反比例函数教案及答案(推荐10篇)
主备人
陈春莲
知识与技能目标:①了解反比例函数的意义,理解反比例函数的概念;
②会求简单实际问题中的反比例函数解析式,反比例函数教案及教学反思。
程序性目标:①从现实情景和学生的已有知识经验出发,讨论两个变量之间的相互关系,从而加深对函数概念的理解;
②使学生经历抽象反比例函数概念的过程中感悟反比例函数的概念。
情感与价值观目标:
①通过反比例函数概念的教学,使学生亲身经历知识的发生、发展的过程,培养学生的自主、合作的意识以及确立良好的认知观;
②学生通过对反比例函数的简单应用,使其初步形成数学的建模意识和能力。
教学重点
反比函数的概念
教学难点
例1涉及较多的《科学》学科知识,学生理解问题时有一定的难度。
教学媒体准备
教学设计过程
(①教学程序设计;②教法设计;③学法设计;④教材的处理与媒体。)
一、通过对两个变量之间的反比例关系的讨论和探究,使学生感受彼此之间特殊的一一对应关系,从而加深对函数概念的理解。
(创设情境
写出下列各关系:
1.长方形的长为6,宽y和面积x之间有什么关系?
2、长方形的面积为6,一边长x和另一边长y之间要有什么关系?)
两个相关联的量,一个量变化,另一个量也随着变化,如果两个变量的积是一个不为零的常数,我们就说这两个变量成反比例.借助正比例关系与反比例关系的类比,为问题的后续探究构建感性的氛围。
(请看下面几个问题:
探究:
问题1:北京到杭州铁路线长为1661km。一列火车从北京开往杭州,记火车全程的行驶时间为x(h),火车行驶的平均速度为y(km/h),(1)你能完成下列表格吗?
X(h)
y(km/h)
87.4
(2)Y与x成什么比例关系?能用一个数学解析式表示吗?)
(问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.
设它的一边长为x(米),请写出另一边的长y(米)与x的关系式.
根据矩形面积可知
xy=24,即……)
使学生在体验探究的过程中,感受知识的形成过程,从而为知识的内化和正迁移创造了条件。
二、引导学生尝试自主、合作的学习,使学生经历知识构建和发现的过程,借此提出反比例函数的概念,培养了学生建模的意识、也发展了数学建模的能力。
(挑战自我
1、某住宅小区要种植一个面积为1000平方米的矩形草坪,草坪长为y米,宽为x米,则y关于x的关系式为______;
2、已知北京市的总面积为1.68×104平方千米,全市总人口为 n 人,人均占有土地面积为 s 平方千米,则s关于n的关系式为______;
3、京沪线铁路全程为1463km,某列车平均速度为 v(km/h),全程运行时间为t(h),则v关于t的关系式为______。)
构建互动、和谐的课堂教学氛围,使学生对反比例函数概念完成从感性体验到理性认知的过渡。
(发现:
一般地,若变量y与x反比例,则有xy=k(k为常数,k≠0),也就是y=。
归纳:上述几个函数都具有y=的形式,一般地形如y=(k是常数,k≠0)的函数叫做反比例函数(proportionalfunction).k叫做反比例函数的比例系数,且反比例函数的自变量x的值不能为零。)
(练习
1、下列函数中,哪些是反比例函数?说出反比例函数的比例系数
⑴y=-3x;⑵y=2x+1;⑶y=;⑷y=3(x-1)2+1;⑸y=(s是常数,s≠0);⑹xy=-;⑺x=-5y;)
利用学生对反比例函数概念的初步认识,引导学生借助自主练习,进一步加大学生对该概念的正迁移力度。
三、利用阿基米德的“撬动地球”的历史故事,结合了学生的心理发展特点,很好的激发了学生对问题探究的兴趣。我们常说,于其让学生“苦学”,不如让学生“乐学”。
创设一种欲罢不能的心理氛围,从而使学生形成了问题探究的动机。进一步培养学生分析问题、解决问题的数学建模能力。
(背景知识
给我一个支点,我可以撬动地球!
——阿基米德)
(【例1】如图,阻力为1000N,阻力臂长为5cm.设动力y(N),动力臂为x(cm)
(图中杠杆本身所受重力略去不计,教学反思《反比例函数教案及教学反思》。杠杆平衡时:动力动力臂=阻力阻力臂)
(1)求y关于x的函数解析式。
这个函数是反比例函数吗?如果是,请说出比例系数;
(2)求当x=50时,函数y的值,并说明这个值的实际意义;
(3)利用y关于x的函数解析式,说明当动力臂长扩大到原来的n倍时,所需动力将怎样变化?)
例题1涉及较多的《科学》学科的知识,学生在理解问题的背景时
有一定的难度,是本节教学的难点,教师在给出例题以前,有必要介绍一下“杠杆原理”,借助多媒体的教学辅助作用,使问题的出示显得活泼、直观,增强了问题的趣味性,从而更好的促使学生对问题的体验、探究。
(回顾与思考
练1.一个三角形,一边长为xcm,这边上的高为ycm,它的面积为25cm2.求(1)y关于x的函数关系式,并判断是什么函数?(2)自变量x的取值范围(3)当y=10时x的值.练2.一个矩形的面积是20cm2,相邻的两条边长为xcm和ycm,那么变量y是x的函数吗?是反比例函数吗?为什么?
练3.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?)
在一次引导学生通过对以上问题的回顾与思考,更有效的促使学生亲历知识发生和发展的过程。很好的紧扣了本课时的过程性教学目标。
(课内练习:
1、已知反比例函数y=kx-,⑴说出比例系数;
⑵求当x=‐10时函数的值;
⑶求当y=2时自变量x的值。
2、设面积为10cm的三角形的一边长为a(cm),这条边上的高为h(cm),⑴求h关于a的函数解析式及自变量a的取值范围;
⑵h关于a的函数是不是反比例函数?如果是,请说出它的比例系数
⑶求当边长a=25cm时,这条边上的高。)
应该说,本课时的教法设计能很好的结合学生的心理发展特点和规律、结合学生的认知水平和经验、结合学生发展的能力要求。应该真正确立“以人为本”的教学理念。课堂教学中情景、例题、互动练习的设计;及多媒体的应用无不体现了这样的要求。
四,借助学生自主进行的课时及所学问题的小结,辅之以教师对反馈问题的设计,应该在培养学生良好的思维品质(反思),在培养学生对问题看法的自我校正、自我反馈的意识和能力有一定的作用。
(通过这节课的学习,你有什么收获?)
(交流反思:
本堂课,我们讨论了具有什么样的函数是反比例函数,一般地,形如y=(k是常数,k≠0)的函数叫做反比例函数(proportionalfunction).
k叫做反比例函数的比例系数,其中反比例函数的自变量x的值不能为零。)
(检测反馈
1.分别写出下列问题中两个变量间的函数关系式,指出哪些是正比例函数,哪些是反比例函数,哪些既不是正比例函数也不是反比例函数?
(1)小红一分钟可以制作2朵花,x分钟可以制作y朵花;
(2)体积为100cm3的长方体,高为hcm时,底面积为Scm2;
(3)用一根长50cm的铁丝弯成一个矩形,一边长为xcm时,面积为ycm2;
(4)小李接到对长为100米的管道进行检修的任务,设每天能完成10米,x天后剩下的未检修的管道长为y米.)
《反比例函数的意义》教学反思
昆阳二中陈春莲
《反比例函数的意义》教学反思:首先简单复习了一次函数、正比例函数的表达式,目的是想让学生清楚每种函数都有其特有的表达式,对反比例函数表达式的总结作了一个铺垫。其次利用题组
(一)中的三个题目列出了
v=(1)及教学反思----------陈春莲“TITLE=”1.1反比例函数(1)及教学反思----------陈春莲“/>,xy=k(k为常数,k≠0),也就是y=。s=(1)及教学反思----------陈春莲”TITLE=“1.1反比例函数(1)及教学反思----------陈春莲”/>
三个表达式,当让学生观察这三个表达式与以前我们所学的y=kx+b和y=kx有什么联系时,居然有很多同学认为它们和正比例函数类似,当时在课堂上对于这个问题的处理过于仓促,现在想来应注意细节问题。利用题组
(二)对反比例函数的三种表示方法进行巩固和熟悉。
例题非常简单,在例题的处理上我注重了学生解题步骤的培养,同时通过两次变式进一步巩固解法,并拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题,(在上学期曾有过类似问题的,由于时间的久远学生不是很熟悉)但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。
题组
(三)在本节既是知识的巩固又是知识的检测,通过这组题目的处理,发现学生对本节知识的掌握还可以。从整体来看,时间有点紧张,小结很是仓促,而且是由老师代劳了,没有让学生来谈收获,在这点有些包办的趋势。
虽然在题目的设计和教学设计上我注重了由浅入深的梯度,但有些问题的处理方式不是恰到好处,有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性。总之,我会在以后的教学中注意细节问题的。
[关键词] 过程教育;反比例函数的应用;教学方法;教学分析
■ 背景介绍
《义务教育数学课程标准》(2011版)(以下简称《课标(2011版)》)倡导过程教育,以全面发挥数学的育人功能,但笔者在以浙教版《义务教育教科书·数学》八年级下册第六章第3节“反比例函数的应用”为载体的“多人同课异构”式的研修活动中发现,课堂教学普遍与过程教育存在偏差,也没有体现以学为中心的中心思想. 笔者网上查阅同类课例后也发现了类似现象,鉴于此,笔者在重复观课与反思的基础上,对这节课的教学进行了重构,改进后的教学过程与效果得到了同仁的认可,现将其整理出来,以飨读者.
■ 教学实录
环节1:经历回顾并提出问题的过程——明确要研究的问题
师:我们知道,若问题中的变量x,y满足“xy=k(k为常数且k≠0)”,则可直接列出反比例函数的关系式. 对于简单的“确定性”问题(根据条件能直接确定两个变量的变化关系是反比例函数),我们已有给定一个变量的值或范围求另一个变量的值或范围的经历与经验,那么怎样解决“不确定性”问题(有些问题只提供部分数据,不能直接确定其函数解析式)和带有多个限制条件的问题呢?本节课就来研究解决这类问题的方法. (揭示课题)
环节2:回顾解决“确定性”问题的方法,体会“数”与“形”方法的优缺点
师:现在我们一起来分析并解决下列问题1.
问题1?摇 设△ABC中BC边的长为x(cm),BC边上的高为y(cm),△ABC的面积为常数,且y关于x的函数图像经过点(3,4).
(1)y关于x的函数表达式是什么?
(2)自变量x的取值范围是什么?函数值y的取值范围是什么?
(3)当x=4时,y的值是多少?当2 师:根据题意,y关于x是什么类型的函数?为什么? 生1:y关于x是反比例函数,因为“△ABC的面积”是常数. 师:好的. 谁来回答第(1)问? 教学分析 “反比例函数的应用”是认识反比例函数应用的继续——从解决简单的“确定性”问题到解决“不确定性”问题和有多个限制条件的较复杂的实际问题. “根据问题提供的条件建立反比例函数模型→用待定系数法求出反比例函数表达式→用反比例函数的表达式或其图像解决给定一个变量的值或范围求另一个变量的值或范围的问题”的过程具有普适性,也有能力发展点、个性和创新精神培养点,其蕴涵的建模思想、数形结合思想、变化与对应思想、函数问题转化为方程问题的思想等是数学中的重要思想. 求实际问题变量的取值范围的经验、用“数”与“形”两种方法解决函数问题的经验、解决带有多个限制条件的实际问题的经验,这些对发展学生的智力有积极的影响. 《课标(2011版)》(课程内容)对反比例函数的应用提出的教学要求是“能用反比例函数解决简单的实际问题”,目前,在这节课的教学中,普遍存在建立反比例函数模型的认知过程短暂和解决问题之后反思过程缺失等问题,导致不能满足学生内化思维和思想的需要,也不利于发展学生的能力与个性. 本课例根据《课标(2011版)》提出的教学要求和教材意图,将其教学立意于“感悟思想,积累经验,发展能力与个性”,并以教材提供的题材为载体,从学生已有的知识与经验出发,运用具体到抽象的思维方法及教师价值引导与学生自主建构相结合的适度开放的方式,引导学生经历了完整的认知过程. 在问题1的教学中,既有“分析→列式→求解→作答”的过程,又有解决问题之后的反思,以积淀求实际问题自变量取值范围的经验和感悟“数”方法与“形”方法的优缺点. 在问题2的教学中,既有“分析→画图→估计→列式→验证→求解→作答”的过程,又有解决问题之后的反思,以感悟建模思想方法. 在问题3的教学中,既有“分析→列式→求解→作答”的过程,又有解决问题之后的反思,以感悟“通解”到“特解”的思维策略. 这体现了过程教育和以学为中心的思想,也遵循了问题解决教学的基本规范,能全面发挥其育人功能. 因此,问题解决教学,要选择有代表性的问题,要引导学生经历“分析→列式→求解→检验→作答→反思”的过程,使学生在良好的学习氛围中,理解和掌握数学的知识与技能,体会和运用数学的思想与方法,积累数学活动经验,发展发现问题与提出问题的能力和分析与解决问题的能力,及形成敢想、敢说、敢于创新的良好个性. 授课教师:还地桥镇松山中学卢青 【教学目的】 1、知识目标:经历观察、归纳、交流的过程,探索反比例函数的主要性质及其图像形状。 2、能力目标:提高学生的观察、分析能力和对图形的感知水平。 3、情感目标:让学生进一步体会反比例函数刻画现实生活问题的作用。 【教学重点】 探索反比例函数图象的主要性质及其图像形状。 【教学难点】 1、准确画出反比例函数的图象。 2、准确掌握并能运用反比例函数图象的性质。 【教学过程】 活动 1、汇海拾贝 让学生回忆我们所学过得一次函数y=kx+b(k≠0),说出画函数图像的一般步骤。(列表、描点、连线),对照图象回忆一次函数的性质。 活动 2、学海历练 让学生仿照画一次函数的方法画反比例函数y=2/x和y=-2/x的图像并观察图像的特点 活动 3、成果展示 将各组的成果展示在大家的面前,并纠正可能出现的问题。 活动 4、行家看台 1.反比例函数的图象是双曲线 2.当k>0时,两支双曲线分别位于第一,三象限内 当k<0时,两支双曲线分别位于第二,四象限内 3.双曲线会越来越靠近坐标轴,但不会与坐标轴相交 活动 5、星级挑战 1星: 1、反比例函数y=-5/x的图象大致是() 2、函数y=6/x的图像在第象限,函数y=-4/x的图像在第象限。2星: 1、函数y=(m-2)/x的图像在二、四象限,则m的取值范围是 2、函数y=(4-k)/x的图像在一、三象限,则k的取值范围是3星: 1、下列反比例函数图像的一个分支,在第三象限的是() A、y=(3-π)/xB、y=2-1/xC、y=-3/xD、y=k/x2、已知反比例函数y=-k/x的图像在第二、四象限,那么一次函数y=kx+3的图像 经过() A、第一、二、三象限B、第一、二、四象限 C、第一、三、四象限D、第二、三、四象限 4星: 1、在同一坐标系中,函数y=-k/x和y=kx-k的图像大致是 2、反比例函数y=ab/x的图像在第一、三象限,那么一次函数y=ax+b的图像大致 是 5星: 1、反比例函数y2m 1xm28,它的图像在一、三象限,则 2、反比例函数y 活动 6、回味无穷 k4k2,它的图像在一、三象限,则k的取值范围是x 1.反比例函数的图象是双曲线 2.当k>0时,两支双曲线分别位于第一,三象限内 当k<0时,两支双曲线分别位于第二,四象限内 3.双曲线会越来越靠近坐标轴,但不会与坐标轴相交 活动 7、终极挑战 正比例函数教案 正比例函数教案 教 学 目 标 知识技能 1、理解正比例函数的概念及正比例函数图象特征。 2、知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。 数学思考 1、通过“燕鸥飞行路程问题”的探究和学习,体会函数模型的思想。 2、经历运用图形描述函数的过程,初步建立数形结合,体会函数的三种表示方法的相互转换。经历探索正比例函数图象形状的过程,体验“列表、描点、连线”的内涵。 问题解决 能从数学角度提出问题,运用y= kx中,x、y的关系等知识解决问题。 情感态度 1、结合描点作图培养学生认真细心严谨的学习态度和学习习惯。 2、培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。 教学重点 探索正比例函数图形的形状,会画正比例函数图象 教学难点 正比例函数图象性质 教学过程安排 活动过程 活动内容和目的 活动1、问题引入 通过“燕鸥飞行路程问题”建立数学模型,理解行程与时间的对应函数关系,为导出正比例函数做铺垫。 活动2、正比例函数概念的学习通过若具体实例,概括归纳出一类有共性的函数关系表达式,导入正比例函数概念。 活动3、画正比例函数的图象 通过师生共同活动,学会运用描点法画出正比例函数图象 活动4、正比例函数图象特征的探究 通过对若干实例的观察分析、比较、概括归纳出正比例函数图象的特征。 活动5、小结、布置作业 回顾和重现本节重点内容加深本节知识范围的理解,通过巩固性练习尝试运用本节知识解决问题。 教学过程设计 问题与情境 师生行为 设计意图 情境1、问题 (1) 你知道候鸟吗?它们在每年的迁徙中能飞多远? (2) 燕鸥的飞行路程与时间之间有什么样的数量关系? 教师用课件展示问题。 让学生在地图上找出芬兰和澳大利亚,并将两处用直线连接,然后思考并解答课本上的问题。 学生自主解决三个问题。 教师在学生得到结论的基础上提醒:这里用函数y=200x对燕鸥飞行路程进行了刻画,尽管只是近似的,但它反映了燕鸥的行程与时间的对应规律。 从具体情境入手,使学生认识到数学与现实问题总是密不可分的,人们的需要产生了数学。 路程、速度与时间之间的关系学生较熟悉,当速度一定时,路程是时间的函数,用这些简单的实例不断从现实世界中抽象出数学模型,建立数学关系的方法。 情境2、问题 (1)课本上有4 个实例,这些实际问题中的变量对应规律可用怎样的函数表示?这些函数有什么共同点? 教师出示四个实例问题的幻灯片,要求学生(1)能找出变量对应关系表达式(2)能说出表达式中的自变量、自变量的.函数 学生自主探究,分组讨论;然后教师让各小组代表回答问题。师生互动对回答的问题进行分析评价。 教师引导学生观察分析上面的五个表达式的共性:都是常数与自变量乘积的形式。 教师口述并在黑板上板书正比例函数的概念。 教师让学生看书,在定义处画上记号,并提出问题:这里为什么强调k 是常数,k≠0 通过这些实际问题使学生进一步加深对函数概念的理解,也为导出函数概念做好铺垫。 通过归纳、分析使学生明白正比例函数的特征、理解其解析式的特点 情境3、问题 (1) 我们知道了怎样用解析式表示正比函数能否用图象来表示它呢? (2) 怎样在直角坐标系中画出正比例函数图象。 (3) 观察、分析图象的特点 (4) 巩固性练习画图象 学生在事先准备好的坐标纸上,用描点法画出y=2x和y=-2x的图象。 教师用超级画板演示。 说明描点后先观察形状,再连线。 对这个问题老师应关注 (1) 组织学生一起对所画图象进行评价。 (2) 和学生一起简要总结主要步骤。 (3) 用画板演示,当x增大时,y也相应地增大。演示描更多个点的情况 学生讨论分析、比较y=2x与y=-2x图象的异同之处,填写所发现的规律 学生独立练习在同一坐标系中画出 图象 ,让学生说明了这两个图象的异同之处 经历探索正比例函数图象形状的过程,体验“列表、描点、(观察形状)、连线”的内涵。 比较异同之处,为后面分析讨论正比例函数图象的特征作准备。 练习画出图象通过多个实例,使学生进一步分析研究后能领悟这一类图象的特点。 情境4、问题 (1) 从以上作图过程可以发现正比例函数的图象有什么特征。 (2) 经过原点与(1,k)的直线是哪个函数的图象? 教师对画图过程进行巡回指导和个别辅导,学生画完图后请学生回答这两个图象的特点并与上面的特点相比较。 教师用画板演示 学生在老师的引导下概括、归纳出正比例函数图象的特征。 教师板书教科书25页上的正比例函数图象的特征。 对于这个问题教师应重点关注 (1) 学生是否通过对正比例函数解析式观察分析,发现当k>0时函数y与自变量x同号;当k<0时函数y与自变量x异号。 (2) 学生对正比例函数图象观察分析,知道其图象是一个随x增大而增大或减小的直线。 学生讨论左边的问题。 教师注意:(1)提醒学生从解析式入手,探究当x=0时或x=1时,y的值分别是几;(2)正比例函数的图象为什么一定过(0,0)和(1,k)这两点;(3)因为两点确定一条直线,因此,画正比例函数图象时,只须过原点和(1,k)画一条直线即可。 在多个实例的基础上,归纳得到正比例函数图象的性质,潜移默化地对学生进行了概括、归纳、比较、分析的思维方法的教育。 这里通过对解析式和图象的分析,可使学生明白解析式和图象对正比例函数的刻画各有优势。 了解事物的特征就可以使解决问题来得更简捷一些,不断培养学生分析和解决问题的能力。这里同时让学生加深领会数形结合的思想。 (3) 用你认为最简单的方法画出正比例函数图象(教科书26页练习)。 学生练习用“两点法”画图象,教师巡回辅导,并安排一名学生在黑板上画。 教师应当关注: (1) 学生画图中是否采用的是“两点法”; (2) 这两点是否最简单(其中关键是对k的确认)。 完成当堂练习,巩固“两点法”画图象的方法。 情境5 问题 本节课学了哪些内容?你认为最重要的是什么? 布置作业 教科书习题11。2第1、2、6、7题。 学生稍作思考后分组讨论,让3~4名学生回答。 教师应当关注: (1) 允许学生答案不同,回答结论的不同只会对学生学习更有帮助,应当鼓励; (2) 最后应达到师生共同小结,明确正比例函数的概念、图象特征的效果 学生独立完成作业,(其中第7题可作为选作题)。 教师批改后注意反馈。 教师应关注: (1) 学生作图象的规范性; (2) 不同层次的学生在作业中反映出的问题应及时解决。 让学生参加小结并允许学生答案不同,可以增强学生学习的积极性和主动性,培养他们对所学知识的回顾思考习惯;通过小结也强调了本节课的重点,巩固了学习内容。 对作业中的问题要注意个体分析,布置作业要体现分层要求,有一定弹性。 教学设计说明 本节内容是在学生学习了变量和函数的基本概念基础上进行的。学习了正比例函数在引入一次函数,有利于降低教学难度,使难点分散。学生在理解正比例函数概念、描点画函数图象、利用解析式和图象分析正比例函数性质时来得更加容易。 在教材处理方面,采取:“建立数学模型――导入正比例函数概念――画正比例函数图象――探究正比例函数性质――练习、小结”这样循序渐进的教学流程。 考虑到本节内容概念性较强,采取通过学生熟悉的行程问题来导入正比例函数的概念,学生易于接受。 在教学设计时,注重了学生的尝试和探究,如对正比例函数变量对应方式的辨析,自变量取值范围的讨论,学生列举正比例函数的实例的分析,四个小实例的探究,画图象时的动手尝试,小结时的自我概括和归纳等。 在教学时使学生的尝试和探究贯穿课堂全过程,同时重视教师的引导、指导和示范,如在概念出示时必要的板书,画图象时的示范,对关键之处的启发、点拨和讲解,还有教师与学生、学生与学生的互动等。这样有利于学生对概念的理解,也有利于培养学生的学习能力和学习习惯。 知识技能 1、理解正比例函数的概念及正比例函数图象特征。 2、知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。数学思考 1、通过“燕鸥飞行路程问题”的探究和学习,体会函数模型的思想。 2、经历运用图形描述函数的过程,初步建立数形结合,体会函数的三种表示方法的相互转换。经历探索正比例函数图象形状的过程,体验“列表、描点、连线”的内涵。问题解决 能从数学角度提出问题,运用y= kx中,x、y的关系等知识解决问题。情感态度 1、结合描点作图培养学生认真细心严谨的学习态度和学习习惯。 2、培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。教学重点 探索正比例函数图形的形状,会画正比例函数图象 教学难点 正比例函数图象性质 教学过程安排 活动过程 活动内容和目的 活动 1、问题引入 通过“燕鸥飞行路程问题”建立数学模型,理解行程与时间的对应函数关系,为导出正比例函数做铺垫。 活动 2、正比例函数概念的学习 通过若具体实例,概括归纳出一类有共性的函数关系表达式,导入正比例函数概念。 活动 3、画正比例函数的图象 通过师生共同活动,学会运用描点法画出正比例函数图象 活动 4、正比例函数图象特征的探究 通过对若干实例的观察分析、比较、概括归纳出正比例函数图象的特征。 活动 5、小结、布置作业 回顾和重现本节重点内容加深本节知识范围的理解,通过巩固性练习尝试运用本节知识解决问题。教学过程设计 问题与情境 师生行为 设计意图 情境 1、问题 (1) 你知道候鸟吗?它们在每年的迁徙中能飞多远?(2) 燕鸥的飞行路程与时间之间有什么样的数量关系? 教师用课件展示问题。 让学生在地图上找出芬兰和澳大利亚,并将两处用直线连接,然后思考并解答课本上的问题。学生自主解决三个问题。 教师在学生得到结论的基础上提醒:这里用函数y=200x对燕鸥飞行路程进行了刻画,尽管只是近似的,但它反映了燕鸥的行程与时间的对应规律。 从具体情境入手,使学生认识到数学与现实问题总是密不可分的,人们的需要产生了数学。 路程、速度与时间之间的关系学生较熟悉,当速度一定时,路程是时间的函数,用这些简单的实例不断从现实世界中抽象出数学模型,建立数学关系的方法。 情境 2、问题 (1)课本上有4 个实例,这些实际问题中的变量对应规律可用怎样的函数表示?这些函数有什么共同点? 教师出示四个实例问题的幻灯片,要求学生(1)能找出变量对应关系表达式(2)能说出表达式中的自变量、自变量的函数 学生自主探究,分组讨论;然后教师让各小组代表回答问题。师生互动对回答的问题进行分析评价。教师引导学生观察分析上面的五个表达式的共性:都是常数与自变量乘积的形式。教师口述并在黑板上板书正比例函数的概念。 教师让学生看书,在定义处画上记号,并提出问题:这里为什么强调k 是常数,k≠0 通过这些实际问题使学生进一步加深对函数概念的理解,也为导出函数概念做好铺垫。 通过归纳、分析使学生明白正比例函数的特征、理解其解析式的特点 情境 3、问题 (1) 我们知道了怎样用解析式表示正比函数能否用图象来表示它呢?(2) 怎样在直角坐标系中画出正比例函数图象。(3) 观察、分析图象的特点(4) 巩固性练习画图象 学生在事先准备好的坐标纸上,用描点法画出y=2x和y=-2x的图象。教师用超级画板演示。 说明描点后先观察形状,再连线。对这个问题老师应关注 (1) 组织学生一起对所画图象进行评价。(2) 和学生一起简要总结主要步骤。 (3) 用画板演示,当x增大时,y也相应地增大。演示描更多个点的情况 学生讨论分析、比较y=2x与y=-2x图象的异同之处,填写所发现的规律 学生独立练习在同一坐标系中画出 图象,让学生说明了这两个图象的异同之处 经历探索正比例函数图象形状的过程,体验“列表、描点、(观察形状)、连线”的内涵。比较异同之处,为后面分析讨论正比例函数图象的特征作准备。 练习画出图象通过多个实例,使学生进一步分析研究后能领悟这一类图象的特点。 情境 4、问题 (1) 从以上作图过程可以发现正比例函数的图象有什么特征。 (2) 经过原点与(1,k)的直线是哪个函数的图象? 教师对画图过程进行巡回指导和个别辅导,学生画完图后请学生回答这两个图象的特点并与上面的特点相比较。 教师用画板演示 学生在老师的引导下概括、归纳出正比例函数图象的特征。教师板书教科书25页上的正比例函数图象的特征。 对于这个问题教师应重点关注 (1) 学生是否通过对正比例函数解析式观察分析,发现当k>0时函数y与自变量x同号;当k<0时函数y与自变量x异号。 (2) 学生对正比例函数图象观察分析,知道其图象是一个随x增大而增大或减小的直线。学生讨论左边的问题。教师注意:(1)提醒学生从解析式入手,探究当x=0时或x=1时,y的值分别是几;(2)正比例函数的图象为什么一定过(0,0)和(1,k)这两点;(3)因为两点确定一条直线,因此,画正比例函数图象时,只须过原点和(1,k)画一条直线即可。 在多个实例的基础上,归纳得到正比例函数图象的性质,潜移默化地对学生进行了概括、归纳、比较、分析的思维方法的教育。 这里通过对解析式和图象的分析,可使学生明白解析式和图象对正比例函数的刻画各有优势。 了解事物的特征就可以使解决问题来得更简捷一些,不断培养学生分析和解决问题的能力。这里同时让学生加深领会数形结合的思想。 (3) 用你认为最简单的方法画出正比例函数图象(教科书26页练习)。 学生练习用“两点法”画图象,教师巡回辅导,并安排一名学生在黑板上画。教师应当关注: (1) 学生画图中是否采用的是“两点法”; (2) 这两点是否最简单(其中关键是对k的确认)。 完成当堂练习,巩固“两点法”画图象的方法。 情境5 问题 本节课学了哪些内容?你认为最重要的是什么? 布置作业 教科书习题11。2第1、2、6、7题。 学生稍作思考后分组讨论,让3~4名学生回答。 教师应当关注: (1) 允许学生答案不同,回答结论的不同只会对学生学习更有帮助,应当鼓励;(2) 最后应达到师生共同小结,明确正比例函数的概念、图象特征的效果 正反比例,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。 【数量关系】判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。 【解题思路和方法】 解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。 正反比例问题与前面讲过的倍比问题基本类似。 例1 修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米? 解 由条件知,公路总长不变。 原已修长度∶总长度=1∶(1+3)=1∶4=3∶12 现已修长度∶总长度=1∶(1+2)=1∶3=4∶12 比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为 300÷(4-3)×12=3600(米) 答: 这条公路总长3600米。 例2 张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题? 解 做题效率一定,做题数量与做题时间成正比例关系 设91分钟可以做X应用题 则有 28∶4=91∶X 28X=91×4 X=91×4÷28 X=13 答:91分钟可以做13道应用题。 例3 孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完? 解 书的页数一定,每天看的页数与需要的.天数成反比例关系 设X天可以看完,就有 24∶36=X∶15 36X=24×15 X=10 答:10天就可以看完。 例4 一个大矩形被分成六个小矩形,其中四个小矩形的面积如图所示,求大矩形的面积。 解 由面积÷宽=长可知,当长一定时,面积与宽成正比,所以每一上下两个小矩形面积之比就等于它们的宽的正比。又因为第一行三个小矩形的宽相等,第二行三个小矩形的宽也相等。因此, A∶36=20∶16 25∶B=20∶16 解这两个比例,得 A=45 B=20 所以,大矩形面积为 45+36+25+20+20+16=162 (70分) 一、选择题(每题4分,共24分) 1.对于函数y=,下列说法错误的是 (C) A.它的图象分布在第一、三象限 B.它的图象是中心对称图形 C.当x>0时,y的值随x的增大而增大 D.当x<0时,y的值随x的增大而减小 2.[2017·自贡]一次函数y1=k1x+b和反比例函数y2=(k1k2≠0)的图象如图16-1所示,若y1>y2,则x的取值范围是 (D) 图16-1 A.-2<x<0或x>1 B.-2<x<1 C.x<-2或x>1 D.x<-2或0<x<1 【解析】 观察函数图象可知,当x<-2或0<x<1时,直线y1=k1x+b在反比例函数y2=的图象上方,即若y1>y2,则x的取值范围是x<-2或0<x<1.图16-2 3.[2016·杭州]设函数y=(k≠0,x>0)的图象如图16-2所示,若z=,则z关于x的函数图象可能为 (D) 【解析】 ∵y=(k≠0,x>0),∴z==(k≠0,x>0). ∵反比例函数y=(k≠0,x>0)的图象在第一象限内,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象. 4.[2016·孝感]“科学用眼,保护视力”是青少年珍爱健康的具体表现.科学证实:近视眼镜的度数y(度)与镜片焦距x(m)成反比例.如果500度近视眼镜镜片的焦距为0.2 m,则表示y与x函数关系的图象大致是 (B) 5.[2017·兰州]如图16-3,反比例函数y=(x<0)与一次函数y=x+4的图象交 图16-3 点A,B的横坐标分别为-3,-1,则关于x的不等式<x+4(x<0)的解集为 (B) A.x<-3 B.-3<x<-1 C.-1 D.x<-3或-1<x<0 6.[2017·潍坊]一次函数y=ax+b与反比例函数y=,其中ab<0,a,b为常数,它们在同一坐标系中的图象可以是 (C) 【解析】 ∵ab<0,∴a,b异号.选项A中由一次函数的图象可知a>0,b<0,则a>b,由反比例函数的图象可知a-b<0,即a<b,产生矛盾,故A错误;选项B中由一次函数的图象可知a<0,b>0,则a<b,由反比例函数的图象可知a-b>0,即a>b,产生矛盾,故B错误;选项C中由一次函数的图象可知a>0,b<0,则a>b,由反比例函数的图象可知a-b>0,即a>b,与一次函数一致,故C正确;选项D中由一次函数的图象可知a<0,b<0,则ab>0,这与题设矛盾,故D错误. 二、填空题(每题4分,共24分) 7.[2017·淮安]若反比例函数y=-的图象经过点A(m,3),则m的值是__-2__. 【解析】 把A(m,3)代入y=-,得3=-,解得m=-2.8.[2016·山西]已知(m-1,y1),(m-3,y2)是反比例函数y=(m<0)图象上的两点,则y1__>__y2(选填“>”“<”或“=”). 9.[2017·眉山]已知反比例函数y=,当x<-1时,y的取值范围为__-2<y<0__. 【解析】 当x=-1时,y=-2,∵x<0时,y随x的增大而减小,图象位于第三象限,∴y的取值范围为-2<y<0.10.[2017·菏泽]直线y=kx(k>0)与反比例函数y=的图象交于A(x1,y1)和B(x2,y2)两点,则3x1y2-9x2y1的值为__36__. 【解析】 由图象可知点A(x1,y1),B(x2,y2)关于原点对称,∴x1=-x2,y1=-y2,把A(x1,y1)代入双曲线y=,得x1y1=6,∴3x1y2-9x2y1=-3x1y1+9x1y1 =-18+54=36.11.[2017·漳州]如图16-4,A,B是反比例函数y=上的点,分别过点A,B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为__8__. 图16-4 第11题答图 【解析】 由A,B为反比例函数图象上的两点,利用比例系数k的几何意义,求出矩形ACOG与矩形BEOF的面积,再由阴影DGOF的面积求出空白矩形面积之和.如答图,∵A,B是反比例函数y=图象上的点,∴S矩形ACOG =S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ADFC+S矩形BDGE=6+6-2-2=8.12.[2017·扬州]已知点A是反比例函数y=-的图象上的一个动点,连结OA,若将线段OA绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为__y=__. 图16-5 第12题答图 【解析】 如答图,分别过点A、点B作x轴的垂线,垂足分别为G和H,很容易发现这是一个“K”字型全等三角形,根据反比例函数比例系数k的几何意义可以知道△AOG的面积是1,于是△BOH的面积也始终为1,再结合点B在第一象限的位置,可以知道动点B在反比例函数的图象上,且k=2,所以点B所在图象的函数表达式为y=.三、解答题(共22分) 13.(10分)[2017·常德]如图16-6,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值; (2)若点C(x,y)也在反比例函数y=的图象上,当-3≤x≤-1时,求函数值y的取值范围. 图16-6 解:(1)∵反比例函数y=的图象经过点A(4,m),AB⊥x轴于点B,△AOB的面积为2,∴OB×AB=2,×4×m=2,∴AB=m=1,∴A(4,1),∴k=xy=4,∴反比例函数的表达式为y=,即k=4,m=1; (2)由(1)知反比例函数为y=.∵k=4>0,∴当-3≤x≤-1时,y随x的增大而减小,∵点C(x,y)也在反比例函数的图象上,∴当 x=-3时,y取最大值,ymax=-;当x=-1时,y取最小值,ymin=-4,∴y的取值范围为-4≤y≤-.14.(12分)[2017·内江]如图16-7,已知A(-4,2),B(n,-4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点. 图16-7 (1)求一次函数和反比例函数的表达式; (2)求△AOB的面积; (3)观察图象,直接写出不等式kx+b->0的解集. 解:(1)把 A(-4,2)代入y=,得m=2×(-4)=-8,∴反比例函数的表达式为y=-.把B(n,-4)代入y=-,得-4n=-8,解得n=2.把A(-4,2)和B(2,-4)代入y=kx+b,得解得 ∴一次函数的表达式为y=-x-2; (2)在y=-x-2中,令y=0,则x=-2,即直线y=-x-2与x轴交于点 C(-2,0),∴OC=2.∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6; (3)由图可得,不等式kx+b->0的解集为x<-4或0<x<2.(20分) 15.(6分))[2017·威海]如图16-8,正方形ABCD的边长为5,点A的坐标为 (-4,0),点B在y轴上,若反比例函数y=(k≠0)的图象经过点C,则该反比例函数的表达式为 (A) A.y= B.y= C.y= D.y= 图16-8 第15题答图 【解析】 ∵如答图,过点C作CE⊥y轴于E,则△BCE≌△ABO,∴CE=OB=3,BE=AO=4,OE=1,则点C坐标为(3,1),∴k=3,反比例函数表达式为y=.图16-9 16.(6分)[2017·温州]如图16-9,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B和B′分别对应),若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为____.【解析】 由点B在反比例函数上且AB=1,可得OA=k,由对称性质可知OA′=OA=k,∠AOA′=2∠AOD=60°,∴点A′的坐标为,∵点A′在反比例函数上,∴k×k=k,∴k=.17.(8分)[2016·宁波]如图16-10,A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,C是x轴上一点,且AO=AC,则△ABC的面积为__6__. 图16-10 【解析】 设点A的坐标为,点B的坐标为,∵C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A的直线的表达式为y=kx,∴=k·a,解得k=,又∵点B在y=x上,∴=·b,解得=3或=-3(舍去),∴S△ABC=S△AOC-S△OBC=-=9-3=6.(10分) 18.(10分)[2016·湖州]已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上. (1)k的值是__-2__; (2)如图16-11,该一次函数的图象分别与x轴,y轴交于A,B两点,且与反比例函数y=-的图象交 于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是__3__. 图16-11 【解析】 (1)设点P的坐标为(m,n),则点Q的坐标为(m-1,n+2),代入y=kx+b,得 解得k=-2; 例题非常简单,在例题的处理上我注重了学生解题步骤的培养,同时通过两次变式进一步巩固解法,并拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题,(在上学期曾有过类似问题的,由于时间的久远学生不是很熟悉)但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。 题组(三)在本节既是知识的巩固又是知识的检测,通过这组题目的处理,发现学生对本节知识的掌握还可以。从整体来看,时间有点紧张,小结很是仓促,而且是由老师代劳了,没有让学生来谈收获,在这点有些包办的趋势。 【复习目标】: 1.巩固反比例函数的概念,会求反比例函数表达式并能画出图象. 2.熟记反比例函数图象及其性质,并能运用解决有关的实际问题. 3.熟练求解反比例函数有关的面积问题. 【学习重点】 反比例函数的定义、图像性质及其应用 【学习过程】 一、知识梳理:(课堂提问) 二、基础知识自测: 1、若函数y(m1)xm2m1是反比例函数,则m的值是.2、函数y6x的图象位于第 象限, 在每一象限内,y的值随x的增大 而 , 当x>0时,y 0,这部分图象位于第 __ 象限.3、如果反比例函数ykx的图象过点(2,-3),那么k=.4、已知y与(2x+1)成反比例,且当x=1时,y=2,那么当x=0,y的值是 5、若点A(6,y41)和B(5,y2)在反比例函数yx的图象上,y1与y2的大小关系是_______.6、直线y=-5x+b与双曲线y2x相交于 点P(-2,m),求b的值.三、达标测评 1、已知直线ykx2与反比例函数ymx的图象交于A、B两点,且点A的 纵坐标为-1,点B的横坐标为2,求这两个函数的解析式.)在反比例函数y= 8x的图象上,两点,(1)求直线AB的解析式. 是多少? 作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的反比例函数教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。 教学目标 (一)教学知识点 1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(二)能力训练要求 结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.(三)情感与价值观要求 结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点 经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点 领会反比例函数的意义,理解反比例函数的概念.教学方法 教师引导学生进行归纳.教具准备 投影片两张 第一张:(记作5.1A) 第二张:(记作5.1B) 教学过程 Ⅰ.创设问题情境,引入新课 [师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.Ⅱ.新课讲解 [师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数? 1.复习函数的定义 [师]大家还记得函数的定义吗? [生]记得.在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.[师]大家能举出实例吗? [生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.[师]请看下面的问题.电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.(1)你能用含有R的代数式表示I吗? (2)利用写出的关系式完成下表: R/Ω20406080100 I/A 当R越来越大时,I怎样变化?当R越来越小呢? (3)变量I是R的函数吗?为什么? 请大家交流后回答.[生](1)能用含有R的代数式表示I.由IR=220,得I=.(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.(3)变量I是R的函数.由IR=220得I=.当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.[师]这位同学回答的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I=,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.投影片:(5.1A) 京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么? [师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt,则有t=.当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.[师]从上面的两个例题得出关系式 I= 和t=.它们是函数吗?它们是正比例函数吗?是一次函数吗? [生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢? [生]可以.由I= 与t= 可知关系式为y=(k为常数且k≠0).[师]很好.一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数.从y= 中可知x作为分母,所以x不能为零.3.做一做 投影片(5.1B) 1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么? 2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么? 3.y是x的反比例函数,下表给出了x与y的一些值: x-2-1 y 2-1 (1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy=20.则有y=.变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m=.给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y的值.[生]设反比例函数的表达式为 y=.(1)当x=-1时,y=2; ∴k=-2.∴表达式为y=-.(2)当x=-2时,y=1.当x=-时,y=4; 当x= 时,y=-4; 当x=1时,y=-2.当x=3时,y=-; 当y= 时,x=-3; 当y=-1时,x=2.因此表格中从左到右应填 -3,1,4,-4,-2,2,-.Ⅲ.课堂练习 随堂练习(P131) Ⅳ.课时小结 本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.Ⅴ.课后作业 习题5.1 Ⅵ.活动与探究 已知y-1与 成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数? 分析:由y与x成反比例可知y=,得y-1与 成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1,k=1.即表达式为y-1=x+2,y=x+3.由上可知y是x的一次函数.板书设计 一、教学目标 1.利用反比例函数的知识分析、解决实际问题 2.渗透数形结合思想,提高学生用函数观点解决问题的能力 二、重点、难点 1.重点:利用反比例函数的知识分析、解决实际问题 2.难点:分析实际问题中的数量关系,正确写出函数解析式 三、例题的意图分析 教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。 教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。 补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题 四、课堂引入 寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗? 五、例习题分析 例1.见教材第57页 分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积=底面积×高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式,(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反 例2.见教材第58页 分析:此题类似应用题中的“工程问题”,关系式为工作总量=工作速度×工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v取最小值是多少? 例1.(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位) (1)写出这个函数的解析式; (2)当气球的体积是0.8立方米时,气球内的气压是多少千帕? (3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米? 分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。根据反比例函数的图象和性质,P随V的增大而减小,可先求出气压P=144千帕时所对应的气体体积,再分析出最后结果是不小于立方米 六、随堂练习 1.京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为 2.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式 3.一定质量的氧气,它的密度(kg/m3)是它的体积V(m3)的反比例函数,当V=10时,=1.43,(1)求与V的函数关系式;(2)求当V=2时氧气的密度 答案:=,当V=2时,=7.15 教学目标: 1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题 2、能根据实际问题中的条件确定反比例函数的解析式。 3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。 教学重点、难点: 重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题 难点:根据实际问题中的条件确定反比例函数的解析式 教学过程: 为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例.药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题: (1)药物燃烧时,关于x 的函数关系式为: ________, 自变量x 的取值范围是:_______,药物燃烧后关于x的函数关系式为_______.(2)研究表明,当空气中每立方米的含药量低于1.6g时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室; (3)研究表明,当空气中每立方米的含药量不低于3g且持续时间不低于10in时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么? 例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。 (1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务? (2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系? (3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字? 例2某自来水公司计划新建一个容积为 的长方形蓄水池。 (1)蓄水池的底部S 与其深度 有怎样的函数关系? (2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米? (3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数) 1、一定质量的氧气,它的密度(g/3)是它的体积V(3)的反比例函数, 当V=103时,=1.43g/3.(1)求与V的函数关系式;(2)求当V=23时求氧气的密度.2、某地上电价为0.8元&nt;/&nt;度,年用电量为1亿度.本计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,=-0.8.(1)求与x之间的函数关系式; (2)若每度电的成本价为0.3元,则电价调至多少元时,本电力部门的收益将比上增加20%? [收益=(实际电价-成本价)×(用电量)] 3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=.求与x之间的函数关系式及自变量x的取值范围. 30.3——1、2、3 一、教学目标 1.使学生理解并掌握反比例函数的概念 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点 1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念 3.难点的突破方法: (1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解 (2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的`常数k;看自变量x的取值范围,由于x在分母上,故取x0的一切实数;看函数y的取值范围,因为k0,且x0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k0),比较二者解析式的相同点和不同点。 (3)(k0)还可以写成(k0)或xy=k(k0)的形式 三、例题的意图分析 教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。 教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的变化与对应的思想,特别是函数与自变量之间的单值对应关系。 补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。 教学目标: 经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的 概念。 教学程序: 1、从现实情况和已有知识经验出发,讨论两个变量之间的相依关系,加强对函数概念的理解,导入反比例函数。 2、U=IR,当U=220V时,(1)你能用含 R的代数式 表示I吗? (2)利用写出的关系式完成下表: R(Ω)20 40 60 80 100 I(A) 当R越来越大时,I怎样 变化? 当R越来越小呢? (3)变量I是R的函数吗?为什么? 答:① I = UR ② 当R越来越大时,I越来越小,当R越来越小时,I越来越大。 ③变量I是R的函数。当给定一 个R的值时,相应地就确定了一个I值,因此I是R的函数。 1、反比例函数的概念 一般地,如果两个变量x, y之间的关系可以表示成 y=kx(k为常数,k≠0)的形式,那么称y是x的反比例函 数。 反比例函数的自变量x 不能为零。 2、做一做 一个矩形的 面积为20cm2,相邻两条边长分别为xcm和 ycm,那么变量y是变量x的 函数吗?是反比例函数吗? 解:y=20x,是反比例函数。 P133,12 P133,习题5.1 1、2题 教学目标: 使学生对反比例函数和反比 例函数的图象意义加深理解。 教学重点: 反比例函数 的应用 教学程序: 1、实例1:(1)用含S的代数式 表示P,P是 S的反比例函数吗?为什么? 答:P=600s(s0),P 是S的反比例函数。 (2)、当木板面积为0.2 m2时,压强是多少? 答:P=3000Pa (3)、如果要求压强不超过6000Pa,木板的面积至少 要多少? 答:至少0.lm2。 (4)、在直角坐标系中,作出相应的函数 图象。 (5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。 1、(1)蓄电池的电 压为定值,使用此电源时,电流I(A)与电阻R()之间的函数关系如图5-8 所示。 (2)蓄电池的电压是多少?你以写出这一函数的表达式吗? 电压U=36V,I=60k2、完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内? R()3 4 5 6 7 8 9 10 I(A) 3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3,23) (1)分别写出这两个函 数的表达式; (2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流; 随堂练习: P145~146 1、2、3、4、5 【反比例函数教案及答案】推荐阅读: 61反比例函数1教案09-20 数学教案-反比例函数及其图象01-09 1 7.2实际问题与反比例函数教案07-10 反比例函数教学论文12-31 反比例函数单元测试题07-08 反比例函数复习课评课09-17 反比例函数练习题训练02-20 《反比例函数的应用》教学设计范文07-23 2018春九下数学《反比例函数的概念》(教学设计)06-25 正比例和反比例的意义10-09反比例函数的图像与性质教案 篇3
正比例函数教案 篇4
11.2.1正比例函数教案 篇5
正反比例应用题及答案 篇6
中考反比例函数复习 篇7
《反比例函数》教学反思 篇8
反比例函数小结与复习 篇9
反比例函数教学设计(通用) 篇10