLC) 是一种以微处理器为核心的工业自动控制装置, 具有可靠性高、编程灵活、开发周期短等优点, 特别适合对旧机床控制系统的改造。我们针对旧X62W铣床故障率较高的情况, 利用PLC改造其控制线路, 从而降低了设备故障率, 提高了设备使用率。

1 铣床电气控制电路结构

X62W铣床主要由床身、主轴、刀杆、悬梁、工作台、回转盘、横溜板、升降台、底座等几部分组成。电气控制部分共用3台异步电动机拖动, 分别是主轴电动机M1、进给电动机M2和冷却泵电动机M3。

2 改造方案的设计思路

在改造过程中, 不改变原控制系统电气操作方法, 不改变原电气控制系统控制元件;原控制线路中热继电器仍用硬件控制, 不需要通过PLC编程来控制, 因过载使用几率较少;指示灯接线仍和原控制线路相同;不改变原主轴和进给变速箱操作方法和结构;原铣床的工艺加工方法不变;只是将原继电器控制中的硬件接线改为用软件编程来替代。

3 可编程控制器的选用

X62W铣床改造后共需输入输出点数为22点, 考虑余量问题及以后加报警电路和故障显示电路, 考虑发展及工艺控制问题, 故选用松下FP1C40PLC, 继电器输出, I/O总点数为40点, 输入点数为24点输出点数为16点。

4 I/O接线示意图

根据输入输出接口情况, 其控制端子功能及接线图如图1所示。

5 P LC编程软件梯形图程序

设计的控制系统程序如图2所示。

结束语

本文所述方案是对原来的继电器接触式模拟控制系统进行PLC改造而成, 经实际运行证明该PLC控制系统无论是硬件还是软件, 控制稳定可靠, 具有极高的可靠性与灵活性, 更容易维修, 更能适应经常变动的工艺条件, 取得了较好的经济效益。

参考文献

[1]常斗南, 李全利, 张学武.可编程序控制器原理应用试验[M].北京:机械工业出版社, 2002.

数控钻铣床电气系统控制毕业设计 篇3

关键词:数控机床;电气控制;接地系统

随着改革的推进和经济的发展,我国的制造业在世界范围内迅速铺开,中国制造也成为中国的一个代名词;自2014年以来,中国正在积极进行工业升级,数控机床基本上全面替代了简易的机床,成为市场的主流。由于其具有较高的效率、较好的精度和操作的简单性,成为众多企业制造装配的首选。但近年来,随着其电气控制的智能化提升,甚至于数字控制与模拟控制并存,在安装过程中的接地系统越来越重要,其处理不好会导致机床的电气系统产生故障,甚至影响人员的人身安全。所以,数控机床电气控制接地系统的重要性,越来越受到重视。

一、数控机床电气控制系统的组成

1.1数控机床的常规组成

数控机床和传统的简易机床相比较,他们都是利用电气控制实现。但是数控机床拥有强大的逻辑能力,完成简易机床不能完成的高效、高精度的工作任务。它一般由电气控制部分、机床部分、数控系统执行部分和数据部分组成。

1)电气控制部分

一般来说,电气控制部分包含电机、电源、和电路等。主要由主回路和控制回路构成,主回路有主电源开关、保护回路,控制回路有延时电路、整流电路、互锁回路等。它是数控机床的“大脑”,在机床的工作和逻辑方面发挥着重要的作用。

2)机床部分

这是数控机床的基础,包含由5大件组成的主题结构、主轴、刀具库架和刀具等部分,主要是完成对零件进行加工。

3)执行部分

针对机床刀具的直接作用部分,通过电机、接触器、电磁阀等电气元件控制结果对机床刀具进行旋转、切削的结果,将逻辑信号转换成为加工零件结构和尺寸的能力;通过控制刀具的切换,减少简易机床刀具换切的时间,提高了效率;还能在加工过程中对零件的结构和尺寸公差进行监督,保证其质量。

4)数据部分

这一部分主要是基于PLC的程序编制和设计人员你对加工零件结构、尺寸及刀具的选择等后期预处理分析或人工手工编制程序的过程,利用三维软件进行实体建模,然后进行程序的导出,从而对加工轨迹进行控制。

1.2数控机床的附加结构

企业的数控机床一般采用人工控制方法,同时它进行自动加工,这样的过程中难免出现安全和产品质量隐患,所以需要附加一些结构部件,保證生产的安全性。

1)急停按钮

急停按钮时现今数控设备上都会安装的附加结构,当由于发生突发情况时,将之按下,能够切断所有的电源回路和运动部件,停止设备对人生的继续伤害。

2)复位按钮

这是保证设备的故障或者产品的问题解决后,快速回复生产的基本按钮。

二、数控机床电气控制接地系统的研究

2.1.接地系统对数控机床保护作用的分类

在数控机床普及的今天,由于电气系统的广泛应用,其控制系统和伺服单元由于电路屏蔽效果不好,容易引发设备故障,威胁人员人身安全。

1)工作接地的作用

当人在操作过程中发生意外时,能够保证电气设备可靠地运行的同时,降低人体的接触电压,立刻自动迅速切地断故障设备,降低数控机床的绝缘水平,保证人员安全。

2)保护接地的作用

在安装数控机床时,如果没有接地系统,当机床的某部分绝缘出破损时,机床主体将会带电;当人不小心接触绝缘处时,电流会通过人的身体,形成回路,造成人员的触点危险。当有了接地系统后,电流大部分会通过接地的线路流入到大地中,接触性并路的人体上通过的电流几乎为零,这样为人员安全提供保护。

3)重复接地的作用

利用接地系统能够降低零线的电压,即使零线断裂,也能将机床的故障降低到最低。

4)接零的作用

在中性点直接接地的1千伏以下的系统中,必须采用接零保护,将数控机床的外壳直接接到系统的零线上,如发短路时即形成单相短路,安全跳脱开关跳脱保护机床设备能可靠地迅速动作,以断开故障设备,使人体避免触电的危险。

5)防静电接地的作用

设备移动或物体在管道中流动,因磨擦产生静电,它聚集在管道,容器和贮灌或加工设备上,形成高电位,对人身安全及对设备和建筑物都有危险。作为静电接低,静电一旦产生,就导入地中,以消除其聚集的可能。

6)隔离接地的作用

把干扰源产生的电场限制在金属屏蔽的内部,使外界免受金属屏蔽内干扰源的影响。也可以把防止干扰的机床设备用作金属屏蔽接地,任何外来干扰源所产生的电场不能穿进机壳内部,使屏蔽内的设备,不受外界干扰源的影响。

7)电法保护接地

输送介质的长距离管道,为防止各种腐蚀因素的危害,确保管道投产后长期安全运转,通常全线路采用以外电源阴极保护为主,牺牲阳极保护为辅的电法保护,作为管道防腐的第二道防线。

8)过电压保护接地的作用

对于直击雷,避雷装置(包括过电压保护接地装置在内)促使雷云正电荷和地面感应负电荷中和,以防止数控机床设备遭到雷击的破坏,对于静感应雷,感应产生的静电荷,其作用是迅速地把它们导入地中,以避免产生火花放电或局部发热造成易燃或易爆物品燃烧爆炸的危险。

2.2接地系统故障可能导致的机床问题

1)接地系统的接地不良可能会导致操作面板出现问题,但是设备还可以部分能够运行。

2)电气控制不能被很好的屏蔽接地,导致数控系统控制故障;比如机床不能运动,操作面板无法进行操控等故障。

3)产生软性故障或无规律性的故障,造成难以把握到住故障点,增加排除故障的难度。

2.3数控机床电气控制接地系统的常见方案

1)保护接零

企业中的数控机床一般使用三相电,其中的零线是接地线路的重要组成部分。将机床设备的金属外壳和电路的中性线连接起来,由于进行了接零的保护,将设备和零线形成了直接的回路,当发生漏电时,会将电流导向零线,保护设备和人员的安全。

2)保护接地

将设备和地面连接来称之为接地,在这种系统情况下,由于漏电的电流会流向地面,保护人员的安全。

3)系统接地

这种方案是利用电路之间的相互耦合,形成电路的互相限制和干扰,将之削弱,从而达到抗干扰和保护安全的作用。由于电气系统的智能化不断提高,其影响的精度越来越大,通过系统接地能够保证数控机床设备稳定的运行,保持其较高的精度。主要有:

其一、多点接地,这是由于电气控制中的电磁感应本身多样性的影响,

通过别样化的区别接地,将保护做到做好。

其二、混合接地,在数控机床中不但有普通的电路同时还有编制的数值电路,这样既包含了单点触地又包含多点触地的方式,具有高效的防止干扰的目的。

其三、单点接地,这种方式较为简单,能够满足较低频率的电气控制系统。

其四、浮地方式,原理是将机床设备使用的公共线路隔离开,防止和地线形成互相影响。在连接的同时,将之与地面之间安装一个电阻,其阻值要求较大,目的是当电量积累一定程度时将之消除,达到保护的作用,是一种间接的接地方案。

三、針对降低接地系统给数控机床带来危害的其他解决方法

3.1、汇流到接地排上引出的机床接地线径至少要大于14 mm2 或以上,而且接地阻抗不可超过100Ω

3.2、尽量避免焊接机械、EDM、高周波等设备很接近数控机床NC系统工作,将地线和含有大量噪声电源的地线分离接地也是一个很好的方法。

3.3、于机床附近位置独立设置接地铜棒并深埋后引出连接数控机床接地线,避免设备与设备之间的噪声干扰和因某台设备接地不良后产生的串扰。

3.4、使用符合安规认证(CE、UL 等)的电源供应器,避免电源供应器直流电压滤波不良或交流电源噪声消除不良带来次生影响。

3.5、对于高电压、大电流的驱动电线选择带屏蔽层的护套线材,将电流通过是电线上的产生的电磁感应、感生电压进行隔离屏蔽。

3.6、使用外设备接入数控机床前,请确认外协设备接地是否与机床之间接触良好。

3.7、针对数控系统对信号质量比较敏感的数据传送线,位置反馈线,数字检测开关线等都应选择带屏蔽层的护套线材。

随着电气控制技术的不断发展,数控机床电气控制越来越复杂和趣向于智能控制,从而导致针对电气控制的保护措施不断发展和更新,对接地系统的要求越来越高,这是本类技术研究的发展前景。对设备运行的稳定性保护,设备模块之间的干扰阻碍,确保加工精度和人员安全性具有重大的意义。

参考文献:

[1]王浩.基于PLC的数控机床电气控制系统研究[J].中国高新技术企业,2014,(21):12-13.

[2]钟敏.企业中的电气装置接地系统的型式分类及利弊[J].安全生产与监督,2003,(3)

《数控机床电气控制》课程说明 篇4

《数控机床电气控制》课程说明

一、课程的性质与任务

《数控机床电气控制》是中央广播电视大学开放专科数控技术专业的一门必修核心课程,是中央广播电视大学开放专科数控技术(机电一体化方向)专业的一门选修课程,均由中央电大统一组织考试。课内72学时,4学分,开设学期为第3学期。

数控机床电气控制课程用来解决有关数控机床电气控制应用方面的一般工程控制问题。

二、课程的目的和要求

通过本课程的学习,应使学生在理论上初步掌握机床电气控制系统的结构组成、工作原理,可编程控制器的结构及工作原理、指令系统及编程方法,数控系统结构与接口,伺服驱动技术、光栅与编码器等方面的知识,为学习后续课程和专业知识奠定理论基础;实践上能对数控机床电气控制系统工作原理进行分析,初步具有认知、测试及设置数控机床电气控制系统中控制元件、部件的能力,最终能够掌握数控机床电气控制系统的整体结构和工作原理,为今后在工作中操作、调试、维修数控机床打下较坚实基础。

本课程的理论、技能两方面的教学要求如下:

1.理论知识要求

根据本课程的性质、任务以及数控专业的要求,对于《数控机床电气控制》,理论知识重点在于:1)掌握机床常用电器的结构、工作原理及用途,普通机床控制电路的基本环节。2)了解数控装置的软件、硬件组成。3)了解PLC的结构、工作原理,熟练掌握编程方法及在数控机床上的应用。4)掌握进给及主轴驱动系统。5)掌握常用位置检测装置的结构、原理及其应用知识。

2.技能要求

通过1)对生产型数控机床的参观及电控部分的现场讲解;2)在“数控机床综合培训系统”上的实验,应使学生达到:(1)具有认知及测试数控机床电气控制系统中控制元件、部件的基本能力;(2)具有对机床控制电路进行初步分析的能力;同时,通过实验提高学生动手能力以及分析问题、解决问题的能力,进一步深化理论知识,要求学生能独立完成实验,并对实验过程中出现的一些简单故障能够分析解决,对实验中出现的各种现象能做出解释,正确读取数据和编写实验报告。

三、教学媒体

1.文字教材:《数控机床电气控制》舒大松 等编,中央广播电视大学出版社。

2.音像教材:电视录像及IP课件。

四、课程主要内容以及本课程与其他课程联系

1.本课程的主要内容

数控机床强电控制电路;数控装置(CNC)的结构;数控机床的伺服驱动;数控机床的位置检测装置;数控机床的可编程控制器(PLC);典型数控系统等。

2.与其他课程的联系

前期课程为《电工电子技术》。《电工电子技术》是数控技术专业电学基础知识课程,其内容包括电路基础、电机、继电逻辑控制、模拟电路和数字电路,掌握该课程的知识,为本课程的学习奠定了基础。

电气自动化控制系统设计方案 篇5

2.2.3.2、间接测量

在使用仪表进行测量时,首先对与被测物理量有确定函数关系的几个量进行测量,将测量值代入函数关系式,经过计算得到所需结果,这种测量称为间接测量。间接侧来那个多用于科学实验中的实验室测量,工程测量中亦有应用。

2.2.3.3、联立测量

在应用仪表进行测量时,若被测物理量必须经过求解联立方程才能得到最后的结果,则称这样的测量为联立测量。在进行联立测量时,一般需要改变测试条件,才能获得一组联立方程所需要的数据。它只是用于科学实验或特殊场合。2.2.3.4、偏差式侧量

在测量过程中,用仪表指针位移决定被测量的测量方法,称为偏差式测量法。应用这种方法进行测量时,标准量具不装在仪表内,而是事先用标准量具对仪表刻度进行校准;在测量时,输入被测量,按照仪表指针在标尺上的示值,决定被测量的数值。采用这种方法进行测量,测量过程比较

Www.5570DE09EB0B4AFC.html简单、迅速。但是,测量结果的精度低。这种测量方法广泛适用于工程测量。

2.2.3.5、零位式测量

在侧来那个过程中,用指零位仪表的零位指示检测测量系统的平衡状态;在测量系统达到平衡时,用已知的基准量决定被测未知量的测量方法,称为零位式测量法。

2.2.3.6、微差式测量

微差式测量法是综合了偏差式测量法与零位式测量法的优点而提出的测量方法。微差式测量法的优点是反应快,而且测量精度高,特别适用于在线控制参数的检测。

2.2.4 传感器的基本特性

2.2.4.1、精确度

与精确度有关的指标有三个:精密度、准确度和精确度。

1)精密度

它说明测量传感器输出值的分散性,即对某一稳定的.被测量,由同一个测量者,用同一个传感器,在相当短的时间内连续重复测量多次,其测量结果的分散程度。例如,某测温传感器的精密度为0.5°C,即表示多次测量结果的分散程度不大于0.5°C。精密度是随机误差大小的标志,精密度越高,意味着随机误差小。但必须注意,精密度与准确度是两个概念,精密度高不一定准确度高。

2)准确度

数控铣床操作规程 篇6

1、操作人员应熟悉所用数控铣床的组成、结构及其使用环境,并严格按机床的操作手册的要求正确操作,尽量避免因操作不当而引起的故障。

2、操作机床时,应按要求正确着装。

3、开机前清除工作台、导轨、滑动面上的障碍物及工量具等,并及时移去装夹工具。检查机械、液压、气动等操作手柄、阀门、开关等是否处于非工作位置上,检查刀架是否处于非工作位置上。检查箱体内的机油是否在规定的标尺范围内,并按润滑图表或说明书规定加油。

4、按顺序开机、关机,先开机床再开数控系统,先关数控系统再关机床。

5、开机后进行返回参考点的操作,以建立机床坐标系。

6、手动操作沿X、Y轴方向移动工作台时,必须使Z轴处于安全高度位置,移动时注意观察刀具移动是否正常。

7、正确对刀,确定工件坐标系,并核对数据。

8、程序输入后应认真核对,其中包括对代码、指令、地址、数值、正负号、小数点及语法的查对,保证无误。

9、程序调试好后,在正式切削加工前,再检查一次程序、刀具、夹具、工件、参数等是否正确。

10、刀具补偿值输入后,要对刀补号、补偿值、正负号、小数点进行认真核对。

11、按工艺规程和程序要求装夹使用刀具。执行正式加工前,应仔细核对输入的程序和参数,并进行程序试运行,防止加工中刀具与工件碰撞而损坏机床和刀具。

12、装夹工件,要检查夹具是否妨碍刀具运动。

13、试切进刀时,进给倍率开关必须打到低档。在刀具运行至工件30-50mm处,必须在进给保持下,验证Z轴剩余坐标值和X、Y轴坐标值与加工程序数据是否一致。

14、刃磨刀具和更换刀具后,要重新测量刀长并修改刀补值和刀补号。

15、程序修改后,对修改部分要仔细计算和认真核对。

16、手动连续进给操作时,必须检查各种开关所选择的位置是否正确,确定正负方向,然后再进行操作。

17、开机后让机床空运转15min以上,以使机床达到热平衡状态。

18、加工完毕后,将X、Y、Z轴移动到行程的中间位置,并将主轴速度和进给速度倍率开关都拨至低档位,防止因误操作而使机床产生错误的动作。

19、机床运行中一旦发现异常情况,应立即按下红色急停按钮,终止机床所有运动和操作。待故障排除后,方可重新操作机床及执行程序。

20、装卸刀时应先用手握住刀柄,再按换刀开关;装刀时应在确认刀柄完全到位装紧后再松手,换刀过程中禁止运转主轴。

21、出现机床报警时,应根据报警号查明原因,及时排除。

22、末经老师允许不准将U(硬)盘、光盘插到与数控机床联网的计算机内,不准修改或删除计算机内的程序。

数控钻铣床电气系统控制毕业设计 篇7

弧面凸轮机构是一种性能优良的高速、高精度间歇分度机构, 它由弧面分度凸轮和在径向放射状等分装有滚子的从动盘两部分组成, 如图1所示。因其具有分度精度高, 传动平稳, 结构紧凑, 传递扭矩大等优点, 被广泛应用于各种轻工机械、纺织机械、数控加工中心等领域。其核心部件弧面凸轮的曲面轮廓要求精度高, 形状较复杂, 故其加工制造十分困难。

XK6401是一台具有双回转坐标的弧面凸轮专用铣床, 如图2所示。加工弧面分度凸轮时, 按照范成原理, 刀具相当于从动盘滚子, 其采用运动方式为刀具不动、工件自转又绕刀具公转。调整刀具 (从动盘滚子) 与工件 (弧面分度凸轮) 之间的空间相对位置及几何参数关系, 使其符合设计要求, 再使刀具与工件按照设定的运动规律作相对切削运动, 就可以加工出所需要的弧面分度凸轮。本文主要介绍该弧面凸轮专用铣床数控系统的设计。

2 硬件配置

硬件配置框图如图3所示。机床一共5个坐标轴, 全部为工件移动轴。FANUC-0iM数控系统控制其中4个坐标轴。X、Z、A三个坐标轴为半闭环控制伺服轴, B轴为全闭环控制伺服轴, 雷尼绍RESM20USA100圆光栅直接检测B轴角度。与Z轴平行的W轴是1手动进给轴, 选用英国NEWALL球栅尺SPHEROSYN作数显, 用于中心距调整。X、Z、B三个坐标轴电机选用12Nm/3000rpm电机, A轴电机选用8Nm/3000rpm电机。伺服驱动配置2个双轴放大器, 分别为SVM2-80/80i放大器和SVM2-40/80i放大器。主轴电机选用7.5KW/8000rpm, 主轴放大器规格为SPM-11i。依据放大器选择电源模块PSM-15i。机床I/O单元的输入输出点数为96/64点。

3 FSSB伺服总线的设定

FSSB设定见图4, 采用手动设定2方式。系统参数1902#0=1, 1902#1=0。

1) 轴名的设定:N01020 A1 P88 A2 P 90 A3 P65 A4 P66;

2) 伺服轴号的设定:N01023 A1 P1 A2 P2 A3P3 A4 P4;

3) 从属器地址转换表数据设定:

N1910 P0;从属器1地址 (伺服轴号-1)

N1911 P1;从属器2地址 (伺服轴号-1)

N1912 P2;从属器3地址 (伺服轴号-1)

N1913 P3;从属器4地址 (伺服轴号-1)

N1914 P16;从属器5地址 (第1光栅接口单元M1)

N1915-1919 P40;无从属器

光栅接口设定见表1。一个光栅接口单元有4个光栅接口, 其连接器号编号为1~4, B轴参数PRM1905#6置1表示该轴使用第1光栅接口单元M1。至于使用哪一个连接口, 在参数PRM1936中设定, 设定值为连接器编号-1。

4 坐标轴柔性进给比的计算

X、Z轴为直线轴, 电机与丝杆通过弹性联轴器直连, 丝杆螺距均为8mm;A轴为旋转轴, 减速比180:1;B轴也为旋转轴, 减速比300:1。圆光栅的分辨率为15744脉冲/圈, 光栅接口电路10倍频。

X、Z、A轴半闭环, PRM1815#1置0, 其柔性进给比计算如下:

B轴全闭环, PRM1815#1置1, 其柔性进给比计算如下:

5 旋转坐标轴的设定

旋转坐标轴的设定涉及参数PRM1006、PRM1008和PRM1260。分别说明如下:

1) PRM1006#1, #0=0, 1。A轴和B轴均定义为A型旋转轴。机械坐标值从0~360°循环, 绝对坐标和相对坐标值是否循环由参数PRM1008决定。

2) PRM1008#0=1。旋转轴循环功能有效。

3) PRM1008#1=0。在绝对值指令中, 轴旋转方向为与目标距离最近的方向。

4) PRM1008#2=1。相对坐标以每转移动量循环。

5) PRM1260=360000。旋转轴的一转移动量。

6 坐标轴回零方式

XK6401是一台具有双回转坐标的弧面凸轮铣床, 其空间位置有特定要求。如B轴的零点位置为A轴回转中心与主轴垂直。因此B轴回参考点时必须附加参考点偏置。其回零过程包含4个过程, 如图5所示。

1) B轴回零方向信号为+JB (G100.3) , 它表示回零过程寻找减速开关信号*DECB (X9.3) 的方向为正向, 其进给速度为快移速度。

2) 设定PRM3003#5=0, 回零减速信号为0有效。当回零减速信号*DECB从1变为0时, B轴减速正向移动, 进给速度为FL速度, 由参数PRM1425设定。

3) 设定参数PRM1006#5=1, 表示寻找栅格的方向为负向。因此, 当回零减速信号*DECB从0变为1时, B轴停止正向移动, 而变为负向移动, 进给速度仍为FL速度。

4) 找到第1栅格后, 按照PRM1850设定的参考点偏置, 继续负向移动, 到达目标位置。进给速度仍为FL速度。B轴PRM1850=-8192。必须说明的是参考点偏置方向必须与栅格方向一致, 即与PRM1006#5设定的方向一致。

除B轴外, X轴也设计了参考点偏置过程, 其回零过程与B轴相似。A轴和Z轴回零则为一般的栅格回零, 其寻找减速开关和栅格的方向均设计为正方向。

7 弧面凸轮铣削宏指令的开发

针对弧面凸轮铣削加工的工艺要求, 开发了基于几何形状尺寸、切削工艺参数等数据编程的宏程序O9010。该宏程序的具体设计开发另撰文介绍。参数PRM6050置100, 则可用G100代码调用O9010宏程序。其调用格式为:

宏指令G100调用时参数赋值使用宏变量#500~#513, 具体定义如表2所示。实际调用编程如下:

8 结束语

由湖北汽车工业学院、陕西科技大学等单位联合开发的XK6401弧面凸轮专用铣床如图6所示, 于2010年6月成功投入运行。该机床的加工过程一般包括使用不同直径刀具的粗加工、半精加工和精加工, 实际操作时共用1个程序, 只是需要适当修改宏变量#500~#513的设定值。该空间弧面凸轮的铣削加工需要5轴2联动即可实现, 加工过程中主轴箱固定不动, 靠工件的自转与公转完成加工, 因此其精度与刚性得到了保证。

摘要:按照范成法加工原理, 提出基于FANUC数控系统的5轴弧面凸轮专用铣床控制方案, 5个坐标轴包含2个直线伺服轴、2个旋转伺服轴和1个手动直线数显轴。文中给出了控制系统的硬件配置, 讨论了坐标轴相关参数的计算与设定。为方便编程, 开发了弧面凸轮铣削宏指令。经实际运行考验, 证明机床的设计开发取得了成功。

关键词:数控系统,弧面凸轮,专用铣床

参考文献

[1]曹巨江, 赵云龙.弧面凸轮加工专用数控铣床设计[J].制造技术与机床, 2003 (12) .

[2]李周平.弧面凸轮加工专用数控铣床设计[J].机电工程, 2010 (2) .

[3]葛荣雨, 冯显英, 郭培全.基于五轴数控机床弧面凸轮廓面创成方法研究[J].制造技术与机床, 2009 (9) .

数控铣床多件加工夹具的设计 篇8

关键词:数控铣床 批量加工 夹具 加工效率 简单实用

在数控加工中,工件的装夹定位尤为重要,工件装夹定位需要花费一定的时间进行调校,如果工件装夹定位不合理就会出现加工困难,甚至会出现工件报废,在批量加工时这个问题更加突出。为了保证产品质量,改善劳动条件,提高劳动生产率及降低劳动成本,在生产工艺过程中,除使用机床设备外,还要大量使用各种工艺装备,它包括:夹具、模具、刀具、辅助工具及测量工具等,这就需要设计各种机械加工夹具。在此,笔者阐述针对某调节角度零件进行数控铣批量加工时夹具的设计过程,通过设计应用专用夹具,实现数控铣快速对多个专门工件的装夹加工,大大减少了装夹工件繁琐的操作,节约了反复对刀的时间,提高了加工效率和铣削加工质量。

一、零件加工工艺分析

笔者学校数控加工组接到加工一批零件任务, 要求在一定时间内制作一批PLC调节角度零件,如图l所示。

图1 调节角度零件

调节角度零件的加工工艺要求如下:

一是工件表面加工要求完整,局部不得有缺陷;

二是直径Ф12mm通孔的粗糙度要求Ra3.2μm,R2.5mm圆弧槽处粗糙度要求Ra12.5μm。

这批零件虽然只需加工直径Ф12mm通孔和R2.5mm圆弧槽,但是因为零件中两个加工孔都处于不同的加工方向,按常规的加工过程需要反复定位,使加工时容易出现误差,难以满足工艺要求,而且操作复杂,效率低。为此,笔者根据零件的公差及精度要求,设计能够进行多件铣削的专门夹具,满足零件的加工需求,提高工作效率。

二、多件铣削夹具的设计与应用

1.多件铣削夹具设计思路及工作原理

在生产实践中,我们应用夹具的定位原理和夹紧原理解决生产中的难题,可以使加工零件完全达到工艺要求,保证产品质量,而且可以大大提高工作效率,减少辅助时间。笔者构思设计制作了一套用夹具体定位、压块夹紧的多件铣削夹具(图2),它可以满足零件定位和夹紧的要求。

图2 多件铣削夹具

夹具体要同时装夹4个工件,制作工艺手段要简单、周期要短、成本要低。为了保证两工件凹位之间的强度,其间距尺寸大于10mm,夹具体宽度为180mm,材料45#钢。如图3所示为多件铣削夹具的夹具体。

图3 多件铣削夹具体

在装夹工件时,用压块分别由两个六角螺栓将工件固定在夹具体上,完成快速装夹。在加工工件斜面时,可通过夹具体的旋转轴,将夹具体斜面旋转放平,再通过预设的程序进行平面加工。加工完成后,松开两个六角螺栓(轻轻松开一点,使其能轻松拆卸即可),快速更换另外四个待加工工件。这套多件铣削夹具大大减少了装夹、定位的时间,提高了加工效率。

2.多件铣削夹具结构组成、加工及定位原理

(1)结构组成。多件铣削夹具的结构组成包括:夹具体、压块、六角螺栓。

(2)夹具体加工。①先用虎钳夹紧毛坯,找正。②加工夹具体顶面和侧面,使左平面加工达到尺寸要求,右斜面留出加工余量待以后进行平面加工。③翻转工件,加工夹具体底面,斜面留出加工余量待以后进行平面加工。④精加工夹具体的斜面,装夹斜面进行斜面的平面精加工。⑤粗、精加工夹具体的凹位。为保证装夹准确、方便,配合位置设计成滑动配合。在夹具体凹位,加工工件的圆弧槽位置,设置加工退料方孔,方便工件的放置与拆卸。在工件Ф12mm孔加工位置,设置直径Ф15mm的退料孔,如图4所示。⑥加工旋转轴。加工夹具体旋转轴,左右对齐,符合精度要求。⑦加工夹具体配套零件:底板、旋转座。加工底板要设置退料孔,旋转座的装配精度要符合要求,与夹具体安装配合良好。

图4 夹具体退料孔

(3)定位原理。夹具的底板用压块固定在机床工作台上,夹具体用压块固定在底板上。通过三面定位原理,先将工件安装在夹具体的凹位处,工件底面和夹具体凹位顶面对齐,工件侧面和夹具体的凹位侧面对齐,工件左面和夹具体的凹位左面对齐,然后用压块将工件夹紧在夹具体上。

3.多件铣削夹具的使用

每个待加工工件都是依靠夹具体的凹槽进行定位的,槽底是压紧工件的支撑点,我们利用压块和螺栓,将每个零件毛坯压在夹具体的凹槽内。在装夹放置工件毛坯时,只需将工件依靠凹槽内的滑移进出,使装夹更方便快捷。针对待加工工件可能出现厚度差别导致压块压不紧工件的问题,我们通过使用压块和橡胶环垫结合的方式使每个工件都装夹牢固。应用这种装夹方式可使夹紧力着力点靠近切削力点,从而增加工件的刚性,有效地减小了工件在加工过程中因受铣削力影响而产生的变形。由于待加工零件只需要加工一个通孔和圆弧槽,上述所具备的压紧元件和定位方式完全可以满足定位需求,因此使装夹工作变得轻松、可靠。

(1)工件加工的坐标设置。首先将夹具体固定在底板左面(如图5左图所示),待加工件Ф12mm通孔位置为X轴设置为零,夹具体Y轴中心为零,工件表面为Z轴设置为零,在UG加工软件中绘制好相应位置的4个圆。然后旋转夹具体并固定在底板的右面(如图5右图所示),移动铣刀找出待加工圆弧槽位置的X轴坐标,并绘制在加工文件中,编制好相应的刀路程序以便调用加工。

(2)开始加工,首先加工直径Ф12mm通孔,先用Ф10mm钻头钻孔(四个工件),然后更换Ф5mm平面铣刀进行精加工Ф12mm内孔。由于加工材料是铸铝件,我们可以考虑直接用Ф12mm平面铣刀进行挖槽和加工Ф5mm内孔,这样就可以避免因换刀设置所造成的麻烦。

图5 多件铣削夹具的定位原理图

(3)旋转夹具体并固定在底板的右边,加工R2.5mm圆弧槽。加工完成后,拆卸工件。在装夹新工件时,先进行R2.5mm圆弧槽加工,然后再回旋夹具体到左边,加工直径mm通孔,完成两套工件装夹加工的循环操作过程。

(4)在加工之前,要预先在软件中绘制好每个加工图形,先试切加工样品,以免出现错误,同时要随时检查刀具的磨损情况,并及时更换刀具。

在实际生产应用中,多件铣削夹具制作工艺简单,元件少而精,配套零件费用低,实际操作方便。由于一批零件装夹加工只需要找正一次,因此极大地提高了装夹速度,大大提高了生产效率,同时零件的加工精度也有了保证。

三、结语

在数控铣床上进行多件加工时,设计合理的辅助加工夹具,既能满足加工零件的质量和技术要求,又能缩短装夹、定位时间,提高工作效率,降低生产成本,减少废品的发生。此类辅助加工夹具可广泛地运用于数控铣床加工中心操作,能够取得满意的效果。

参考文献:

[1]王光斗.机床夹具设计手册(第三版)[M].上海:上海科学技术出版社,2005.

(作者单位:茂名市第二高级技工学校)endprint

摘 要:本文针对某工件进行数控铣批量加工时夹具的设计过程,通过设计应用专用夹具,实现数控铣快速对多个专门工件的装夹加工,大大减少了装夹工件的繁琐操作,节约了反复对刀的时间,提高了加工效率和铣削加工质量。该夹具针对专门工件进行设计,结构简单实用,容易制作,安装维护方便。

关键词:数控铣床 批量加工 夹具 加工效率 简单实用

在数控加工中,工件的装夹定位尤为重要,工件装夹定位需要花费一定的时间进行调校,如果工件装夹定位不合理就会出现加工困难,甚至会出现工件报废,在批量加工时这个问题更加突出。为了保证产品质量,改善劳动条件,提高劳动生产率及降低劳动成本,在生产工艺过程中,除使用机床设备外,还要大量使用各种工艺装备,它包括:夹具、模具、刀具、辅助工具及测量工具等,这就需要设计各种机械加工夹具。在此,笔者阐述针对某调节角度零件进行数控铣批量加工时夹具的设计过程,通过设计应用专用夹具,实现数控铣快速对多个专门工件的装夹加工,大大减少了装夹工件繁琐的操作,节约了反复对刀的时间,提高了加工效率和铣削加工质量。

一、零件加工工艺分析

笔者学校数控加工组接到加工一批零件任务, 要求在一定时间内制作一批PLC调节角度零件,如图l所示。

图1 调节角度零件

调节角度零件的加工工艺要求如下:

一是工件表面加工要求完整,局部不得有缺陷;

二是直径Ф12mm通孔的粗糙度要求Ra3.2μm,R2.5mm圆弧槽处粗糙度要求Ra12.5μm。

这批零件虽然只需加工直径Ф12mm通孔和R2.5mm圆弧槽,但是因为零件中两个加工孔都处于不同的加工方向,按常规的加工过程需要反复定位,使加工时容易出现误差,难以满足工艺要求,而且操作复杂,效率低。为此,笔者根据零件的公差及精度要求,设计能够进行多件铣削的专门夹具,满足零件的加工需求,提高工作效率。

二、多件铣削夹具的设计与应用

1.多件铣削夹具设计思路及工作原理

在生产实践中,我们应用夹具的定位原理和夹紧原理解决生产中的难题,可以使加工零件完全达到工艺要求,保证产品质量,而且可以大大提高工作效率,减少辅助时间。笔者构思设计制作了一套用夹具体定位、压块夹紧的多件铣削夹具(图2),它可以满足零件定位和夹紧的要求。

图2 多件铣削夹具

夹具体要同时装夹4个工件,制作工艺手段要简单、周期要短、成本要低。为了保证两工件凹位之间的强度,其间距尺寸大于10mm,夹具体宽度为180mm,材料45#钢。如图3所示为多件铣削夹具的夹具体。

图3 多件铣削夹具体

在装夹工件时,用压块分别由两个六角螺栓将工件固定在夹具体上,完成快速装夹。在加工工件斜面时,可通过夹具体的旋转轴,将夹具体斜面旋转放平,再通过预设的程序进行平面加工。加工完成后,松开两个六角螺栓(轻轻松开一点,使其能轻松拆卸即可),快速更换另外四个待加工工件。这套多件铣削夹具大大减少了装夹、定位的时间,提高了加工效率。

2.多件铣削夹具结构组成、加工及定位原理

(1)结构组成。多件铣削夹具的结构组成包括:夹具体、压块、六角螺栓。

(2)夹具体加工。①先用虎钳夹紧毛坯,找正。②加工夹具体顶面和侧面,使左平面加工达到尺寸要求,右斜面留出加工余量待以后进行平面加工。③翻转工件,加工夹具体底面,斜面留出加工余量待以后进行平面加工。④精加工夹具体的斜面,装夹斜面进行斜面的平面精加工。⑤粗、精加工夹具体的凹位。为保证装夹准确、方便,配合位置设计成滑动配合。在夹具体凹位,加工工件的圆弧槽位置,设置加工退料方孔,方便工件的放置与拆卸。在工件Ф12mm孔加工位置,设置直径Ф15mm的退料孔,如图4所示。⑥加工旋转轴。加工夹具体旋转轴,左右对齐,符合精度要求。⑦加工夹具体配套零件:底板、旋转座。加工底板要设置退料孔,旋转座的装配精度要符合要求,与夹具体安装配合良好。

图4 夹具体退料孔

(3)定位原理。夹具的底板用压块固定在机床工作台上,夹具体用压块固定在底板上。通过三面定位原理,先将工件安装在夹具体的凹位处,工件底面和夹具体凹位顶面对齐,工件侧面和夹具体的凹位侧面对齐,工件左面和夹具体的凹位左面对齐,然后用压块将工件夹紧在夹具体上。

3.多件铣削夹具的使用

每个待加工工件都是依靠夹具体的凹槽进行定位的,槽底是压紧工件的支撑点,我们利用压块和螺栓,将每个零件毛坯压在夹具体的凹槽内。在装夹放置工件毛坯时,只需将工件依靠凹槽内的滑移进出,使装夹更方便快捷。针对待加工工件可能出现厚度差别导致压块压不紧工件的问题,我们通过使用压块和橡胶环垫结合的方式使每个工件都装夹牢固。应用这种装夹方式可使夹紧力着力点靠近切削力点,从而增加工件的刚性,有效地减小了工件在加工过程中因受铣削力影响而产生的变形。由于待加工零件只需要加工一个通孔和圆弧槽,上述所具备的压紧元件和定位方式完全可以满足定位需求,因此使装夹工作变得轻松、可靠。

(1)工件加工的坐标设置。首先将夹具体固定在底板左面(如图5左图所示),待加工件Ф12mm通孔位置为X轴设置为零,夹具体Y轴中心为零,工件表面为Z轴设置为零,在UG加工软件中绘制好相应位置的4个圆。然后旋转夹具体并固定在底板的右面(如图5右图所示),移动铣刀找出待加工圆弧槽位置的X轴坐标,并绘制在加工文件中,编制好相应的刀路程序以便调用加工。

(2)开始加工,首先加工直径Ф12mm通孔,先用Ф10mm钻头钻孔(四个工件),然后更换Ф5mm平面铣刀进行精加工Ф12mm内孔。由于加工材料是铸铝件,我们可以考虑直接用Ф12mm平面铣刀进行挖槽和加工Ф5mm内孔,这样就可以避免因换刀设置所造成的麻烦。

图5 多件铣削夹具的定位原理图

(3)旋转夹具体并固定在底板的右边,加工R2.5mm圆弧槽。加工完成后,拆卸工件。在装夹新工件时,先进行R2.5mm圆弧槽加工,然后再回旋夹具体到左边,加工直径mm通孔,完成两套工件装夹加工的循环操作过程。

(4)在加工之前,要预先在软件中绘制好每个加工图形,先试切加工样品,以免出现错误,同时要随时检查刀具的磨损情况,并及时更换刀具。

在实际生产应用中,多件铣削夹具制作工艺简单,元件少而精,配套零件费用低,实际操作方便。由于一批零件装夹加工只需要找正一次,因此极大地提高了装夹速度,大大提高了生产效率,同时零件的加工精度也有了保证。

三、结语

在数控铣床上进行多件加工时,设计合理的辅助加工夹具,既能满足加工零件的质量和技术要求,又能缩短装夹、定位时间,提高工作效率,降低生产成本,减少废品的发生。此类辅助加工夹具可广泛地运用于数控铣床加工中心操作,能够取得满意的效果。

参考文献:

[1]王光斗.机床夹具设计手册(第三版)[M].上海:上海科学技术出版社,2005.

(作者单位:茂名市第二高级技工学校)endprint

摘 要:本文针对某工件进行数控铣批量加工时夹具的设计过程,通过设计应用专用夹具,实现数控铣快速对多个专门工件的装夹加工,大大减少了装夹工件的繁琐操作,节约了反复对刀的时间,提高了加工效率和铣削加工质量。该夹具针对专门工件进行设计,结构简单实用,容易制作,安装维护方便。

关键词:数控铣床 批量加工 夹具 加工效率 简单实用

在数控加工中,工件的装夹定位尤为重要,工件装夹定位需要花费一定的时间进行调校,如果工件装夹定位不合理就会出现加工困难,甚至会出现工件报废,在批量加工时这个问题更加突出。为了保证产品质量,改善劳动条件,提高劳动生产率及降低劳动成本,在生产工艺过程中,除使用机床设备外,还要大量使用各种工艺装备,它包括:夹具、模具、刀具、辅助工具及测量工具等,这就需要设计各种机械加工夹具。在此,笔者阐述针对某调节角度零件进行数控铣批量加工时夹具的设计过程,通过设计应用专用夹具,实现数控铣快速对多个专门工件的装夹加工,大大减少了装夹工件繁琐的操作,节约了反复对刀的时间,提高了加工效率和铣削加工质量。

一、零件加工工艺分析

笔者学校数控加工组接到加工一批零件任务, 要求在一定时间内制作一批PLC调节角度零件,如图l所示。

图1 调节角度零件

调节角度零件的加工工艺要求如下:

一是工件表面加工要求完整,局部不得有缺陷;

二是直径Ф12mm通孔的粗糙度要求Ra3.2μm,R2.5mm圆弧槽处粗糙度要求Ra12.5μm。

这批零件虽然只需加工直径Ф12mm通孔和R2.5mm圆弧槽,但是因为零件中两个加工孔都处于不同的加工方向,按常规的加工过程需要反复定位,使加工时容易出现误差,难以满足工艺要求,而且操作复杂,效率低。为此,笔者根据零件的公差及精度要求,设计能够进行多件铣削的专门夹具,满足零件的加工需求,提高工作效率。

二、多件铣削夹具的设计与应用

1.多件铣削夹具设计思路及工作原理

在生产实践中,我们应用夹具的定位原理和夹紧原理解决生产中的难题,可以使加工零件完全达到工艺要求,保证产品质量,而且可以大大提高工作效率,减少辅助时间。笔者构思设计制作了一套用夹具体定位、压块夹紧的多件铣削夹具(图2),它可以满足零件定位和夹紧的要求。

图2 多件铣削夹具

夹具体要同时装夹4个工件,制作工艺手段要简单、周期要短、成本要低。为了保证两工件凹位之间的强度,其间距尺寸大于10mm,夹具体宽度为180mm,材料45#钢。如图3所示为多件铣削夹具的夹具体。

图3 多件铣削夹具体

在装夹工件时,用压块分别由两个六角螺栓将工件固定在夹具体上,完成快速装夹。在加工工件斜面时,可通过夹具体的旋转轴,将夹具体斜面旋转放平,再通过预设的程序进行平面加工。加工完成后,松开两个六角螺栓(轻轻松开一点,使其能轻松拆卸即可),快速更换另外四个待加工工件。这套多件铣削夹具大大减少了装夹、定位的时间,提高了加工效率。

2.多件铣削夹具结构组成、加工及定位原理

(1)结构组成。多件铣削夹具的结构组成包括:夹具体、压块、六角螺栓。

(2)夹具体加工。①先用虎钳夹紧毛坯,找正。②加工夹具体顶面和侧面,使左平面加工达到尺寸要求,右斜面留出加工余量待以后进行平面加工。③翻转工件,加工夹具体底面,斜面留出加工余量待以后进行平面加工。④精加工夹具体的斜面,装夹斜面进行斜面的平面精加工。⑤粗、精加工夹具体的凹位。为保证装夹准确、方便,配合位置设计成滑动配合。在夹具体凹位,加工工件的圆弧槽位置,设置加工退料方孔,方便工件的放置与拆卸。在工件Ф12mm孔加工位置,设置直径Ф15mm的退料孔,如图4所示。⑥加工旋转轴。加工夹具体旋转轴,左右对齐,符合精度要求。⑦加工夹具体配套零件:底板、旋转座。加工底板要设置退料孔,旋转座的装配精度要符合要求,与夹具体安装配合良好。

图4 夹具体退料孔

(3)定位原理。夹具的底板用压块固定在机床工作台上,夹具体用压块固定在底板上。通过三面定位原理,先将工件安装在夹具体的凹位处,工件底面和夹具体凹位顶面对齐,工件侧面和夹具体的凹位侧面对齐,工件左面和夹具体的凹位左面对齐,然后用压块将工件夹紧在夹具体上。

3.多件铣削夹具的使用

每个待加工工件都是依靠夹具体的凹槽进行定位的,槽底是压紧工件的支撑点,我们利用压块和螺栓,将每个零件毛坯压在夹具体的凹槽内。在装夹放置工件毛坯时,只需将工件依靠凹槽内的滑移进出,使装夹更方便快捷。针对待加工工件可能出现厚度差别导致压块压不紧工件的问题,我们通过使用压块和橡胶环垫结合的方式使每个工件都装夹牢固。应用这种装夹方式可使夹紧力着力点靠近切削力点,从而增加工件的刚性,有效地减小了工件在加工过程中因受铣削力影响而产生的变形。由于待加工零件只需要加工一个通孔和圆弧槽,上述所具备的压紧元件和定位方式完全可以满足定位需求,因此使装夹工作变得轻松、可靠。

(1)工件加工的坐标设置。首先将夹具体固定在底板左面(如图5左图所示),待加工件Ф12mm通孔位置为X轴设置为零,夹具体Y轴中心为零,工件表面为Z轴设置为零,在UG加工软件中绘制好相应位置的4个圆。然后旋转夹具体并固定在底板的右面(如图5右图所示),移动铣刀找出待加工圆弧槽位置的X轴坐标,并绘制在加工文件中,编制好相应的刀路程序以便调用加工。

(2)开始加工,首先加工直径Ф12mm通孔,先用Ф10mm钻头钻孔(四个工件),然后更换Ф5mm平面铣刀进行精加工Ф12mm内孔。由于加工材料是铸铝件,我们可以考虑直接用Ф12mm平面铣刀进行挖槽和加工Ф5mm内孔,这样就可以避免因换刀设置所造成的麻烦。

图5 多件铣削夹具的定位原理图

(3)旋转夹具体并固定在底板的右边,加工R2.5mm圆弧槽。加工完成后,拆卸工件。在装夹新工件时,先进行R2.5mm圆弧槽加工,然后再回旋夹具体到左边,加工直径mm通孔,完成两套工件装夹加工的循环操作过程。

(4)在加工之前,要预先在软件中绘制好每个加工图形,先试切加工样品,以免出现错误,同时要随时检查刀具的磨损情况,并及时更换刀具。

在实际生产应用中,多件铣削夹具制作工艺简单,元件少而精,配套零件费用低,实际操作方便。由于一批零件装夹加工只需要找正一次,因此极大地提高了装夹速度,大大提高了生产效率,同时零件的加工精度也有了保证。

三、结语

在数控铣床上进行多件加工时,设计合理的辅助加工夹具,既能满足加工零件的质量和技术要求,又能缩短装夹、定位时间,提高工作效率,降低生产成本,减少废品的发生。此类辅助加工夹具可广泛地运用于数控铣床加工中心操作,能够取得满意的效果。

参考文献:

[1]王光斗.机床夹具设计手册(第三版)[M].上海:上海科学技术出版社,2005.

上一篇:计算机系统结构心得体会下一篇:教师师德承诺活动总结