太阳能光伏发电系统照明系统的设计报告

2024-11-12 版权声明 我要投稿

太阳能光伏发电系统照明系统的设计报告(精选8篇)

太阳能光伏发电系统照明系统的设计报告 篇1

摘 要:本文介绍一种基于光伏发电的多电源智能管理系统——太阳能照明系统的设计。这个设计,从根本上对太阳能得到全面的了解,掌握太阳能照明的优势,并阐述了太阳能路灯与普通路灯的本质区别,从中了解到太阳能是一种潜力无限的清洁、高效而且可持续的可再生能源,是全人类节能环保的首选。本文还对太阳能路灯照明的太阳能电池,蓄电池,支架等各方面作了一个详细的分析,比较,再根据光伏发电的原理特性,系统采用了智能化控制器,对智能控制器编程序,使得程序可以满足太阳能LED路灯的自动蓄电,自动照明,自动熄灭等一系列工作过程,使太阳能照明更加智能化。最后,本文还举出例子,对现在正使用的太阳能路灯进行了分析,研究,明确太阳能发展的趋势及前景。

关键字:光伏发电,太阳能,节能环保,智能控制 绪

1.1太阳能照明是发展的趋势

太阳的能源非常巨大,可以说太阳能是真正取之不尽、用之不竭的能源。利用太阳能发电的经济性在很多情况下要优于常规的供电方式。太阳能照明本质上是一个光电转换系统,专业领域称为“硅晶片地面光伏组件”。其工作原理是通过硅晶片接收太阳光线后转变为电能,然后储存在蓄电池中,再由光感开关进行控制,当天黑时能够自动点亮,天亮时又自动熄灭。太阳能灯是光电转换技术的一种应用产品,凭借其节能、环保、无需布线、自动控制、随时变换位置等优点,在照明行业中树立起神圣的地位。随着太阳能光伏技术的发展和进步,在民用方面首先应用在照明灯具上。据了解,太阳能的优点已被越来越多的人所接受。作为太阳能应用的系列产品之一,太阳能灯具一直是各方研究和关注的焦点。在已有技术基础上,技术人员与厂商集思广益,在诸多方面取得了突破性进展,为太阳能灯最终走向千家万户打下了坚实基础。专家预测,太阳能照明在未来十年后将会普及,成为未来照明行业发展趋势。1.2太阳能路灯与普通路灯相比较

1.大阳能路灯的造价其实不高,因其使用寿命长,比普通路灯更划算

2.偷盗难,也不划算,太阳能路灯灯杆一般都在8米高以上,偷盗电线不合算 设计思路

太阳能光伏发电系统的基本原理相同,因而太阳能路灯的设计思路也可依据一般的太阳能发电系统,先确定太阳电池组件的功率,然后计算蓄电池的容量。但太阳能路灯又有其特殊性,需要确保系统工作的稳定与可靠,所以在设计时需要特别注意。

太阳能路灯是一种利用太阳能作为能源的路灯,因其具有不受供电影响,不用开沟埋线,不消耗常规电能,只要阳光充足就可以就地安装等特点,因此受到人们的广泛关注,又因其不污染环境,而被称为绿色环保产品。太阳能路灯即可用于城镇公园、道路、草坪的照明,又可用于人口分布密度较小,交通不便经济不发达、缺乏常规燃料,难以用常规能源发电,但太阳能资源丰富的地区,以解决这些地区人们的家用照明问题。

现本人想设计一个太阳能路灯的电路.白天充电靠太阳能电池吸收光能产生电能.而LED照明熄灭.夜晚LED点亮进行照明.并有电路保护电池不会过充过放。3 太阳能路灯的组成原理框图及其工作原理 3.1太阳能路灯的组成

太阳能路灯由太阳能电池组件、蓄电池、电源控制器、光源等组成。如图3.1

图3.1 太阳能原理方框

3.2太阳能路灯的工作原理

太阳能光伏发电是依靠太阳能电池组件,利用半导体材料的电子学特性,当太阳光照射在半导体PN结上,由于P-N结势垒区产生了较强的内建静电场,因而产生在势垒区中的非平衡电子和空穴或产生在势垒区外但扩散进势垒区的非平衡电子和空穴,在内建静电场的作用下,各自向相反方向运动,离开势垒区,结果使P区电势升高,N区电势降低,从而在外电路中产生电压和电流,将光能转化成电能。太阳能光伏发电系统大体上可以分为两类,一类是并网发电系统,即和公用电网通过标准接口相连接,像一个小型的发电厂;另一类是独立式发电系统,即在自己的闭路系统内部形成电路。并网发电系统通过光伏数组将接收来的太阳辐射能量经过高频直流转换后变成高压直流电,经过逆变器逆变后向电网输出与电网电压同频、同相的正弦交流电流。而独立式发电系统光伏数组首先会将接收来的太阳辐射能量直接转换成电能供给负载,并将多余能量经过充电控制器后以化学能的形式储存在蓄电池中。白天的时候,太阳能电池吸收太阳光子能产生电能,通过控制器吧电能储存在蓄电池里,当夜幕降临或者灯具周围的广度较低时,蓄电池通过控制器向光源供电设定的时间后切断,这样就可以照明了。4 各部件的组成及工作原理 4.1硅太阳能电池工作原理与结构

太阳能电池发电的原理主要是半导体的光电效应,一般的半导体主要结构,如图4.1。

图4.1 图4.1中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴。

当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流。然后在PN结中形成电 势差,这就形成了电源,如图4.5所示。

图4.5 由于半导体不是电的良导体,电子在通过p-n结后如果在半导体中流动,电阻非常大,损耗也就非常大。但如果在上层全部涂上金属,阳光就不能通过,电流就不能产生,因此一般用金属网格覆盖p-n结,以增加入射光的面积。

另外硅表面非常光亮,会反射掉大量的太阳光,不能被电池利用。为此,科学家们给它涂上了一层反射系数非常小的保护膜,将反射损失减小到5%甚至更小。一个电池所能提供的电流和电压毕竟有限,于是人们又将很多电池(通常是36个)并联或串联起来使用,形成太阳能光电板。4.2蓄电池的组成及工作原理

太阳能照明必须配备蓄电池才能工作,这是因为:

(1)太阳能电池只能在白天进行光电转化工作,电能在夜晚才能用于照明,因此必须储备在蓄电池内,储备的容量要足够当地连续几个阴天的照明需要。

(2)太阳能电池板的输出能量极不稳定,配备蓄电池后,太阳能灯等负荷才能正常

工作。

由于太阳能路灯采用的是铅酸蓄电池,所以这里只对铅酸蓄电池进行分析。铅酸蓄电池充、放电化学反应的原理方程式如下: 1.充电:

蓄电池从其他直流电源获得电能叫做充电。充电时,在正、负极板上的硫酸铅会被分解还原成硫酸、铅和氧化铅,同时在负极板上产生氢气,正极板产生氧气。电解液中酸的浓度逐渐增加,电池两端的电压上升。当正、负极板上的硫酸铅都被还原成原来的活性物质时,充电就结束了。

在充电时,在正、负极板上生成的氧和氢会在电池内部“氧合”成水回到电解液中。化学反应过程如下:

(正极)(电解液)(负极)(正极)(电解液)(负极)PbSO4 + 2H2O + PbSO4 → PbO2 + 2H2SO4 + Pb(充电反应)(硫酸铅)(水)(硫酸铅)2.放电

蓄电池对外电路输出电能时叫做放电。蓄电池连接外部电路放电时,硫酸会与正、负极板上的活性物质产生反应,生成化合物“硫酸铅”,放电时间越长,硫酸浓度越稀薄,电池里的“液体”越少,电池两端的电压就越低。化学反应过程如下:

(正极)(电解液)(负极)(正极)(电解液)(负极)PbO2 + 2H2SO4 + Pb → PbSO4 + 2H2O + PbSO4(放电反应)(过氧化铅)(硫酸)(海绵状铅)

从以上的化学反应方程式中可以看出,铅酸蓄电池在放电时,正极的活性物质二氧化铅和负极的活性物质金属铅都与硫酸电解液反应,生成硫酸铅,在电化学上把这种反应叫做“双硫酸盐化反应”。在蓄电池刚放电结束时,正、负极活性物质转化成的硫酸铅是一种结构疏松、晶体细密的结晶物,活性程度非常高。在蓄电池充电过程中,正、负极疏松细密的硫酸铅,在外界充电电流的作用下会重新还原成二氧化铅和金属铅,蓄电池就又处于充足电的状态。正是这种可逆转的电化学反应,使蓄电池实现了储存电能和释放电能的功能。

4.3电源控制器的组成及工作原理

4.3.1系统硬件结构

太阳能路灯智能控制系统硬件结构,如图4.6所示,该 以STC12C5410AD单片机为核心,外围电路主要由电压采集电路、负载输出控制与检测电路、LED显示电路及键盘电路等部分组成。电压采集电路包括太阳能电池板和蓄电池电压采集,用于太阳能光线强弱的识别及蓄电池电压的获取。单片机的P3口的两位作为键盘输入口,用于工作模式参数的设置。

图4.6

蓄电池电压采集,用于蓄电池工作电压的识别。利用微控制器的PWM功能,对蓄电池进行充电管理。蓄电池开路保护:万一蓄电池开路,若在太阳能电池正常充电时,控制器将关断负载,以保证负载不被损伤,若在夜间或太阳能电池不充电时,控制器由于自身得不到电力,不会有任何动作。4.3.2电压采集与电池管理

太阳能电池板电压采集用于太阳光线强弱的判断,因而可以做为白天、黄昏的识别信号。同时本系统支持太阳能板反接、反充保护。

蓄电池电压采集用于蓄电池工作电压的识别。利用微控制器PWM功能对蓄电池进行充电管理。若太阳能电池正常充电时蓄电池开路,控制器将关断负载,以保证负载不被损伤,若在夜间或太阳能电池不充电时蓄电池开路,控制器由于自身得不到电力,不会有任何动作。当充电电压高于保护电压(15V)时,自动关断对蓄电池的充电;此后当电压掉至维护电压(13.2V)时,蓄电池进入浮充状态,当低于维护电压(13.2V)后浮充关不,进入均充状态。当蓄电池电压低于保护电压(11V)时,控制器自动关闭负载开关以保护蓄电池不受损坏。通过PWM充电电路,可使太阳能电池板发挥最大功效,提高系统充电效率。本系统支持蓄电池的反接、过充、过放。4.3.3负载输出控制与检测电路

本系统设计了两路负载输出,每路输出均有独立的控制于检测,具有完善的过流、短路保护措施,电路原理如图4.7所示。

图4.7 注:P1.6为单片机18引脚;P1.7为单片机19引脚;

P3.2为单片机6引脚

负载过流及短路保护:设计了两级保护。第一级采用了R7(0.01Ω康铜丝)以及运放LM358、比较器LM393等器件组成的过流、短路检测电路配合单片机的A/D转换及外部中断响应来实现,这里使用了硬件+软件的方式,LM358的输出送P1.7(A/D转换)口,用作过流信号识别,当电流超过额定电流20%并维持30s以上时,确认为过流;短路电流整定为10A,响应时间为毫秒数量级。第二级采用了电子保险丝保护,当流经电子保险丝的电流骤然增加时,温度随之上升,其电阻大大增加,工作电流大幅降低,达到保护电路目的,响应时间为秒数量级,过流撤消或短路恢复后电子保险丝恢复成低阻抗导体,无须任何人为更换或维修。系统采用了两级保护措施后,在长达数小时时间负载短路实验后,控制器仍没出现电路烧毁现象。解决了用传统保险丝只能对电路进行一次性保护,一旦烧毁必须人为更换的问题,同短路后需手动复位或断电后重新开启的系统相比,也具有明显的优点,简化了维护,提高了系统的安全性能。4.3.4系统软件设计 1..单片机软件编程

本设计方案的硬件电路对应的软件程序包括:主程序、定时中断程序、A/D转换子程序、外部中断子程序及键盘处理子程序、充电管理子程序、负载管理子程序。单片机的软件编程上,以KeilC编译器的Windows集成开发环境μvision2作为软件开发平台,采用C51高级语言编写。按键处理流程如图4.8所示,电压检测子程序如图4.9所示。

图4.8 按键程序流程图

图4.9 电压检测子程序流程图

1.ADS子程序

INT8U ADC(INT8U number)using 2 {number=number&0x0.7;//通道号不超过7

ADS_CONTR= ADS_CONTR e0; //清ADC_FLAG、AD不启动 While((ADS_CONTR&0x10)=0x10); 等待A/D转换结束 return(ADC_DATA);//结束返回 } 2.外部0中断响应子程序

void servise_TNTO0 interrupt 0 using 1 {if(P3_2)//高电平,认为是干扰信号触发中断 return delay 1(5000); //10ms 延时 if(P3_2=0)

{load_switch_1=LSTOP;//负载开关1关 LOOP1_DL=1; 置负载短路标志 } } 这个太阳能路灯控制器可适用12V或24V工作光伏系统,可以直接驱动只留节能灯或通过逆变器驱动无极灯等作为照明光源,也可以驱动一些直流低压负载用于城市亮化。控制器的两路负载输出可以用于电动车道和人行道的照明,照明时间和工作模式可以灵活设置。着重解决了如何对蓄电池及负载进行有效管理问题,提高了太阳能电池板的使用效率,延长了蓄电池的使用寿命,防止因线路问题而造成的意外事件的发生。4.4各数据计算

4.4.1太阳能电池组件计算

设计要求:负载输入电压24V功耗34.5W,每天工作时数8.5h,保证连续阴雨天数7天。

(1)湖州地区近二十年年均辐射量Kcal/cm2,经简单计算湖州地区峰值日照时数约为3.424h;

(2)负载日耗电量=12.2AH(3)所需太阳能组件的总充电电流= 1.05×12.2×÷(3.424×0.85)=5.9A 在这里,两个连续阴雨天数之间的设计最短天数为20天,1.05为太阳能电池组件系统综合损失系数,0.85为蓄电池充电效率。

(4)太阳能组件的最少总功率数= 17.2×5.9 = 102W 选用峰值输出功率110Wp、两块55Wp的标准电池组件,应该可以保证路灯系统在一年大多数情况下的正常运行。4.4.2蓄电池计算

蓄电池设计容量计算相比于太阳能组件的峰瓦数要简单。

根据上面的计算知道,负载日耗电量12.2AH。在蓄电池充满情况下,可以连续工作7个阴雨天,再加上第一个晚上的工作,蓄电池容量:

12.2×(7+1)= 97.6(AH),选用2台12V100AH的蓄电池就可以满足要求了。4.4.3太阳能电池组件支架 1.倾角设计

为了让太阳能电池组件在一年中接收到的太阳辐射能尽可能的多,我们要为太阳能电池组件选择一个最佳倾角。关于太阳能电池组件最佳倾角问题的探讨,近年来在一些学术刊物上出现得不少。本次路灯使用地区为广州地区,选定太阳能电池组件支架倾角为16o。2.抗风设计

在太阳能路灯系统中,结构上一个需要非常重视的问题就是抗风设计。抗风设计主要分为两大块,一为电池组件支架的抗风设计,二为灯杆的抗风设计。下面按以上两块分别做分析。

(1)太阳能电池组件支架的抗风设计

依据电池组件厂家的技术参数资料,太阳能电池组件可以承受的迎风压强为2700Pa。若抗风系数选定为27m/s(相当于十级台风),根据非粘性流体力学,电池组件承受的风压只有365Pa。所以,组件本身是完全可以承受27m/s的风速而不至于损坏的。所以,设计中关键要考虑的是电池组件支架与灯杆的连接。(2)路灯灯杆的抗风设计路灯的参数如下:

电池板倾角A = 16o

灯杆高度= 5m 设计选取灯杆底部焊缝宽度δ = 4mm灯杆底部外径= 168mm 焊缝所在面即灯杆破坏面。灯杆破坏面抵抗矩W的计算点P到灯杆受到的电池板作用荷载F作用线的距离为PQ = [5000+(168+6)/tan16o]× Sin16o = 1545mm =1.545m。所以,风荷载在灯杆破坏面上的作用矩M = F×1.545。根据27m/s的设计最大允许风速,2×30W的双灯头太阳能路灯电池板的基本荷载为730N。考虑1.3的安全系数,F = 1.3×730 = 949N。

所以,M = F×1.545 = 949×1.545 = 1466N.m。

根据数学推导,圆环形破坏面的抵抗矩W = π×(3r2δ+3rδ2+δ3)。上式中,r是圆环内径,δ是圆环宽度。破坏面抵抗矩 W = π×(3r2δ+3rδ2+δ3)

=π×(3×842×4+3×84×42+43)= 88768mm3 =88.768×10-6 m3

风荷载在破坏面上作用矩引起的应力= M/W= 1466/(88.768×10-6)=16.5×10-6pa =16.5 Mpa<<215Mpa,其中,215 Mpa是Q235钢的抗弯强度。

所以,设计选取的焊缝宽度满足要求,只要焊接质量能保证,灯杆的抗风是没有问题的。太阳能路灯的实际应用

日前,浙江省质量技术监督局审核通过了由湖州勤上光电股份有限公司提出并组织起草的《浙江省太阳能LED灯地方标准》,将于09年7月1日起实施。“以前没有行业标准,生产什么、怎么生产、产品达到什么技术要求没有明确规定。标准出台后,行业门坎提高了,肯定要淘汰一批不符合标准的企业,企业要做好准备。”国家照明电器标准化技术委员会负责人表示,标准的出台将使太阳能LED产业提前进入规范化调试期,引导行业由无序、无标准状态,向有序、有标准状态转变,“山寨灯”横行的局面将得以改变。

即将实施的《浙江省太阳能LED灯地方标准》是中国大陆地区LED行业首个地方标准,适用于250V以下直流电源或1000V以下交流供电的道路、街路、隧道照明和其它室外公共场所照明用太阳能LED灯。对于照明领域来说,这是一次不小的革命。

本次设计的太阳能路灯的总电路图如图5.1所示,其工作原理:太阳照射在硅光板上,太阳能电池开始工作,使二极管D1跟三极管Q1工作,蓄电池开始蓄电,待蓄电池蓄电完毕后,根据程序的设定,Q1反作用,停止蓄电;到晚上天色昏暗时,设定的程序启动,使蓄电池开始放电,二极管D2,D3,D4,D5,导通,三极管Q2,Q3工作,使LED灯照明,直到第二天早上,预先设定的程序又作用,使LED灯熄灭;当有

太阳照射硅光板的时候,蓄电池又开始蓄电,这样,无限的循环,就可以使路灯自动蓄电,自动照明,自动熄灭,大大减少了人力物力,而且这样的设计,能节约更多的电能。

图5.1 太阳能路灯的总电路图

如图5.2所示,下面是本次设计的实际应用例子。

图 5.2 头顶太阳能板,晒一天太阳能照明6天的新式太阳能路灯,近期出现在了肇庆园区星港街上。从园区城管部门了解到,今年园区将改造多处路灯,推广绿色照明。

在基本完成改造的湖滨街上可以看到一批造型简洁的新式太阳能路灯已经竖立了起来。据路灯施工方相关负责人介绍,这批路灯头顶有一块太阳能板,将光能转换为电

能后自动存储在路灯的蓄电池中。太阳能板晒一天太阳后,可以在蓄电池内储存供路灯正常工作6天所需的电量,即使接下来6天都是阴雨天,路灯照样还能亮起来。

为了保证路灯的照度,这批太阳能路灯还安装了一个特殊的控制转换器,当太阳能发电不能满足路灯照明需要时就会自动切换到普通电源。有了太阳能板、蓄电池和控制转换器的路灯,在造价上自然比普通路灯要贵一些。据该负责人介绍,星港街沿线共要安装1500套太阳能路灯,部分景观带上的照明灯也将使用太阳能灯。

从园区城管部门了解到,今年园区将着手改造部分道路照明,全部使用节能灯具和绿色能源。首期老路灯改造,要把园区8到10条主要道路的老式路灯灯头更换为LED路灯灯头,预计可节电三分之二。另外,中新科技城今年也将改造安装太阳能LED路灯3500套。园区在亮化工程建设中,将尽可能地采用以LED为主的节能型光源和灯具,可比传统光源节能约30%。

据了解到,在厦门,北京,甘肃,上海,广东等城市也开始着手安装新式的太阳能LED灯,这对我国推行节能照明迈出了一大步。结 论

整体设计基本上考虑到了各个环节;光伏组件的峰瓦数选型设计与蓄电池容量选型设计采用了目前最通用的设计方法,设计思想比较科学;抗风设计从电池组件支架与灯杆两块做了分析,分析比较全面;路灯整体结构简约而美观;经过实际运行证明各环节之间匹配性较好。

目前,太阳能LED照明的初投资问题仍然是困扰我们的一个主要问题。但是,太阳能电池光效在逐渐提高,而价格会逐渐降低,同样地市场上LED光效在快速地提高,而价格却在降低。与太阳能的可再生、清洁无污染以及LED的环保节能相比,常规化石能源日趋紧张,并且使用后对环境会造成了日益严重的污染。所以,太阳能LED照明作为一种方兴未艾的户外照明,展现给我们的将是无穷的生命力和广阔的前景。参考文献:

[1] 王长贵 王斯成.太阳能光伏发电实用技术[D].化学工业出版社 版次:2005-09-01 [2] 沈辉,曾祖勤.太阳能光伏发电技术——可再生能源丛书[D] .化学工业出版社 版次:2005-9-1 [3] 杨德仁,汪雷.第十届中国太阳能光伏会议论文集迎接光伏发电新时代[D] .浙江:浙江大学出版社 版次:2008-9-1 [4] 赵争鸣 刘建政 孙晓瑛 袁立强.太阳能光伏发电及其应用[D].科学出版社 版次:1

[5] 刘树民,宏伟.太阳能光伏发电系统的设计与施工[D] .科学出版社 版次:2006-4-1 [6] 冯良桓 张静全.中国太阳能光伏进展[D].西南交通大学出版社 版次:2006年 [7] 张和生.光伏发电系统理论[D] .太原:太原理工大学,1998. [8] 王七斤.太阳能应用技术[D].中国社会 版次:2005年

[9] Mr West Bridge.Analysis of solar energy applications [R].Beijing: Institute of Nuclear Energy Technology,Tsinghua University,1997.[10] 730C0004-D IEE Proceedings-D: Control Theory and Applications 2002,vol.149,no.3 247~255

致 谢

历时三天,在我参考、收集大量资料和本班同学讨论研究之下,太阳能路灯课题设计总算完成了。

由于设计课题较为困难,期间,我花了较多的时间去收集相关资料,对其进行学习了解。在写这一设计的时候,我对我们的专业有了更深一层的了解和认识,同时也使我对太阳能光伏发电这个领域有了进一步的了解。

太阳能光伏发电系统照明系统的设计报告 篇2

光伏太阳能LED路灯是一种利用可再生能源———太阳能作为能量来源的照明装置。因其作为冷光源产品所具有的安装维护方便、使用寿命长、节能环保、性价比高、故障率极低等突出优点, 被广泛应用于公园绿地、高速公路等户外场所的照明。

本文设计了一种以STC12C5410AD单片机为控制核心的光伏太阳能LED路灯智能控制系统以实现LED路灯的自动照明、自动熄灭、自动蓄能, 现场运行表明该系统各环节匹配性良好。

1 光伏太阳能LED路灯的组成及其工作原理

1.1 光伏太阳能LED路灯的组成

光伏太阳能LED路灯由光伏太阳能电池组件、光控单元、智能控制器、蓄电池、发光负载等组成, 如图1所示。

技术特性包含以下几个方面:发光效率在20lm/W以上, 节能效果显著;光电智能控制器集保护、光敏自控、时控装置于一体, 以提高其性价比、延长其使用寿命;智能控制器中预先存储了全球不同纬度地区的全年日照时间数据, 方便用户按照其实际所在位置进行输入设置, 保证系统能够自动跟踪光照情况;在较大范围内应用时, 几乎不存在启动和关闭时差。

1.2 光伏太阳能LED路灯的工作原理

太阳能光伏发电利用太阳能电池组件依据光生伏特效应将太阳辐射能转化为电能输出, 并将电能储存于蓄电池, 由智能控制器控制其充电过程。夜晚当控制器检测到照度降低至10lux以下, 同时组件开路电压将至4.5V时, 启动蓄电池放电给灯头满足照明需要。

2 智能控制器的设计

2.1 控制器硬件系统设计

控制器硬件系统组成如图2所示, 该系统利用STC12C5410AD单片机进行数据采集、处理和控制, 外围电路用以实现太阳能电池板开路电压采集、蓄电池电压采集及充放电控制、负载过流与短路保护。

STC12C5410AD系列单片机是STC生产的单时钟/机器周期单片机, 是高速/低功耗/超强抗干扰的新一代8051单片机, 指令代码完全兼容传统法8051, 但速度快8-12倍。内部集成MAX810专用复位电路, 4路PWM, 8路高速10位A/D转换;具有可编程的8级中断源4种优先级, 片内资源丰富、集成度高、使用方便。

太阳能电池板电压检测用于光照强度的识别判断, 保护电路能够实现电池板反充、反接保护。P3.5引脚接键盘F2键用于自检和完成“当前值加1”功能。蓄电池电压检测完成当前蓄电池工作电压的识别功能, 充放电保护用于防止蓄电池过充、过放。若蓄电池充电电压高于设定的保护阈值15V时, 自动关断充电回路;若蓄电池电压降低至维护电压13.2V时, 进入浮充过程;若蓄电池电压继续下降至11V至13.2V之间, 则进入匀充状态;直至蓄电池电压降到11V以下时, 控制器自动切断发光负载供电回路。根据最大功率点跟踪 (MPPT) 原理, 单片机给出PWM信号调节电池板输出电压。

系统具有完善的负载输出控制与过流、短路保护功能。过流与短路保护包含两级保护:前级保护采用软、硬件结合的方式, 由电阻、运算放大器及比较器配合单片机外部中断和A/D转换实现;后级保护利用电子保险丝在流经电流超过整定值时, 其温度上升、阻值增大的特性达到电路保护目的。

此外, 在设计硬件电路时还应注意:将感应雷保护置于电池板引线的入口;防止太阳能电池板反接应采用快速恢复二极管;保护电路取样电阻的阻值选择应充分考虑工作电流、功率和热稳定性要求。

2.2 控制器软件系统设计

控制器硬件系统对应的软件程序包含主程序、中断子程序、充放电管理子程序、键盘处理子程序等。以Keil C编译器的Windows集成开发环境μvision2作为软件开发平台, 采用C51高级语言编写软件程序。限于篇幅, 仅给出电压检测子程序流程图, 如图3所示。

3 实际应用

鹤壁市国立光电股份有限公司对于本设计的实际改造项目给予了大力协助与支持, 在鹤壁市淇滨区仕佳光电子工业园区沿河路上已装设了采用本设计的光伏太阳能LED路灯。图4为实际拍摄的应用图片。

4 结语

本文给出了光伏太阳能LED路灯智能控制系统的设计方法, 其在实际应用中的情况表明该路灯整体结构简约、美观, 各环节之间匹配性好, 运行状况良好, 社会认可度较高。但对于光伏太阳能LED路灯的初投资问题仍需要在日后的研究中给予更多的关注。

参考文献

[1]张大明.单片微机控制应用技术[M].北京:机械工业出版社, 2006.

[2]王长贵.太阳能光伏发电实用技术[M].北京:化学工业出版社, 2005.

太阳能光伏发电系统照明系统的设计报告 篇3

【关键词】光伏照明系统;现代城市;能耗;太阳能路灯

随着地球资源的日益贫乏,基础能源的投资成本日益攀高,各种安全和污染隐患可谓无处不在,太阳能作为一种“取之不尽、用之不竭”的安全、环保新能源越来越受重视。同时,也随着太阳能光伏技术的发展和进步,太阳能发电在路灯照明领域发展已经日趋完善。

一、太阳能路灯的优点:

1、市电照明路灯安装复杂:市电照明路灯工程中首先要铺设电缆,需要进行电缆沟的开挖、铺设暗管、管内穿线、回填等大量基础工程。然后进行长时间的安装调试,如任何一条线路有问题,则需大面积返工。而且地势和线路要求复杂、人工和辅助材料成本昂贵。太阳能路灯安装简便:太阳能安装时,不用铺设复杂的线路,只要做一个水泥基座,然后用不锈钢螺丝固定即可。

2、市电照明路灯电费高昂:市电照明路灯工作中需要支付固定高昂的电费,并且需要长期不间断对线路和其它配置进行维护或更换,维护成本逐年递增。太阳能路灯具免电费:太阳能路灯是一次性投入,维护成本低,长期受益。

3、市电照明路灯存在安全隐患:市电照明路灯在施工质量、景观工程的改造、材料老化、供电不正常、水电气管道的冲突等方面都会带来诸多安全隐患。 太阳能路灯没有安全隐患:太阳能路灯是超低压产品,运行安全可靠。太阳能路灯的其它优势:绿色环保。

综上对比所述,太阳能路灯具有安全无隐患、节能无消耗、绿色环保、安装简便、自动控制免维护等特性。

二、太阳能路灯系统的组成:

太阳能路灯由以下几个部分组成:太阳能电池板、太阳能智能控制器、蓄电池组、光源、灯杆及支架,系统结构简单,易于安装。

三、太阳能路灯的工作原理:

太阳能路灯是利用太阳能电池板,白天接收太阳辐射能并转化为电能经过充放电控制器储存在蓄电池中,夜晚当光线逐渐降低,充放电控制器检测到这一值后启动负载工作,蓄电池对灯头放电。蓄电池放电数小时后,充放电控制器检测到光线逐渐增强,天亮了,充放电控制器要求灯头停止工作,蓄电池放电结束,白天继续给蓄电池补充充电。充放电控制器的主要作用是控制路灯打开和关闭,同时保护蓄电池,延长蓄电池使用寿命。

四、太阳能路灯的设计原则:

1、从功能上道路照明系统的主要功能是保证交通安全,提高交通运输效率、保障人身安全、提供舒适环境。

2、在满足道路照明各项功能需要的基础上,提高道路照明系统的能效,降低系统功耗,节约能源,减少污染,以达到节能和环保的目的。

3、另外还要结合当地的光资源情况,当地阴雨天气情况,电池板受灰尘覆盖、温度影响、控制器、蓄电池的各种效率等实情况进行综合考虑。

五、太阳能路灯的设计要求:

1、电池板功率的计算和选用。

2、蓄电池容量、充放电控制和充放电状态显示。

3、连续阴雨天五天路灯仍能照明。

4、光线暗时路灯自动点亮,早上光线强时路灯自动熄灭。

5、系统断电时可以保存用户所设定的各种参数。

六、太阳能路灯的控制方案选择:

太阳能路灯跟普通路灯控制电路功能基本一样,都是为了完成晚上亮灯,早晨熄灯的作用。国内外常用的控制器有单独的光控制型、时钟控器型、经纬型控制器型等,但由于其工作原理不同,各有优缺点。

单独的光控型一般采用感光探头,当晚上光线弱时,自动开启路灯;早上光线较强时,自动关闭路灯,达到自动控制的作用。但在实际使用中,感光探头难以判断各种干扰光线,经常会产生误动作。

采用时钟控器型的路灯控制器,要预先设定开关时间,使路灯按时亮灯、准时熄灯,从而达到自动控制的目的。优点是定时开关预先设定的开关时间不受外界干扰,除本身故障外不会产生误动作。缺点是不能根据季节变化和特殊的天气情况自动变换开关时间,需人工经常调整开关时间,费时费力,不利于节省电力。

经纬型(方位角和倾斜角)控制器采用单片机技术,模拟日照规律,晚上能自动开灯、早晨能自动关灯。它采取光控开关时间的优点,克服了光控开关易受干扰的缺点,取钟控器时间准确之长处,克服了定时开关不会自动变换开关时间之短处。目前路灯控制常采用这种控制方式,但其价格较高,在路灯中使用将会增加不必要的成本。

本设计是考虑以上几种控制方式的特点,综合从节电、经济和实用等方面考虑,利用光控时控制结合型,实现太阳能路灯的设计。

七、太阳能路灯的光源的选择:

光源尽量选直流光源。目前常见的光源有直流节能灯、高频无极灯、低压钠灯和LED光源。LED 作为半导体光源,其发展势头强劲,是太阳能路灯最为理想的光源。本设计采用冷光源LED光源,不但节能,反而使用寿命更长。

八、太阳能路灯照明方式的设计:

根据城市道路及与其有关的特殊场所的照明方式分常规照明和高杆照明两种。常规照明有单侧布置、双侧交错布置、双侧对称布置、横向悬索布置、和中心对称布置五种基本布灯方式。我们可以选择中心对称布置方式,既节省安装灯架,又节省地基浇筑材料,大大降低了成本。

九、结束语

从国家的主体发展思路来看,我们认为光伏照明系统在现代城市路灯领域里有着很大的发展空间,大量的应用太阳能光伏照明,不仅可以实现节能减排、绿色环保,为国家发展低碳经济做出应有的贡献,同时,也可以提高城市市民的生活品质及城市的整体品位。

参考文献:

[1]吴东威.太阳能LED在景观照明中的科学应用探析[J].科技风,2009年09期.

[2]姚宏,冯卫东,邱望标.太阳能LED路灯控制器设计[J].现代机械,2009年02期.

[3]杨战军.树立绿色 低碳发展理念发展LED路灯照明[A].海峡两岸第十八届照明科技与营销研讨会专题报告暨论文集[C],2011年.

[4]徐军,彭咏龙,李亚斌.基于单片机控制的节能型太阳能LED路灯研究[J].电子质量,2008年10期.

汽车照明系统实训报告 篇4

一、实训目的

(1)了解汽车照明系统的组成及工作原理。(2)掌握汽车照明系统故障的诊断与维修,二、实训设备

上海大众帕沙特Gsi轿车照明系统实训台

三、实训内容

1、照明系统电路的特点

1、照明系统主要由蓄电池、熔断丝、灯控开关、灯光继电器、变光器、灯及其线路组成。汽车的照明灯一般由前照灯、雾灯、小灯、后灯、内部照明灯等组成。不同的车型所配置的照明设备不完全相同,其控制线路也各不相同。

照明灯由灯光开关直接控制。灯光开光在0档时,所有照明灯关断;灯光开关在1档时,小灯亮;;灯光开关在2档时,前照灯、小灯同时亮。

照明系统安装有继电器,灯光开关控制断电器线圈,而继电器流过的电流才是灯泡的电流。

超车灯信号常用远光灯亮灭来表示,发出此信号时不通过灯光开关,属于短时接通式。

室内灯位于车内前部顶棚上,其功能是给驾驶员提供照明条件。此外,它还能受各车门开关控制,为驾驶员提供各个车门的开闭状态信号。

在有些车辆中,为了保证发动机顺利启动,当点火开关打至启动档时,前照灯及系统等耗电量较大的用电设备的电路将切断。

2、照明系统各功能部件

1、照明设备灯

前照灯

前照灯俗称大灯,装在汽车头部的两侧,用于汽车在夜间或光线昏暗的路面上行驶的照明,有两灯制和四灯制之分。

雾灯

雾灯在有雾、下雪、暴雨或尘埃弥漫等情况下,用来改善道路的照明情况。安装在汽车的车头和车尾,位置比前照灯稍低,一般距离地面约50厘米左右。装于车头的雾灯称为前雾灯,装于车尾的雾灯称为后雾灯。雾灯射出的光线倾斜度大,光色为黄色或橙色黄色光波较长,透雾性能好。

牌照灯

牌照灯用来照亮汽车牌照,光色为白色。牌照灯安装在汽车牌照上面,一般采用5到10瓦的灯泡进行照明。当尾灯亮时,牌照灯也点亮。

仪表灯

仪表灯安装在仪表板上,用于夜间照明仪表,使驾驶员能容易看清仪表的指示。一般采用2瓦的灯泡进行照明。有些车辆还加装了灯光控制变阻器,使驾驶员能根据自己的需要调整仪表灯的亮度。

顶灯

顶灯装在车厢或驾驶室内车顶部,作为内部照明之用。

工作灯

太阳能光伏发电系统照明系统的设计报告 篇5

在经济和社会的发展过程中,面临着非常大的难题,就是能源短缺的问题。在以前的经济发展的过程中,人们对于能源的开发和使用并没有一个度的认识,认为能源是源源不断的,可是在现在,人们又不得不为过度的开发能源进行弥补的工作。过去的经济建设中还存在着环境的污染和生态破坏的问题,所以现在发展新能源成为了促进经济发展的重点。太阳能作为一种新能源而且还是一种可再生的能源受到了人们的关注,在使用太阳能的过程中不会对环境造成太多的破坏,而且这种能源是可以循环利用的。但是在太阳能的光伏发电的过程中会出现很多的因素对发电的功率进行影响。

1太阳能光伏发电的发电原理

太阳能的光伏发电系统是由非常多的部件组成的,这其中包括太阳能的电池、电池的充和放电的控制器,计算机的监控设备和蓄电池以及一些辅助的设备。太阳能的光伏发电的原理主要是利用阳光的照射,在阳光照射太阳能电池的表面的时候,太阳光中的光子就会被太阳能电池的硅材料吸收,这样光子的能量就会通过硅原子使得太阳能电池内的电子发生变化。在太阳能电池与外部的电路相连接的时候,就是产生一定的`输出功率,这个过程就是一个光能转化为电能的过程。太阳能电池连接着蓄电的电池组,这样就可以将光能转化为电能的能源储存起来。进而通过电能的输送装置输送到电网中,以便人们使用。

2太阳能光伏发电的优缺点

利用太阳能进行发电具有很多其他能源开发没有的优点,首先,太阳能是无处不在的,在世界的任何地方都是有太阳光的存在的。其次,太阳能发电想比较其他能源来说,它是没有污染的,这样是符合现在世界各国的可持续发展的战略的。最后,太阳能发电的可利用时间是非常的久的。但是太阳能光伏发电还是存在着一些缺点的,太阳能发电就一定离不开太

太阳能光伏发电系统照明系统的设计报告 篇6

摘 要:本文主要根据照明应用场合的具体情况分析,在灯具光学设计时充分考虑CIE关于绿色照明的理念和要求,首先选择短弧,高光通或高显色性和高流明维持率的光源,其次采用模块化设计全方位组合不同反射功能的反光罩和遮光罩,控制光的投射方向和光束形状,同时改善照明灯具控光材料的光学性能,提高灯具的光输出效率,降低灯具溢出光及偏射光,减小人工照明形成的天空杂散光,提高照明场合的照明水平和视觉舒适度,控制光污染,节省能源,降低照明成本。

关键词:光学设计(optics design);照明灯具(luminaire);绿色照明(green lighting); 溅射光(spill light);

一、引 言

灯具作为照明单位器件,从功能方面可划分为机械结构及安装系统、电器及照明控制系统和光学照明系统,这三者相互作用,相互依赖,相互交融组成一个完整的灯具。其中灯具光学照明系统是实现灯具照明功能的终端执行部件,该系统主要包括光源和控光系统,它的工作最终体现灯具的使用性能。“绿色照明”是一个针对照明场合的要求,它的科学定义为:通过科学的照明设计,采用效率高、寿命长、安全和性能稳定的照明电器产品(电光源、灯用电器附件、灯具、配线器材以及调光和控光器件),改善提高人们工作、学习、生活的条件和质量,从而创造一个高效、舒适、安全、经济、有益的环境并充分体现现代文明的照明。“绿色照明”是20 世纪90年代初期照明行业提出的一个全新方针,它的出发点是节约能源、保护环境。实施绿色照明的宗旨是发展和推广高效照明器具,节约照明用电,建立优质、高效、经济、舒适、安全、有益的环境,绿色照明不仅要求节能,还要在满足对照明质量和视觉环境条件的要求下实现节能,因此不能单纯依靠降低照明标准来实现上述目的,而是要提高整个照明系统的节能能力,在同样的照明标准和照明质量下用通过更少的灯具和更低的功率消耗来实现。

二、基于绿色照明理念的灯具光学设计

照明系统的节能主要从两方面进行:一是研制和推广应用高效优质的照明灯具;二是提供合理的照明控制系统和工程应用。研究高效的照明灯具主要是从灯具光学系统的设计出发,合理选择灯具光源,科学设计灯具光学系统形状,采用性价比合理的反射材料和折射控光材料。

(一)光源的选择

电光源的发光原理不同、制作工艺不同、材料不同,则发光效率就不同。单位功率发出的光通量称为发光效率(以下简称光效),更确切地说就是电光源的发光能力。照明要节电,首先尽量提高电光源的发光能力,让尽量少的电能产生尽量多的光。金属卤化物灯的光效已接近甚至超过了1001m/W,有专家预计2010 年光效可达1201m/W,是泛光照明、道路照明和高大厂房照明的主要光源;高压钠灯光效已达1501m/W,是目前光效最高的照明光源,多用于道路照明和泛光照明。

在实际的照明应用中,片面追求光源的高显色性和高色温,能造成极大的能源浪费。在一些体育场馆的泛光照明中,一般都采用1000~2000W的大功率金属卤化物灯,按显色指数通常分为65(或80)、90两种;按相应的色温分为3700K(或4000K)、5600K两种。后者通常应用于国际性的彩电转播、奥林匹克运动会、“世界杯”比赛以及高清电视转播中;前者用于日常的训练、比赛、彩电转播中。在全球不同地区如北美和欧洲,其执行的标准也有较大的差别,现行的体育照明标准对此要求也有所不同。不同显色指数和色温的光源其光通量有明显差别,以1000W的金卤灯光源为例。显色指数为65的金卤灯光源光输出为110000Lm,而显色指数为90的金卤灯光源光输出仅为90000Lm。前者的光通量高出后者约20%,意味着在同样的照度水平和照度均匀度要求下,后者可节能20%左右。

现有金卤灯结构分为单端金卤灯和双端金卤灯2 种(图1),每种金卤灯又可分为长弧发光管和短弧发光管两种(图1),应用于不同的灯具中。比较这些产品特性可以发现,短弧双端金卤灯具有以下特点:允许灯具系统的设计更加简洁,并使精确的光学系统具有较高的效率、良好的光束控制能力和最低限度的溢出光;燃点位置位于水平方向±5°以内,有助于金卤灯性能的稳定;但是在工作时,灯的封装部位将暴露在空气中,因此必须控制灯具温度,灯与灯之间颜色差异较难控制。单端短弧金卤灯同样具有自己的优势,特别是在对眩光、外溢光的控制以及灯具的精确配光方面:也可以精确地控制光线,提供更多的配光选择、良好的外溢光及眩光控制、透明管状外玻壳、高光效等;如果保持水平方向±5°以内的燃点位置,可以最大程度地降低金属卤化物灯固有的色差,初始及燃点寿命期间均具有很高的光效,灯具寿命比双端金卤灯长,灯与灯之间的颜色差异容易控制。根据金属卤化物灯具的特性,当灯管处于水平和垂直状态时被点燃,灯具的燃点效率最高。一般灯具安装在灯杆或者马道上时,灯具的瞄准角度与水平方向会有一个25°~40°左右的夹角,此时,灯具的倾斜系数较低,总的光失系数降低,灯具的利用效率下降,必须使用更多的灯具才能达到这一照明效果。使用Z形光源。

(图2)时,通过灯管Z形的校正,可使灯管基本处于水平状态,提高灯具的倾斜系数,提高了灯具的利用效率,减少灯具的使用数量,有效节约了电能。同时,采用Z形光源后,结合灯具的设计,部分本来投射到空中的外溢光通过反射器的反射被重新投射到场地中,从而提高了灯具的效率,使场地内可供利用的光能提高了25%左右,并且减少了对周边环境的外溢光污染和场地内眩光。在没有配置外置眩光控制器的情况下,可减少外溢光达50%左右;选用外置眩光控制器后,外溢光可减少90%~95%。

(二)灯具控光器件的设计原理

1.灯具光学设计与照明节能的关系

灯具是光源、灯罩和相应附件组成的总体。灯具的光照主要特性,一是配光性能;二是灯具效率;三是防止眩光特性。灯具的主要作用是让光依人们需要按一定的规律分配。光源在灯具内发光后总会损失一部分光,灯具发出的光通量与光源光通量之比称为灯具效率,灯具效率高意味着光在灯具内的损失少,发出光多,意味着节能。各种灯具的效率差异很大,大致在30%~95%之间,如窄光束的投光灯一般在30%~50%左右,为了提高灯具效率,灯具光学系统设计就显得非常重要。

不同分类的灯具,照明要求不同,光学系统设计所要关注的内容不同,灯具的分类方法很多,若从光分布图看,可分为三种形式。1、双向非对称式,2、单向对称式,3、双向对称式,4、轴对称式 3。按照照明设计要求对灯具分类,可分为:1、室内照明灯具,2、泛光及投光照明灯具,3、道路及庭园照明灯具。按照使用场合分类就更多。

就灯具使用而言,泛光照明用投光灯功率大,亮度高,又布置在建筑物附近,极易对路人造成眩光,对周围建筑物内的居民造成光干扰。因此,在进行照明设计时,对灯具的选型及灯具安装位置的选择都要充分考虑,应尽量减少溢散光,灯具的位置和投射角度要合理,要提高泛光照明利用系数(被照表面所得到的光通量与光源发出的光通量之比值)。国际照明协会规定了7种最基本的灯具配光曲线(图4),也有部分灯具提供更多类型配光曲线,以满足市场的不同需求。

道路照明的范围十分广阔,覆盖了城市乡村的大小街道。其最重要的功能是为驾驶员提供安全的照明,尤其是高峰期间在市中心交通混乱的区域,对照明的要求是非常高的,表一是常见道路照明功率密度限值。道路照明能源消耗占整个照明能源消耗的比重很高,依照2002 年数据,全国道路照明灯光盏总数将超过1200 万只,以市场用量最大的 250W 高压钠灯做计算基础,每只钠灯的年耗电量为: 250×1.15(电感镇流器的电耗)×11.5h÷1000×365 天h=1200 度。所以灯具光学性能对节能至关重要。当前的灯具相关标准已经对灯具光强分布、灯具效率和眩光限制提出要求。对于灯具效率,常规道路照明灯具效率由60%提高到70%,泛光灯效率由55%提高到65%,分别提高了10%。因此灯具性能要高于标准要求实现配光分布,效率及眩光控制,必须进行科学合理的灯具光学系统设计,传统道路照明的配光特征曲线如图5 所示。

室内照明灯具光学设计对节能减排也起到重要作用,比如办公室照明多采用格栅灯,如果格栅和反射器能够科学设计,提高格栅灯的效率,那么节能效果就相当明显。当前格栅灯满足CAT II 眩光控要求的效率大多50%~60%,而且光分布也不是很好,要保证办公室照明的基本要求,就需要更多数量的灯具,会造成能源浪费。现在一些著名企业都推出灯具效率在70%以上的优良眩光控制格栅灯,照明质量得以改善,而且立刻节能10%以上。还有就是厂房和仓库的照明,目前大多使用HID 光源的工矿灯,HID 工矿灯的效率大概在60%~80%之间,如果采用荧光灯管的高挂灯,科学设计其光学系统,则眩光控制要求比HID 工矿灯好,灯具效率可达90%以上。比如采用6X54W 高效荧光灯管的高挂灯照明效果与采用400W 金卤灯的工矿灯相当,但可节能20%以上。图6 是一些室内照明用典型灯具的配光特征曲线。

2.灯具光学系统设计原理

灯具光学系统就是灯具使用光源,遮光罩(灯罩)和反射器(灯杯)组成的具有相互位置关系的整体,是灯具结构一个子系统,是实现灯具照明功能最直接的、也是最终的执行系统。灯具光学设计就是利用几何光学原理设计由复杂非自由曲面组成的反射器和遮光罩,使光线射向所要求照明方向的一种办法。在灯具光学设计中,评价灯具光学性能的主要因素是被照平面的照度及照度均匀度、灯具输出的光通量、灯具眩光等。有许多因素影响灯具光学功能的评价,诸如使用场合照明的要求,照明空间的布局与结构,被照面的表面特性、背景光强、墙面的反射甚至人眼的特性,眩光及溢散光控制和亮度比控制等。

目前反射器和遮光罩工作面形状都是由很多自由微曲面组成,反射曲面的形成采用多曲面反射配光设计法(图7),灯具的反射器由许多片不同的反射片嵌在反射罩内组成(图8),采用360°角布置,反射器可以组合成不同形状,不同功能的小反射曲面组合成特定光反射功能的子模块,以实现特定的光反射功能,采用这种布置方式对光线的控制更加精准,进一步减少了外溢光,提高灯具的效率。反射片的不同组合搭配,能够形成多种配光曲线。在新开发照明灯具时只需按照配光要求组合反射器模块,就可以实现特殊要求的配光设计,从而在应用中选择合适的配光,做到合理投射和利用光线,以达到最佳的照明效果。这样做一则减少灯具开发进度,二则便于通过改变局部反射器模块形成新的配光,灯具结构不需要太大改动。采用模块化设计全方位组合不同反射功能的反光罩和遮光罩,减少内部反射次数,控制投射方向和光束形状,原本投射到非照明区域的散射眩光、溢出及偏射光和人工照明形成的天空杂散光得以减少。可以提供一个舒适、清晰自然的照明环境,同时节省成本,降低能源消耗。

3.照明灯具控光器件材料的选用

灯具的反射面应尽量选用高反射比的材料,灯具上的透光罩应尽量选用透射比高的材料,以提高灯具的效率。目前多数投光灯的反射器材料大多采用铝型材厂提供的用于照明的铝板,如安铝,美铝、意铝、法铝等品牌的铝板,国产铝主要是甘铝、贵铝等。在设计反射器时为了保证工作平面上照度的均匀性,一般多采用锤纹或是雾面材料(图9),但缺点是光线漫射会造成灯具出光率降低,而且不易形成窄光束配光,造成照明眩光,与绿色照明的宗旨相背离,根据笔者灯具设计的经验,可以考虑反射器多采用高反射率的镜面铝板(图9),整个反射器采用多自由反射曲面的组合,而不是当前一大块曲面的反射形式,便于实现灯具光束的控制。虽然反射器加工成型成本会增加,但从长远考虑,考虑节能的费用,加工成本增加的费用完全可以补偿,利用镜面反射材料代替一般的雾面材料,灯具出光率提高10%以上,利用镜面材料代替锤纹铝材,提高出光率5%以上。另一个方面是有关折射罩材料的选用,由于光线以大入射角入射透镜,则在入射表面形成较强的反射,真正进入透镜的光线就会减少,降低灯具出光率。比如非对称配光的投光灯具为了在工作平面形成均匀照度,希望在垂直平面内灯具的最大光强角度较大,比如60º,一般的设计也在40º以上,但是出现的问题是当光线以较大入射角照射到玻璃表面时,玻璃表面反射率将增加,穿透玻璃射出的光线将减少,从而影响灯具的出光率,所以在选择泛光灯具折射器时,考虑在玻璃内表面涂镀增透膜或采用防反射玻璃,以提高灯具的出光率。只有根据要求合理选择灯具的反射器材料和折射器材料,再结合多曲面反射的配光设计,全面提高灯具的出光率,降低照明能耗,减少眩光,真正实现绿色照明。

三、典型灯具光学设计示例

GE 在灯具新产品研发过程中,特别注意灯具的光学系统设计,考虑如何提高灯具的光输出效率、灯具溢出光控制和良好的灯具配光分布,以期实现最佳的照明功能。这里就不同类型的灯具光学设计作一个简要的概述。

图10 是一款新型HID 隧道灯的光学系统和反射器的制作模型,为了节省成本,该反射器使用隧道灯常用反射器材料,只是在反射器形状上设计采用自由曲面,利用该反射器获得的灯具配光分布特征曲线如图11 所示,该灯具相对传统的隧道灯具不但光输出效率高达75%以上,而且是全截光灯具,灯具照射面积大,可使用相对较少数量的灯具实现隧道照明所要求的均匀度和平均照度。目前市场上HID 隧道灯具的平均效率大概65%~70%之间,可以节能5%~10%,由于照射面积大,可以采用较少灯具,参照150W 高压钠灯能耗,也可节省5%~10%左右。

图12 是一款新型格栅灯的光学系统以及配光曲线特征,反射器形状设计采用自由曲面,利用该反射器获得的灯具配光分布特征曲线如图12 所示,该灯具光输出效率实测高达75%以上,眩光控制等级满足CIBSE LG3 CATII 的要求,灯具配光曲线为典型的∆配光,灯具照射面积大,可使用相对较少数量的灯具实现隧道照明所要求的均匀度和平均照度。相比传统灯具,由于照射面积大,光输出率高,可以采用较少灯具满足办公室照明要求,参照3X28W 荧光灯能耗,也可节省10%左右。

图13 是一款新型荧光灯光源高挂灯及其光学系统,这款灯具主要替代400W HID 光源高挂灯,反射器形状设计采用自由曲面,利用该反射器获得的灯具配光分布特征曲线如图14 所示,该灯具光输出效率实测高达91%以上,灯具在γ角75°方向最大亮度不超过3000cd/m2(6X54W),所以眩光控制很好,而且灯具照射面积大,可使用较少数量灯具实现工厂仓库所要求的均匀度和平均照度。相比传统灯具(400W 金卤灯高挂灯),考虑能源消耗和灯泡更换成本,一年可节省费用16%,具有显著的经济效益。

图15 是一款传统道路灯反射器,采用高纯铝深拉延成型,表面进行氧化处理,由于反射器形状不规则,表面抛光困难,所以反射器镜面反射率很难提高,灯具光效和配光形状很难改善,反射器成型废品率高,目前使用传统反射器结构的全截光路灯出光效率大概在70%~80%之间.灯具配光分布特征曲线如图15 所示。依据光学原理设计新型的道路灯反射器,该反射器采用传统成型技术,也可以提高灯具效率到85%左右,即可节能5%~10%,而且道路侧光输出高,灯具有效效率高,节能就更加显著,如图16 所示。

投光灯光学系统设计也相当重要,良好的设计不但可以控制灯具的光束形状,而且完全能够按照明场合所要求的光束角及配光形状设计反射器,不但可以提高灯具的有效效率,而且可以控制灯具的溢出光和溅射光,造成不必要的光污染和眩光。图18 是一款2000W 投光灯的光学系统模型,设计50%光束角是6 度,灯具效率可达80%。一般窄光束大型投光灯光输出效率大概50%左右, 较好的设计也在60%~70%之间,所以灯具光学系统设计在泛光照明中的节能更加显著.这种窄光束的投光灯在因其在反映面上亮度一致,在垂直面上光分布过渡自然,与夜特空成明显的对比,显示了光的力度;灯具向上仰角大,光强峰值与地面的夹角在抑制眩光的范围内,并且尽可能扩大了被照面和周围环境的亮度,所以不会出现失能眩光。

图19 自由曲面拼接投光灯反射器样品

太阳能光伏发电系统照明系统的设计报告 篇7

随着世界经济的发展进入21世纪以来,各国对能源的消耗以日俱增。众多不可再生能源的消耗殆尽和环境污染问题的日益严重,已成为制约人类社会可持续发展的两个关键性因素。人类开始将目光转向可再生能源的发展。太阳能作为一种新型的绿色可再生能源,与其他新能源相比利用最大,是最理想的可再生能源[1]。

光伏发电是利用太阳能电池这种半导体电子器件有效地吸收太阳光辐射能,并使之转变成电能的直接发电方式[2]。太阳能电池单元是光电转化的最小单位,将太阳能电池单元进行串并联并封装后可以做成太阳能电池组件,其功率一般为几瓦到几百瓦,这种太阳能电池组件是可以单独作为电源使用的最小单元,可以将太阳能电池组件进行进一步的串并联,构成太阳能电池方阵,以满足负载所需要的功率输出[3]。

1 独立光伏发电系统

独立光伏发电系统是指未与公共电网相连接,其输出功率提供给本地负载(交流负载或直流负载)的太阳能光伏发电系统。其主要应用于远离公共电网的无电地区和一些特殊场所,也可为通信中继站、气象台站和边防哨所等特殊处所提供电源。

本文研究的独立光伏发电系统结构框图如图1所示[4]。该系统主要包括几个部分:太阳能电池阵列、BOOST变换器、负载、双向BUCK-BOOST变换器、蓄电池以及控制电路。

该系统运行原理如下:(1) 当日照较强,太阳能电池阵列输出功率大于负载功率时,太阳能电池阵列输出的电能经BOOST变换器给负载供电,多余的电能通过双向BUCK-BOOST变换器传输给蓄电池将能量储存起来。(2) 当日照较弱,太阳能电池阵列输出功率小于负载功率时,由太阳能电池阵列和蓄电池共同给负载供电,太阳能电池阵列输出的电能经BOOST变换器给负载供电,不足的电能由蓄电池通过双向BUCK-BOOST变换器给负载供电。当无日照,光伏阵列输出功率为零时,由蓄电池单独给负载供电。(3) 当有日照,太阳能电池阵列输出功率大于零且负载断开时,太阳能电池阵列输出的电能经BOOST变换器和双向BUCK-BOOST变换器后给蓄电池充电以将能量储存起来。另外,如果蓄电池放电至低于过放电压,或者蓄电池充电至超过过充电压时,双向变换器将被强行控制关断,以保护蓄电池不被损坏,延长蓄电池的使用寿命。

2 控制系统硬件电路

独立光伏发电系统所有控制功能的实现均由控制电路完成,控制电路采用数字信号处理器TMS320LF2812,由TMS320LF2812 DSP接收采样电路送来的模拟信号,按照控制算法对采样信号进行处理,然后产生所需要的PWM波形,经驱动放大后控制主电路功率开关管的通断[5]。

2.1 控制芯片TMS320F2812DSP简介

TMS320F2812 DSP是整个控制系统的核心,在太阳能独立光伏发电系统的控制中主要实现以下功能:(1) 转换采样电路的模拟信号,计算出太阳能电池阵列的输出电压、输出电流以及输出功率,再将数据输出给显示电路;(2) 根据太阳能电池阵列的输出电压调整太阳能电池阵列的工作状态使其稳定工作在最大功率点;(3) 根据采样到的蓄电池的电压和充电电流,对其实现恒压限流充电以及过充过放保护;(4) 根据系统工作状态实现系统工作状态的切换。即当有日照时,太阳能电池阵列向负载供电,多余的电能传输给蓄电池,将能量储存起来;当太阳能电池阵列不足以向负载供电时,蓄电池和太阳能电池阵列同时向负载供电。

2.2 基于TMS320F2812DSP的控制系统

基于TMS320LF2812DSP的控制系统框图如图2所示。控制系统包括DSP芯片、辅助电路、检测电路、驱动电路和扩展接口。

2.2.1 辅助电路

辅助电路主要包括DSP电源电路和时钟源电路。DSP电源电路采用TI公司的电源管理芯片TPS767D318。TPS767D318电源芯片属于线性低压降型电压调节器,可以由5V电压产生3.3V和1.8V的电压输出,最大输出电流为1 A,可以满足一片DSP和小量外围器件的供电需要。时钟源电路是采用高精密石英晶体振荡器产生,为系统提供稳定的时钟振荡输入。

2.2.2 采样电路

TMS320LF2812 DSP的模数转换模块(A/D)能分辨的最高电压为3.3 V,因此采样电路输入到A/D模块的最高输入电压不得超过3.3 V。本系统电压采样信号经高阻值精密电阻分压得到,避免分压电阻流过的电流对主电路和采样电路的影响;电流采样电路是利用霍尔电流传感器将电流信号转换为电压信号。另外,为了减少后级电路对前级的影响和实现控制系统与主电路的隔离,需在采样信号后加入射极跟随器,射极跟随器的输入阻抗大,可减小前级被检测电路对控制电路的影响。

2.2.3 驱动电路

系统功能的实现需要由控制电路生成主电路功率开关管所需要的PWM波使主电路功率开关管实现开关动作来完成。但控制电路属于弱电信号(DSP产生的PWM波信号峰值电压为3.3伏,输出电流在毫安级[6]),主电路为功率电路,控制电路出来的信号对于直接驱动功率器件无能为力,而且为了系统能安全、可靠的运行,控制电路还必须和主电路实现良好的电气隔离。在有弱电信号和强电信号的电路中,为防止强电信号对弱电信号的影响,通常采用隔离技术实现电路信号的转换。

隔离技术可分为电磁隔离和光电隔离两种方式。光电隔离体积小、结构简单,但是共模抑制能力差、速度传输慢,且快速光耦的速度也仅几十kHz。电磁隔离用脉冲变压器作为隔离元件,具有响应速度快,原副边绝缘度高,共模干扰抑制能力强等优点。考虑到主电路的工作频率,本驱动系统采用电磁隔离驱动。

3 控制系统软件设计编程思路

控制系统根据太阳能电池阵列、蓄电池以及负载的工作状态分为两种运行模式:充电工作模式和放电工作模式,根据太阳能电池阵列、蓄电池以及负载的工作状态控制系统自动切换运行模式。当控制系统运行于充电工作模式时,TMS320LF2812 DSP有两路PWM输出:PWM1和PWM7,分别用于控制功率开关管Ql和Q2。运行于放电工作模式时,TMS320LF2812DSP有两路PWM输出: PWM1和PWM8,分别用于控制功率开关管Ql和Q3。

DSP集成开发环境CCS(Code Composer Studio)是目前最流行的DSP开发软件之一[7]。CCS可以简化和加速程序员创建和测试实时嵌入式信号处理系统的开发过程,从而缩短产品开发时间。

主程序大致思路如下:开机上电后,初始化DSP的系统寄存器及外设寄存器,根据太阳能电池阵列、蓄电池以及负载的工作状态决定系统的运行模式,并按一定的采样周期读入采样电压和采样电流,根据采样信息和控制算法改变输出控制信号的脉宽以达到预期的控制目标。在运行过程中若系统发生故障,则及时封锁控制信号输出。控制系统主程序流程图如图3所示。

太阳能光伏发电技术被认为是当今世界最具发展前景的新能源技术。如何找到最佳的控制策略来最大限度地发挥光伏发电系统的优越性始终是评价控制技术的出发点和标准。本文采用高速数字处理器TMS320LF2812作为控制器件,通过对整个控制系统的硬件电路结构、具体模块参数进行设计,对系统软件主程序流程进行编写,阐述了DSP TMS320LF2812如何根据太阳能电池阵列、蓄电池以及负载的工作状态最大限度发挥其优势,提高整个光伏发电系统的工作效率,具有良好的控制性能。

摘要:太阳能具有取之不尽、用之不竭和清洁安全等特点,是理想的可再生能源。太阳能光伏发电技术作为太阳能利用的一个重要组成部分,被认为是二十一世纪最具发展潜力的一种发电方式,对于缓解能源危机、减少环境污染以及减小温室效应具有重要的意义。论文分析研究了基于TMS320F2812 DSP的独立光伏发电系统及其控制系统的硬件设计和软件编程思路。

关键词:太阳能光伏发电系统,控制系统,DSP

参考文献

[1]王长贵,崔容强,周篁.新能源发电技术[M].北京:中国电力出版社,2003.

[2]李安定.太阳能光伏发电系统工程[M].北京:北京工业大学出版社,2001.

[3]王长贵,王斯成.太阳能光伏发电实用技术[M].北京:化学工业出版社,2005.

[4]BelloM M,StudentM ember,IEEE,andI.E.Davidson,Sen iorM ember,IEEE.Perform ance Analysis of a Photo-voltaic System Coup led to a Un iversalMotorUsingM atlabTool,Power Engineering Soc iety General[J].M eeting,2006.IEEE,June2006:18-22.

[5]郑诗程.光伏发电系统及其控制的研究[D].合肥:合肥工业大学,2004:51-56.

[6]严仰光.双向直流变换器[M].南京:江苏科技技术出版社,2004.

太阳能光伏发电系统照明系统的设计报告 篇8

一、家用太阳能光伏发电系统的组成

家用太阳能光伏发电系统主要由光伏电池组件、光伏系统电池控制器、蓄电池和交直流逆变器构成,核心元件是光伏电池组件。其中,光伏电池组件:将太阳的光能直接转化为电能。交直流逆变器:用于将直流电转换为交流电的装置。此外,逆变器还具有自动稳压功能,可改善光伏发电系统的供电质量。蓄电池:用于存储从光伏电池转换来的电力,按照需要随时释放出来使用。充放电控制器:具有自动防止太阳能光伏电源系统的储能蓄电池组过充电和过放电的设备,它是光伏发电系统的核心部件之一。

二、光伏发电的优点

光伏发电的优点充分体现在以下几个方面:1.太阳能资源取之不尽,用之不竭。照射到地球上的太阳能要比人类目前消耗的能量大6000倍。另外,根据太阳产生的核能计算,太阳要照射地球600多亿年。2.绿色环保。光伏发电本身不需要燃料,没有二氧化碳的排放,不污染空气,不产生噪声。3.应用范围广。只要有光照的地方就可以使用光伏发电系统。4.使用寿命长、维护简单、可靠性高。晶体硅太阳能电池寿命长达20~35年:由于无机械转动部件,操作、维护简单,可靠性高,加之现在均采用自动控制技术,基本不用人工操作。5.太阳能电池组件结构简单,体积小且轻,便于运输和安装,光伏发电系统建设周期短。6.系统组合容易。若干太阳能电池组件和蓄电池单体组合成为系统的太阳能电池方阵和蓄电池组;逆变器、控制器也可以集成。所以光伏发电系统可大可小,极易组合、扩容。

三、家用太阳能光伏发电的现状及发展前景

至2007年底,已有大约75万套家用太阳能光伏发电系统进入用户家庭。在这些用户之中,大多数都是牧区的牧民家庭,这些家庭的通电水平还比较低,一般只能满足基本的照明需要。除此以外,还有林区和农区的农户和养蜂户以及无电的学校、商店等小单位已在使用家用太阳能光伏发电系统,还有一些缺电地区的城镇居民,也成为家用太阳能光伏发电系统的用户。如果这些家用太阳能光伏发电系统的保有量按80%计算,加上国家光明工程和送电到乡工程的光伏电站,中国目前至少有100万户家庭主要依靠光伏发电系统解决基本的生活照明用电。

到2007年底,中国的光伏发电市场累计安装量达到70MW,其中约43%为农村电力建设方面的应用,而全国大约还有300万无电户,估计其中至少还有150万户需要在今后的十年内采用光伏或风光互补发电系统来解决。由于居住条件的限制,他们中的大多数只能采用分散的供电方式,即采用家用太阳能光伏发电系统。而许多已经用上光伏系统的用户也将升级换代,提高用电水平。因此,中国的光伏市场潜力仍然很大。

在人口稠密的都市中,光伏发电系统也正起着越来越重要的作用。没有油田煤矿的上海拥有两亿平方米的屋顶,每天只要有阳光,每个屋顶将会是一个小型的绿色发电厂,把上海的大小屋顶、建筑立面联合起来,可建成一座巨型“发电厂”。以上海现有两亿平方米平屋顶的1.5%,即十万个屋顶(约300万平方米),为其安装“太阳能并网屋顶光伏发电系统”,每年至少能发电4.3亿度,这将很大缓解上海的用电紧张。

上一篇:unit9课后练习答案下一篇:学校校长是第一安全责任人制度