物理高中知识点总结

2025-03-16 版权声明 我要投稿

物理高中知识点总结(共7篇)

物理高中知识点总结 篇1

1.掌握观察实验的方法。要在演示实验和分组实验中注意引导学生掌握有意观察。并养成综合分析观察习惯。

在观察实验现象时善于根据观察的目的发现现象的特征,这才是有意观察,然而不是所有的学生都会有意观察。测试表明,未经过训练的学生中能够有意观察实验现象的约占10%—15%。例如:教师在课堂上做了一个试管装水烧小金鱼的实验,让同学们观察,学生们看到水开了,小金鱼还活着。然后教师发给学生每人一只试管,让学生自己做这个实验,结果85%—90%的学生将小金鱼烧死了。这说明只有少数学生观察中有意识地发现了现象的特征,火在试管上端烧上端的水开了,试管下端水温度不高,所以鱼才能活。此实验证明水是热的不良导体。可见有意观察是需要培养训练的。每次观察实验现象均要求学生说出看到了什么,说明什么,学生逐步养成有意观察的习惯。同时又要引导学生观察实验现象的全过程,不仅看结果,还要注意观察现象如何随时间变化,注意现象出现的条件,边看边想,养成综合分析的观察习惯。

2.掌握实验方法,提高实验的技能技巧。

实验是研究物理问题的基本方法,有计划地进行实验设计思路和实验技能技巧的训练是非常重要的。

在中学物理教材中,实验可分为物理量测量和规律的探索与验证两类。无论对科学家做过的但现在不能再现的探索性实验,还是现在可做的演示实验、分组实验,我在教学中都注意实验原理的分析和实验设计思路的剖析,以便加强对学生进行设计思路和方法的训练。尽量创造条件让学生根据研究课题的需要独立设计实验,上好实验设计方案讨论答辩课。在分组实验中,注意总结有独到见解和实验操作巧妙的学生的经验,用以启发提高其他学生的实验技能技巧。

我将设计实验的基本方法归纳为下面几种:(1)平衡法。用于设计测量仪器。用已知量去检验测量另一些物理量。例如天平、弹簧秤、温度计、比重计等。(2)转换法。借助于力、热、光、电现象的相互转换实行间接测量,例如打点计时器的设计,电磁仪表、光电管的设计等。(3)放大法。利用迭加,反射等原理将微小量放大为可测量,例如游标尺、螺旋测微器、库仑扭秤、油膜法测分子直径等。

3.掌握理想化模型法。将复杂的物理过程、物理现象中最本质具有共性的东西抽象出来,将其理想化、模型化,略去其次要因素和条件,研究其基本规律,这是研究物理问题的重要思想方法。在中学物理中应用的理想化模型归纳起来有以下几种:

①实体物理模型:质点、系统、理想气体、点电荷、匀强电场、匀强磁场。

②过程模型:等温、等容、等压过程;匀速、匀变速直线运动;抛体运动;简谐振动;稳恒电流等等。

③结构模型:分子电流、原子模式结构、磁力线、电力线。

掌握此研究方法时要特别注意指出理想化模型不是实际存在的事物,是有条件、有范围、有局限性的抽象,所以在运用时就要十分注意其规律的适用范围和运用条件。

4.掌握等效思想方法。等效方法是研究物理问题的又一重要方法。中学物理教材中体现出的等效思想方法有下面几种:

①作用效果等效:力的合成与分解,速度、加速度的合成与分解;功与能量变化关系;电阻、电容的串、并联计算。

②过程等效:将变速直线运动通过平均速度等效为匀速直线运动;将变加速直线运动通过平均加速度等效为匀变速直线运动;交流电有效值的定义;抛体运动等效为两个直线运动的合成等等

总之,在学习掌握物理概念和规律的时候,还要将研究问题的重要思想方法揭示出来,以帮助指导学生掌握这些正确的思考方法。

5.掌握数学方法的应用。研究物理问题离不开数学工具,数学方法在物理上的应用很多,如比例,一次、二次函数方程,三角函数、指数、对数及正、负号,数学归纳法,求极值等等。

值得突出提出的是函数图像在物理上的应用,用图象描述物理过程和物理规律,在力学中有:S-t图,V-t图,振动图象。热学中有:P-V图,P-T图。电学中有:I-V图。可以用图象处理实验数据,导出表示物理规律的函数式;可依据物理图象求解物理量,对物理问题进行判断论证。

以上所述为研究处理问题的五种基本方法。在平时章节教学中分散训练,贯彻始终,总复习时可分专题总结归纳,以达到条理清晰的目的。

(二)物理学习过程中的具体方法指导

掌握学习物理的正确方法才能提高学习效率和学习能力。在平时老师教学中采用“单元自学研讨式”教学法。力图使课堂教学结构的设计有利于调动学习的主动性和学法的训练。“单元自学研讨式”教学方法在下面四个环节上下功夫,对学生进行有计划的训练和指导,使自身掌握正确学习方法,不断提高自学能力。

1.自学质疑。按照老师下发的单元教学计划,在指定的时间内进行自学,将自学中的疑难问题写在质疑小本上交给老师。初期为了帮助学生质疑,在课堂上专门安排提问题竞赛,促进思考。

2.讨论研究。依据的自己疑点及大纲要求确定适当的讨论题目,各抒己见,通过互相争辩加强对基本概念和规律的理解。对于可以通过实验研究的课题,根据研究课题设计实验方案(方案中包括原理、器材选择、实验步骤、记录表格和数据处理方法),经过讨论和完善后,按自己设计的实验方案动手实验,并分析实验记录,处理实验数据,得出实验结论。这不仅发挥学自己的想象力、创造力,而且对自己进行了科学研究方法的训练。

3.教师精讲。此课将引导学生按照知识的逻辑关系整理单元知识(其中包括:概念、规律、方法),指导自己理解重点、难点知识,归纳总结掌握规律概念需要注意的问题。

4.习题。针对分析解答各部分习题的关键,精选例题,用小组竞赛的方法,进行分析解决问题的思路方法和技巧的训练。

2.掌握自我评价的方法,善于在自己生活的集体中找到评价的参照物。如回答下面问题:①非智力因素(学习态度、兴趣、意志力、心理承受力、心理调节能力)如何?②知识掌握程度(了解、理解、还是掌握?自己属于哪一层?有何障碍?)如何?③能力(观察、思维动手能力)如何?

以上是掌握物理学习方法的一些做法,我相信只要处理好学会和会学的辩证关系,重视学法指导。对提高学习质量会有成效。

其它的方法也是同理

二 物理定理、定律、公式表

一、质点的运动(1)------直线运动 1)匀变速直线运动

1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2)2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)注:

(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

四、动力学(运动和力)

1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN>r}

3.受迫振动频率特点:f=f驱动力

4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注:

(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;(4)干涉与衍射是波特有的;(5)振动图象与波动图象;

(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

六、冲量与动量(物体的受力与动量的变化)

1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同} 3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定} 4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式} 5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′ 6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒} 7.非弹性碰撞Δp=0;0r0,f引>f斥,F分子力表现为引力(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}

7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)} 注:(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;(2)温度是分子平均动能的标志;

3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;(5)气体膨胀,外界对气体做负功W0;吸收热量,Q>0(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

(7)r0为分子处于平衡状态时,分子间的距离;

(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

九、气体的性质 1.气体的状态参量:

温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)} 体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL 压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)} 注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

十、电场

1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}

5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

常见电容器〔见第二册P111〕

14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

(3)常见电场的电场线分布要求熟记〔见图[第二册P98];

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F=106μF=1012PF;

(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

十一、恒定电流 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9.电路的串/并联 串联电路(P、U与R成正比)并联电路(P、I与R成反比)电阻关系(串同并反)R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+ 电流关系 I总=I1=I2=I3 I并=I1+I2+I3+ 电压关系 U总=U1+U2+U3+ U总=U1=U2=U3 功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+ 10.欧姆表测电阻

(1)电路组成(2)测量原理

两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro)接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)由于Ix与Rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11.伏安法测电阻 电流表内接法:

电压表示数:U=UR+UA 电流表外接法:

电流表示数:I=IR+IV Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA [或Rx>(RARV)1/2] 选用电路条件RxRx 电压调节范围大,电路复杂,功耗较大 便于调节电压的选择条件Rp 电压调节范围大,电路复杂,功耗较大 便于调节电压的选择条件Rp

(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。

十二、磁场

1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m 2.安培力F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。注:

(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料

十三、电磁感应

1.[感应电动势的大小计算公式] 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

2)E=BLV垂(切割磁感线运动){L:有效长度(m)}

3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}

4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)} 2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)} 3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极} *4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)} 注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

十四、交变电流(正弦式交变电流)

1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总

3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2 4.理想变压器原副线圈中的电压与电流及功率关系 U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);

物理高中知识点总结 篇2

一、图表记忆

用简明清晰的图表形式对知识进行表解是对知识的一种高度概括,为学生提供了生动、直观、鲜明的形象识记,是记忆掌握的基础。利用此法进行学习,有增进理解、相互联系,加深记忆,强化学习的效果的作用,比一般的死记硬背更能事半功倍。

例:分子动理论中分子间的相互作用力和物体分子势能这两个考点。知识点多,零散,而且较抽象,常常记不清。通过对知识点的梳理、总结,我们可画成下图:

记住此图,我们便由图可得到分子动理论和分子势能的一切内容。如分子引力、分子斥力同时存在,分子斥力比分子引力随分子间距r的增大减小得快。当rr0时,分子斥力小于分子引力,分子力表现为引力。又由功是能转化量度,当r增大时,分子力可先做正功再做负功,通过功能关系可得分子势能与分子间距图像。在r=r0,分子势能最小。大量分子间距r大,宏观表现为体积大,又可知:物体分子势能跟体积有关。

一个学生,仅在中学阶段就要学习许许多多的书本知识和课外知识,要记忆很多的概念、规律、公式和数据。仅以高中物理课本为例,学生应该掌握和记忆的物理公式,就达二百个左右(含导出的公式和推导的结论式),何况学生还要在各个学科上“齐头并进”。分散的、片段的、杂乱的知识总是记得不多,也不能长久保持。学生如果抓住了它们的内在规律,把知识条理化、系统化、图表化、简明化,就会记得又快又牢。而这种图表化的办法,就是给知识的“珠子”穿上线索。这样,原先想要记住的“一大堆”知识点,只剩下一些图表,就好像四处分散的珠子,用一根线穿起来,一下子就全部提起来了。

二、熟语记忆

汉语是一种表意能力很强的语言,而熟语则是汉语中的一朵奇葩,它言简意赅,生动形象,比一般词语有着更强的表现力,历来为人们所喜闻乐用。若在能对事物概念、规律进行小结时,精心设计,自编一些物理上的“熟语”来理解记忆,往往会收到意想不到的效果。熟语记忆大致可分为以下两类。

1. 总结略语记忆

总结略语即对某些概念规律的概括总结,抓住其关键字而形成“熟语”。例:用伏安法测电阻,有两种接法:安培表内接法与外接法。当被测电阻较大时,电流表的内阻相对可忽略。此时采用内接法,测量结果R=U/I,由于U为电流表和电阻R的总电压,所以测量结果比真实值大。若被测电阻较小时。则反之,总结归纳并浓缩为六个字“内大大,外小小”。又如影响物体内能的因素有:物体的质量m、物体的温度t和物体的体积V。可略缩为“内能MTV”;再如光学中,凸透镜成像时,当物体靠近凸透镜,像距将远离凸透镜,且像的大小在变大。当物体远离凸透镜,则反之。总结浓缩为五个字“物近像远大”。通过少少的几个字就可记住一个概念、规律,且朗朗上口,易记易背。

2.“成语”记忆

“成语”记忆是建立在对物理概念和规律深层次分析和理解的基础上,师生间共同参与编写,做到思想上共鸣。总结出四个字的“成语”,这类“成语”式的小结的典型例子如电磁感应中的“增反减同”、“来去都难”等,体温计“只升不降”。又如判断波的图像中某一质点在该时刻的振动方向。如图:

通常用波的传播原理。B点是在它前面A点的带动才振动,所以下一时刻要到达A点所能到的位置。可判断B点振动方向为y轴正向,用波的平移法也可得到此结果。但这两种方法学生总是不能记得很好。若将成语“顺藤摸瓜”变为“逆藤摸瓜”,用“逆藤摸瓜”来判断:逆着波的传播方向,摸着波线这条藤,手指的方向即为该点的运动方向。通过此变形的成语。学生觉得新鲜有趣,在不知不觉中记住记牢了。

熟语短小精悍,从记忆学的角度上说,减少了记忆量和降低了难度,增加了记忆的持久性。因此,熟语记忆是一种高效的记忆方法。但要注意提炼出的熟语应易懂易记,最好是常说常见,能自然而然想起的,如果“熟语”编得晦涩难懂,比文言文还难,效果将会适得其反。

三、比较记忆

有比较才有鉴别。比较就是把相似或相近、彼此间既有联系又有区别、容易产生混淆的物理概念、现象,以及规律进行对照,了解事物的共性和个性的一种思维方法。通过比较,总结其共性,可减少记忆的广度。准确地辩别它们的不同特征,又可加深记忆。比较记忆是学习过程中较常采用、行之有效的一种记忆方法。通常有以下几种比较记忆形式。

1. 相似比较,认识区别。

如重力与压力,功率与效率,机械能与内能等,这些有着相同字眼的概念,通过比较,能认识其区别,使记忆清晰。

2. 正反对比,揭示本质。

物理规律具有各自不同的特性,有些规律具有可逆性,有些没有,只有从正反两方面辨析,才能深入理解规律的本质,对规律性的知识记忆掌握才能牢固。如物体的内能跟温度的关系,正面分析:物体温度升高,内能就增大。若从反面深入研究:内能增大,温度不一定升高。因为晶体有特殊的结构。又如在光学中,从空气看水中物体比实际位置浅,从水中看空气中的物体比实际位置高,通过比较分析,发现折射过程光疏介质的角较大(可记为空气角大)。这样加深记忆,使记忆更准确。

3. 易混比较,排除干扰。

根据记忆的特点和遗忘的规律,人对易混的东西随着时间的长久,会相互绞缠,相互交织,最终混为一谈。因此,对易混的知识应进行比较,找其不同点,研究与其有关的记忆方法,利于排除干扰。如:四冲程柴油机和汽油机,电动机和发电机等,又如用左手定则判断安培力和洛伦兹力和用右手定则判断感应电流的方向。大部分学生能记住,但到用时,又分不清是左手还是右手了。这就要求不但简单进行比较,而且要研究记忆方法。认真观察可发现安培力和洛伦兹力的“力”的最后一笔是“ノ”。很像左手手势,所以力用左手定则。而感应电流“流”的最后一笔是“し”很像右手手势,所以感应电流判断用右手定则。通过这样比较再象形记忆,记忆将根深蒂固。

有了巧妙的记忆方法,并及时有效地复习,定能记忆好、掌握好物理概念、规律,学好物理。

摘要:人的一切学习都含有记忆, 记忆得如何跟是否掌握正确的记忆方法有密切联系。因此, 本文从心理学的角度对记忆的方法进行分析, 研究记忆的途径, 提出图表记忆、熟语记忆、比较记忆三种有效记忆方法。

关键词:高中物理知识,图表记忆,熟语记忆,比较记忆小

参考文献

[1]乔际平.物理心理学.高等教育出版社, 1991.

[2]陈明凯.“五多”法指导学生学物理.中学物理, 2000, (16) .

高中物理动量和能量知识点学习 篇3

关键词:高中物理;动量;能量;知识点

一、前言

动量与能量知识点是高中物理学习的重点与难点,动量定理与能量定理、动量守恒定律与动能量守恒定律历来都是物理高考试题的热点。但是,与动量和能量相关的题型灵活性高、综合性强以及难度相对较大,这就要求我们在学习动量和能量知识点时,需要对动量与能量的所有知识点进行整合,为物理动量和能量知识点的学习和解题提供可靠、有效的帮助,笔者根据自身的经验,对物理动量与能量知识点的学习思路和经验进行了总结,具体如下文所示。

二、动量和能量的概念

1、动量和动能。动量与动能都能够用于描述物体的运动状态,虽然两者都与参考系数有关,但是存在明显的差别,动量属于矢量,动能属于标量,一定质量物体的动能发生改变,其动量也随之改变;一定质量物体的动量发生改变,但是动能不一定发生改变。给定物体的质量为m,其动能与动量之间的关系表示为:

2、冲量和功。冲量用于表示对时间的累积,会对物体的动量产生影响;功用于表示对位移的累积,会对物体的能量产生影响。冲量属于矢量,功属于标量。冲量和功具有共同的特点,即都是过程量。

冲量的计算过程表现为:①冲量的定义式表示为I=Ft(公式2),高中物理中该公式只能用于恒力冲量的计算。②按照冲量效果进行计算,根据动量定理I合=ΔP(公式3)。③合力冲量的计算包括两种方法:其一,先对各力F1、F2、F3…的冲量进行计算,然后计算矢量和;其二,先计算各力的合力,然后再利用F合t=I合(公式4),对冲量进行计算。

功的计算过程表示为:①按照公式W=Fscosα(公式5)进行功的计算,高中物理中该公式只能用于计算恒力做功。②功的计算利用W=Pt(公式6),如果已知某个力的功率,那么在t时间内做的功就是W,并且时间t内该力的功率是一个定值。③功的作用效果通常根据能量转化量度进行计算,利用功能关系或者动能定理进行功的计算,在计算的过程中需要注意不同力做功与不同能量变化的关系。例如,弹力做功后,弹簧的弹性势能将会发生改变;重力做功后,物体的重力势能将会发生改变;分子力做功后,分子势能将会发生改变;合力做功后,物体的功能也发生改变。④合力功的计算,以质点为研究对象,其合力计算过程包括两种:其一,先对各力所做的功进行计算,然后求代数和,公式表示为W1+W2+W3+…=W合(公式7);其二,先对合力进行计算,然后利用公式F合scosα=W合(公式8)进行合力功的计算。通常状况,对于由若干物体组成的系统,需要利用隔离法对所有物体所受合力的功进行计算,不能采用整体法进行合力功的计算,特别是系统中物体之间发生了相对运动,因为合力为零,但是合力功不一定为零。⑤作用力与反作用力功的计算,一对相互作用力,力的大小相同,方向相反,并且作用力与反作用力同时发生与消失,作用力和反作用力的冲量也存在上述关系。值得注意的是,因为作用力与反作用力作用在不同物体上,物体的位移不僅受加速的影响,还受初始条件(初始速度、初始位置)的影响,因此,两个物体的位移矢量不一定相同。

三、动量和能量的规律

1、动量定理与动能定理。动能定理与动能定理都是能够将复杂过程转化呈简单的状态,以便于研究,两个定理都是由牛顿运动定律与运动学公式推导出来的。动量定理与动能定理既能够适用于物体的单个过程,也能够适用于多个过程;既能够适用于直线运动,也能够适用于曲线运动;既能够适用于恒力状况,也适用于变力状况。在应用动量定理与动能定理时,需要了解两个定理之间的差别,动量定理屬于矢量方程,通过创建坐标系列出相应的分量式;动能定理属于标量方程,不能够列出分量式。在处理位移问题时,应该采用动能定理,在处理时间问题时,应该采用动量定理。因为互为作用力和反作用力的冲量总和为零,因此,动能定理仅仅适用于单个质点,不适用于整个系统,而动量定理既能够适用于单个质点,也适用于整个系统。

2、动量守恒与能量守恒。动量守恒定律与能量守恒定律用于研究系统或者物体运动变化过程中状态的变化,在进行系统或者物体运动过程研究时,只需要对引起变化的原因和改变的结果量进行研究,并不需要对过程的具体变化细节进行分析,也就是说,在求解问题时,只需要了解始末状态能量、动量与力在过程中的冲量。对于一个物体系统,物体系统内部存在相互作用时,需要利用动量守恒定律与能量守恒定律,尤其是相对路程问题,需要优先考虑能量守恒定律。在运用守恒定律时需要注意以下几个方面:①机械能守恒定律成立条件,机械能守恒定律的成立条件主要包括以下几个方面:其一,只受弹力,只有弹力做功,弹性势能与动能之间相互转化,例如,物体在光滑水平面运动时撞到弹簧,弹簧势能与重力势能发生转变,对于整个系统来说,机械能守恒;其二,只受重力,只有重力做功,只发生重力势能与动能之间的相互转化,例如,抛体运动;其三,物体不仅受到弹力作用,还受重力作用,弹力与重力共同做功,只发生重力势能、弹性势能以及动能的转化,例如,物体在自由下落过程中碰到弹簧,对于整个系统而言,机械能守恒;其四,虽然受其他力作用,但是只有重力、弹力做功,例如,物体在恒定拉力作用下斜面上匀速运动,虽然存在摩擦力,但是摩擦力与拉力大小相同,整个系统机械能守恒。②动能守恒定律成立条件,动能守恒定律成立的条件主要包括以下几个方面:其一,整个系统不受外力作用,或者外力合力为零;其二,虽然整个系统外力合力不为零,但是对于整个系统来说,外力非常小,例如,爆炸过程中,重力作为外力,和内力相比非常小,可以不略不计;其三,整个系统外力合力不为零,但是在某一个方向的分量合力为零,在该方向上可以采用动能守恒定律。

nlc202309090231

3、典型例题分析。为了强化自身对动量和能量知识点的学习,我们还应该重点对典型例题进行练习,具体表现为:

以弹簧系统为例,弹簧伸缩过程的弹力方向、大小、相连物体的运动状态具有系统性、综合性,在整个过程中多种状态参量(动量、冲量、能、功等)都发生了变化,在进行弹簧类问题解题时,需要注意以下几个方面:①弹簧压缩和拉伸变形过程中,当变形量绝对值相同,则表明弹簧的弹力大小以及弹性势能也相同;②需要对和弹簧相连物体内部机械能的变化进行分析,与弹簧相连的物体在做功时,将会发生弹性势能与其他能量的相互转换;③重视对弹簧变形与关联物运动关系分分析。

例1:如图1所示,长木条M的左端固定一个弹簧,弹簧右端和小物块m连接,两个作用面的摩擦力均为零,开始时M与m处于静止状态,同时对m、M施加大小相同、方向相反的水平恒力F1、F2,整个系统运动过程中,以下说法正确的是()。

A.当弹簧大小和水平恒力大小相同时,M、m的动能达到最大值。

B.因为F1、F2分别对m、M做功,因此整个系统的机械能越来越大。

C.因为F1、F2分別对m、M做功,因此整个系统的动量越来越大。

D.因为F1、F2大小相同、方向相反,因此整个系统机械能守恒。

解析过程:当F1=F2>kx时,M、m在F1、F2的作用下,分别向左、向右左匀加速运动;当F1=F2

四、结语

综上所述,动量和能量知识结构复杂,知识点众多,需要我们对动量和能量的概念、规律进行全面、深入的了解,值得注意的是,还应该加强典型试题练习,在练习习题的过程中掌握如何巧妙的运用动量、能量观点对复杂问题进行简单化处理,实现快速、高效、准确解题,进而提高自身的物理成绩。

参考文献

[1] 郑春旺.巧用动量与能量的观点处理高中物理问题[J].高中數理化,2013,(4):29.

[2] 崔伟健.浅谈“一题多解”在高中物理教学中的应用[J].中学物理,2013,(11):223-224.

[3] 佟玉满.新课程理念下高中物理有效教学的实践研究[D].东北师范大学,2012.

[4] 黄伟,徐高本.动量定理 动量守恒定律[J].高中生学习(高三版),2011,(4):45-46.

高中物理光学知识点总结 篇4

由薄膜的前、后表面反射的两列光波叠加而成,劈形薄膜干涉可产生平行相间的条纹.

(2)薄膜干涉的应用

①增透膜:透镜和棱镜表面的增透膜的厚度是入射光在薄膜中波长的.

高中物理恒定电流知识点总结 篇5

串联是连接电路元件的基本方式之一。将电路元件(如电阻、电容、电感,用电器等)逐个顺次首尾相连接,[1]

将各用电器串联起来组成的电路叫串联电路。

·开关在任何位置控制整个电路,即其作用与所在的位置无关。电流只有一条通路,经过一盏灯的电流一定经过另一盏灯。如果熄灭一盏灯,另一盏灯一定熄灭。

·优点:在一个电路中, 若想控制所有电器, 即可使用串联的电路;

·缺点:只要有某一处断开,整个电路就成为断路。 即所相串联的电子元件不能正常工作。

串联电路中总电阻等于各电子元件的电阻和,各处电流相等,总电压等于各处电压之和。

并联电路

并联电路是使在构成并联的电路元件间电流有一条以上的相互独立通路,为电路组成二种基本的方式之一。例如,一个包含两个电灯泡和一个9 V电池的简单电路。若两个电灯泡分别由两组导线分开地连接到电池,则两灯泡为并联。

特点:用电器之间互不影响。一条支路上的用电器损坏,其他支路不受影响。

刍议高中物理教学中知识逆向迁移 篇6

一、知识逆向迁移的现象和原因

知识逆向迁移的产生,主要是由于学生不能准确地掌握物理的基本概念和基本理论,只进行简单的记忆,忽视概念之间的区别与联系,从而形成知识的逆向迁移的现象。

1. 未理清概念之间的关系。

物理学中有许多相关联的物理概念和规律,它们之间既相互联系,又具有各自不同的本质属性,学生如果不加以理解和准确掌握,加之对相关的物理图景理解不透,就会将它们之间的关系简单化,极易产生后续学习对先前学习的逆向迁移。如静电场与重力场,电力线与磁力线,库仑定律与万有引力定律,质量与重量、动量与动能,电场强度与电场力,电压与电动势,力的合成与力的分解,正功与负功,电场强度与电势,电场强度与点电荷电场强度,等等。

2. 思维定势所致。

思维定势,就是按照积累的经验教训和已有的思维规律去解决问题。这固然有其积极的一面,如在条件不变的情境时,思维定势能使人迅速地从知识题库中提取已有知识和经验,迅速解决问题,提高思维效率。但如果学生的思维定势太强,且不注意新问题与旧问题之间的差异,则对问题解决具有较大的负面影响,造成知识和经验的逆向迁移。在教学实践中发现,学生解题中的许多失误,都是由不良的思维定势造成的。

二、防止逆向迁移的措施

1. 把握理解的方向,构建知识网络,防止逆向迁移。

在学生形成概念、掌握规律的过程中,引导学生正确进行科学抽象,由感性认识上升到理性认识阶段,这是形成概念、掌握规律的关键。观察同一个物理现象,不同的学生会得出不同的结论。因为在每一个物理现象中,存在着多种因素的影响。如果把握不住抽象思维的正确方向,就会得出错误的结论。例如:在力、热、电、光、原各单元内,总可以找到一些中心概念,以此为支撑进行放射,形成网络,不仅便于记忆,而且便于在系统内对概念、规律进行升华。比如,以“电路”为中心辐射,就会形成以电路为中心,电路的描述、电路的能量、电路的链接、电路的定律、电路的实验等为分支与末梢的电路知识与方法网络。

2. 运用对比分析,减少逆向迁移。

有比较才有鉴别,有鉴别才能认识新旧知识之间的联系,从而有效地防止逆向负迁移。例如:学完判定电磁感应现象中的感应电流方向的右手定则后,会干扰学过的判定通电导体在磁场中所受磁场力方向的左手定则的正确运用。这时我就及时进行对比分析,使学生认识到在两个定则中,磁感线都垂直穿入手心,拇指分别指导体切割磁感线的运动方向和所受磁场力方向,四指均指电流方向。通过对比学生加深了对知识的理解,强化了学习方法,有效地避免了逆向迁移的发生。

3. 注重习题设计,克服逆向迁移。

学生初次接触到某个概念、规律有一个逐步学会的过程,如果把过难的题“一次到位”地摆在学生面前,甚至把经典的高考试题、综合试题放到学生面前,不但会挫伤学生学习的积极性,而且会让学生感到害怕,丧失学习物理的自信心。因此在习题的设计中应循序渐进、分层设计,对不同的学生设计不同的问题,在不同的教学时段设计不同的问题,比如根据不同的需要设计基础闯关、能力提升、综合拓展试卷,错题过关试卷等。只有这样,才能在巩固知识的同时,让学生在解决问题的过程中学会梳理知识、形成能力,在解决问题的过程中对概念进行辨析,掌握物理规律。总之,教师要通过一题多变、一题多解、一提多答等多种形式的练习,培养学生的应变能力、创造能力和思维品质,从而消除知识的逆向迁移。

4. 重视讲评课,查漏补缺,减少逆向迁移。

讲评课教师重在解题思路的分析和点拨,可以引导学生阅读题中的关键字、词、句,挖掘题中的隐含条件;或引导学生回忆题目涉及的相关物理知识,挖掘物理概念、物理规律的内涵和外延;或探寻题中的已知因素和未知因素之间的内在联系,再现正确的物理模型,建立物理方程,等等。切忌满堂灌输式地面面俱到、蜻蜒点水式地简单肤浅,要针对重点知识、重要解题方法,对具有典型错误的代表题,进行精心设疑、点拨,耐心启发,并留给学生必要的思维时空,让学生悟深、悟透。

讲评课后必须根据讲评课反馈的情况进行矫正补偿,这是讲评课的延伸,也是保证讲评课教学效果的必要环节。可要求学生将答错的题全部订正在试卷上,并把自己在考试中出现的典型错误试题(包括错解)收集在“错题集”中,作好答错原因的分析说明,给出相应的正确解答。教师要及时依据讲评情况,再精心设计一份针对性的练习题,作为讲评后的矫正补偿练习,让易错、易混淆的问题多次在练习中出现,以达到矫正、巩固的目的。

5. 重视非智力因素在迁移中的作用。

有的学生学习不好,绝大部分不是因为智力问题,而是非智力问题,优越的环境能促进学生的学习,但如果不及时教育,往往会成为学习迁移的阻力,没有学习动力的学习即使环境再好、智力再好也无济于事,家庭条件很好、智力也很好的学生学习迁移效果不好的例子很多,因此在教学中必须加强学习目的性教育,渗透德育,增加学生的学习动力的教育,克服怕艰苦思想,进行挫拆教育,等等。及时了解学生的心理状态,对学困生要及时表扬,对优生要随时提醒。

浅谈高中物理电学知识复习技巧 篇7

【关键词】高中物理;电学;复习技巧

电学的知识比起物理学科中其他版块的知识点具有一定的特殊性,其对实践以及相关操作的要求比较高,考察的东西更加接近于试验中的相关现象,是理论知识与实践结合的知识点考察。因此就格外需要学生掌握相关方法,按照经验得出结果。复习之时就需要着重对知识的难点和混淆点进行掌握,还要结合实际的现象加深理解和印象。

一、集中学习的注意力,培养对物理的兴趣

和预习、上课学习一样,复习的过程中也要掌握恰当的方法,需要根据实际情况,找到复习的最佳状态。倘若当时的学习状态较差,或是学习的环境不理想,则不适宜复习。只有集中注意力重点复习,才能有足够的效率,最大程度的得到复习的成果。一般情况下来说,是在睡醒之后或是心情愉悦、时间空闲的时候具有最佳的学习效率。

二、理清物理概念和公式,加深理解,准确记忆

物理中的公式极为重要,需要准确记忆,不能混淆。在复习的过程中,对一些最基础的公式复习和理解,看似简单,实则也是十分重要。许多学生在复习的过程中忽略这一点,导致今后在做题的过程中总是犯一些低级错误,得不偿失。

三、加深对知识的理解,找出解题思路,提高解题能力

理解是学习知识的必经阶段,之后经过理解之后的记忆才能够真正的掌握方法,才能够得心应手。因此在电学相关知识的复习过程中,需要对具有针对性和代表性的题目进行重点的复习。首先课文中的例题就是复习的一个重点。复习时建议首先看一遍课文中的电学相关实验以及例题,对课后的习题中重点和难点进行着重复习。可以进行重新的计算来考察自己的掌握程度。这就需要在第一次学习的过程中多做功课,对重点和难点进行标注[2]。当然,完成了书本上内容的复习之后也只是一个初级水平的获取,还需要对课外习题的复习和掌握。其中要对以前教师讲解过的题目、试卷进行整理和归纳,找出标记的难点和需要着重注意的题目,再进行重温或者重复验算。在这个过程中就能够再次加深自己的印象,找到自己知识的漏洞。在这个过程中,最好是准备一个习题册,对重要的经典的题目进行记录,以便下次的复习。

四、同学之间相互探讨,寻求教师的帮助

电学知识的复习其实就是对于相关知识掌握程度的加深和理解程度的加深。一个人的力量是渺小的,大家的力量才是巨大无穷的。在复习的过程中最好是能与同学相互探讨,借同学的习题册和试卷进行复习验算,遇到不懂的或是有疑问的可以与同学相互探讨。还可以寻求老师的帮助,毕竟教师才是最具权威的答案,教师还会根据这一类的知识进行相关的扩展,能够使得复习的过程更加的全面。在复习过程中,倘若碰到难以攻克的题目一定要理解清楚弄明白,最好是再找出相关的题目进行反复计算,加深印象。

五、进行重复试验,加深影响

前面提到电学的相关知识具有实践性、可操作性,在复习的过程中通过实验进行重复的把握也不失为一种好的方法。因为实验的过程就是反复记忆、考察与加深印象的过程,不仅如此,在实验的过程中还能锻炼自己的其他相关综合能力,并且激发自己的创新能力和对物理学习的兴趣,使得复习的过程中充满乐趣,让物理真正的走进我们的生活。

六、经典例题永远是复习的重点

其实知识也是具有相关性的,电学的知识考察也有其目的性,我们需要对那些经典的例题进行反复的思量,这是复习的过程,也是理解的过程。会一遍遍的加深我们的印象,直到最后我们终于将知识转化为自己的东西。例题一:解析E=I1(r1+R1)+(I1+I2)r,由题目数据知I2I1,忽略I1对总电流的影响,E=I1(r1+R1)+I2r,即I1=ER1+r1-rR1+r1I2,以I2为横轴,I1为纵轴,作I1-I2函数图,由图得斜率k=-rR1+r1,截距为b=ER1+r1,联立解得E和。

例题2:若选测量数据中的一组数据计算电阻率ρ,则所用的表达式ρ=?求电阻丝的电阻率.解析RL=I2r2-I1r1I1,RL=ρL0S,S=π(D2)2,测量数据是I1和I2,表达式I2=(RL+r1)I1r2,作I1-I2函数图,I1-I2是一条过原点的直线,由图求斜率,由斜率k=RL+r1r2可求RL,再求电阻率ρ。

总之,我们在进行电学知识的复习过程中,需要再次理解有关的知识要点,对以往以及理解的知识点进行印象的加深,而对于那些尚不了解的知识点要通过复习来找出漏洞并通过习题的计算、与老师同学的交流理解清楚。还要学会对当前的知识进行归纳和总结,准备习题册,将做过的题目和试卷整理清楚明白,对重要的题目进行标注[3]。要把握学习的状态,在各项难题和问题的解决中找到物理学习的兴趣。复习电学的知识其实和复习物理其他版块的知识相似,总之要切实的投入其中,正真的而理解和温习,这样才能达到复习的真正目的。

参考文献:

[1]吴敏.例谈如何进行电学实验的电路设计[J].物理教师:高中版,2011,(11):38-38,40.

[2]曹会.高中物理电学实验资源开发与能力培养的初步研究[D].苏州大学,2010.

上一篇:森林防火优秀征文下一篇:我战胜了困难初一记事作文