因数和倍数题

2024-09-19 版权声明 我要投稿

因数和倍数题(精选13篇)

因数和倍数题 篇1

1、什么叫自然数

2、什么叫数的整除?什么叫因数?什么叫倍数?

3、3×4=12,—()是()的因数,()是()的倍数。

4、举例()×()=(),()和()是()的因数,()是()和()的倍数。

5、思考与练习

(1)、你会找一个自然数的因数吗?比如能找出24的所有因数吗?你是怎样找到的?怎样快速找出一个自然数的所有因数?一个数的因数是(),最小的因数是()最大的因数是()小提示:关键要怎样才能做到不遗漏、不重复呢?

(2).你会找一个自然数的倍数吗?比如4的倍数是哪些?怎样找一个数的倍数比较方便? 一个数的倍数是(),最小的倍数是()最大的倍数是()

6、填空。

(1)6和1,()是()的因数,()是()的倍数。

(2)8×3=24,()是()的因数,()是()的倍数。

(3)在35×2=70中,()是2的倍数,()和()是70的因数。

7、判断。

因数和倍数题 篇2

1.从具体实例中理解因数和倍数的意义, 掌握“求一个数的因数”的方法。

2.经历“求一个数的因数”的过程, 归纳出“求一个数的因数”的特点, 体现从具体到抽象的推理过程。

3.培养学生抽象、概括的能力, 渗透事物之间相互联系、相互依存的辩证唯物主义观点。

【教学流程】

活动一:自学课本

师:什么是因数?什么是倍数?自学课本, 仔细看图, 认真读书, 边读边想。

(全班展示交流“12的因数和倍数”)

生1:因为2×6=12, 所以2和6是12的因数, 12是2的倍数, 也是6的倍数。

生2:因为3×4=12, 所以3和4也是12的因数, 12是3和4的倍数。

生3:因为1×12=12, 所以1和12也是12的因数, 12是1和12的倍数。

生4:12的因数有1、2、3、4、6、12。

生5:12是1、2、3、4、6、12的倍数。

生6:为了方便, 在研究因数和倍数的时候, 我们所说的数指的是整数, 一般不包括0。

活动二:尝试练习

师:18的因数有哪几个?独立思考, 18可以由哪两个整数相乘得到?

(小组讨论, 全班交流分享)

生1:因为2×9=18, 所以2和9是18的因数, 18是2的倍数, 也是9的倍数。

生2:因为3×6=18, 所以3和6也是18的因数, 18是3和6的倍数。

生3:因为1×18=18, 所以1和18也是18的因数, 18是1和18的倍数。

生4:18的因数有1、2、3、6、9、18。

生5:18是1、2、3、6、9、18的倍数。

生6:18的因数还可以表示为1、2、3和6、9、18。

活动三:巩固练习

师:30的因数有哪些?36呢?

师:独立思考30和36可以分别由哪些整数相乘得到?分别写出30和36的所有因数, 在观察中你发现了什么?

(全班交流分享)

生1:因为1×30=30、2×15=30、3×10=30、5×6=30, 所以30的因数有1、2、3、5、6、10、15、30。

生2:因为1×36=36、2×18=36、3×12=36、4×9=36、6×6=36, 所以36的因数有1、2、3、4、6、9、12、18、36。

【教学反思】

因数和倍数教学片段 篇3

师:他说一个倍数可能有很多个?

生:因数。

师:同学们,经过你们交流之后,谁是谁的因数,谁是谁的倍数?

生:在24÷4=6这个式子中,24的因数就是4,4的倍数就是24。

师:有没有其他的说法?刚才说得不是特别规范。

生:24是4的倍数,4是24的因数。(板书:24是4的倍数,4是24的因数。)

师:这样吗?

生:是。

师:这个?(师指24÷6=4这个算式。)

生:24是6的倍数,6是24的因数。

师:那我们回到刚才的问题,刚才我们说24是4的倍数,小怿说24是?

生:6的倍数。

师:那你现在能理解刚才小成所说的吗?你能完整地说一说吗?

生:24是4和6的倍数,4和6是24的因数。

师:老师还想考考你们,这个式子是我准备的。(板书:4×6=24。)

师:怎么都是除法,乘法你们会不会说?有的同学面露难色,很困难吗?

生:24是4和6的倍数,4和6是24的因数。

师:我们可以把它当成什么去看?(师指乘法算式。)

生:除法。(师画箭头从乘法算式指向除法。)

师:这么指你们明白吗?

生:明白。

师:考考你们,(板书:1.2÷0.2=6。)再说说谁是谁的倍数,谁是谁的因数?(学生稍显困惑。)是不是很简单,是不是一样的呀?(师指板书上的两组除法算式。)

生:1.2是0.2和6的倍数,6和0.2是1.2的因数。

师:我觉得说得挺好。

生:这个算式是没有因数和倍数的。

师:谁说的?为什么没有?

生:因为算式1.2÷0.2=6,1.2和0.2不是整数。

师:谁告诉你一定要是整数的?

生:书上,在整数除法中,商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

师:同学们,别忘了书中给定我们的一个前提条件。(课件出示。)

生:整数除法中。

师:而它们呢?(师指1.2÷0.2=6。)

师:这也不是整数除法呀。然后才是我们分出来的第一类,如果——

生:商是整数而没有余数。

师:我们就说——

生:被除数是除数的倍数,除数是被除数的因数。

师:同学们,看了这个概念之后,你们要注意什么呢?(板书概念。)

生:整数除法。(板书:整数除法。)

(作者单位:哈尔滨市花园小学)

因数和倍数教案 篇4

教学内容: 新人教版五年级下册p5-8 教学目标: 知识与技能

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的; 过程与方法

1、能熟练地找一个数的因数和倍数;

2、培养学生的观察能力。情感态度与价值观:

1、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

2、培养学生的合作意识、探索意识,以及热爱数学学习的情感。

教学重点:掌握找一个数的因数和倍数的方法。教学难点:能熟练地找一个数的因数和倍数。教具准备:相关课件 教学过程

一、引入新课。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式? 出示:因为2×6=12

所以2是12的因数,6也是12的因数; 12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?(指名生说一说)

师:你有没有明白因数和倍数的关系了? 那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数与倍数)

齐读p5的注意。

二、新课讲授:

(一)找因数:

1、出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

同学尝试完成:汇报

(18的因数有: 1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=„;用乘法一对一对找,如1×18=18,2×9=18„)

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些? 汇报36的因数有: 1,2,3,4,6,9,12,18,36 师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,最大的是几? 看来,任何一个数的因数,最小的一定是(),而最大的一定是()。

3、你还想找哪个数的因数?(18、5、42„„)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如 18的因数

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的自身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗? 汇报:2、4、6、8、10、16、„„ 师:为什么找不完? 你是怎么找到这些倍数的?(生:只要用2去乘

1、乘

2、乘

3、乘

4、„)那么2的倍数最小是几?最大的你能找到吗?

2、让同学完成做一做1、2小题:找3和5的倍数。汇报 3的倍数有:3,6,9,12 师:这样写可以吗?为什么?应该怎么改呢? 改写成:3的倍数有:3,6,9,12,„„

你是怎么找的?(用3分别乘以1,2,3,„„倍)5的倍数有:5,10,15,20,„„

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示 2的倍数 3的倍数 5的倍数 师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?(一个数的倍数的个数是无限的,最小的倍数是它自身,没有最大的倍数)

三、课堂练习

1、A、一个数的因数和该数的倍数一样,是无限的。()B、因数有最大的,所以,倍数也有最大的。()

C、一个数的最小因数是------,一个数的最大因数------D、一个数最小的倍数是------,一个数有最大倍数吗?

2、请写出各数的因数和5个倍数 17 28 32 48 4 7

3、在下面的圈里填上适当的数

64 36 40 8 4 16 160 32 40的因数 16的因数

四、课堂小结:

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

五、独立作业: 完成练习二1~4题

板书设计

因数与倍数

18的因数有:1,2,3,6,9,18.一个数的最小因数是1,最大因数是他本身。一个数的因数的个数是有限的。2的倍数有:2,4,6,8,„。

一个数的最小倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的

教学反思

因数和倍数教学片段 篇5

生:我知道一个倍数可能会有很多个因数。例如,24÷4=6,4就是它的第一个因数,24÷6=4,6就是它的第二个因数。(板书:24÷4=6 24÷6=4。)

师:他说一个倍数可能有很多个?

生:因数。

师:同学们,经过你们交流之后,谁是谁的因数,谁是谁的倍数?

生:在24÷4=6这个式子中,24的因数就是4,4的倍数就是24。

师:有没有其他的说法?刚才说得不是特别规范。

生:24是4的倍数,4是24的因数。(板书:24是4的倍数,4是24的因数。)

师:这样吗?

生:是。

师:这个?(师指24÷6=4这个算式。)

生:24是6的倍数,6是24的因数。

师:那我们回到刚才的问题,刚才我们说24是4的倍数,小怿说24是?

生:6的倍数。

师:那你现在能理解刚才小成所说的吗?你能完整地说一说吗?

生:24是4和6的倍数,4和6是24的因数。

师:老师还想考考你们,这个式子是我准备的。(板书:4×6=24。)

师:怎么都是除法,乘法你们会不会说?有的同学面露难色,很困难吗?

生:24是4和6的倍数,4和6是24的因数。

师:我们可以把它当成什么去看?(师指乘法算式。)

生:除法。(师画箭头从乘法算式指向除法。)

师:这么指你们明白吗?

生:明白。

师:考考你们,(板书:1.2÷0.2=6。)再说说谁是谁的倍数,谁是谁的因数?(学生稍显困惑。)是不是很简单,是不是一样的呀?(师指板书上的两组除法算式。)

生:1.2是0.2和6的倍数,6和0.2是1.2的因数。

师:我觉得说得挺好。

生:这个算式是没有因数和倍数的。

师:谁说的?为什么没有?

生:因为算式1.2÷0.2=6,1.2和0.2不是整数。

师:谁告诉你一定要是整数的?

生:书上,在整数除法中,商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

师:同学们,别忘了书中给定我们的一个前提条件。(课件出示。)

生:整数除法中。

师:而它们呢?(师指1.2÷0.2=6。)

师:这也不是整数除法呀。然后才是我们分出来的第一类,如果――

生:商是整数而没有余数。

师:我们就说――

生:被除数是除数的倍数,除数是被除数的因数。

师:同学们,看了这个概念之后,你们要注意什么呢?(板书概念。)

生:整数除法。(板书:整数除法。)

(作者单位:哈尔滨市花园小学)

因数和倍数题 篇6

教学目标:

1. 通过复习, 使学生进一步巩固因数、倍数、质数、合数、奇数、偶数、公因数、最大公因数、公倍数、最小公倍数等概念及其相互间的关系, 掌握2、3、5 的倍数的特征, 并能灵活运用有关知识解决相关的问题。

2. 通过画和说思维导图, 经历有关概念整理的过程, 建构知识网络, 进一步完善知识结构, 培养学生复习整理的能力。

3. 通过参与游戏和比赛等活动, 让学生获得快乐和成功的体验, 培养团队意识、竞争意识以及乐学的态度。

教学重点: 梳理知识, 构建网络; 运用知识, 解决问题。

教学难点: 能运用思维导图整理所学的知识, 并理解有关概念之间的联系和区别。

教学过程:

一、游戏导入, 揭示课题

1. 师生互相问候, 游戏导入 ( 未等学生入座) 。

师: 请同学们先不要坐下, 我们来玩个游戏, 好吗? 请按老师的要求坐下!

师: 如果你的学号是2 的倍数, 请坐下! 追问: 2 的倍数有什么特征?

( 依次让学号是3 和5 的倍数的学生坐下, 追问3、5 的倍数有什么特征?)

师: 没坐的同学学号分别是几? 如果让剩下的同学同时坐下, 可以怎么说?

( 1 的倍数请坐下! )

师: 为什么呢? ( 任何自然数都是1 的倍数)

【设计意图】课始, 借助每个学生的学号, 在轻松的游戏中复习了2、3、5 的倍数的特征, 营造了宽松和谐的学习氛围, 学生愉快地进入了因数和倍数复习的情境之中。

2. 揭示并板书课题。

师: 这节课和大家一起复习因数和倍数。 ( 板书课题, 齐读课题)

二、回顾概念, 梳理知识

过渡: 课前让大家准备的思维导图, 都画好了吗?

下面我们借助思维导图来回顾一下本单元知识, 请拿出思维导图。

( 一) 展示思维导图, 初步构建知识网络

1. 同桌指图互说, 老师巡视, 选优秀作品贴黑板上。

2. 点名学生上台讲说, 同时投影学生作品。

【设计意图】课前学生自己画思维导图, 既节约了宝贵的课堂时间, 又激发了学生的创新意识。

3. 课件出示知识结构图, 科学构建知识网络。

【设计意图】因数和倍数单元, 内容杂, 概念多, 而学生建构知识网络尚处于摸索阶段, 因此, 知识网络的构建分两个阶段很有必要, 课前学生画思维导图是初步构建, 第二次则是科学梳理和巩固提升, 并最终形成一个完整的知识网络。

(二) 通过游戏, 回顾概念

游戏:“快乐大转盘”

课件出示大转盘。 ( 转盘中间数字是5, 周围有以下概念: 因数、倍数、质数、合数、奇数、偶数、最大公因数、最小公倍数等)

②演示并说明游戏要求: 转盘停止后, 用中间的5 和箭头指到的概念造句, 造句时可以加上另外一个数。 ( 如“5和3 的最小公倍数是15。”)

③转动转盘, 游戏开始。

【设计意图】通过转盘游戏, 既可以深入了解学生对本单元概念的理解程度, 又可以快速回顾重要知识点, 保证了复习的有效性和趣味性。

三、抢答比赛, 强化知识

1. 课件出示比赛规则: 先举手, 后回答; 回答时响亮说出答案; 答对记√, 答错记 × , √多获胜。

2.开始比赛, 老师记录。

(1) 明辨是非。

①所有的奇数都是质数 () ; ②所有的偶数都是合数 () 。

③质数 × 质数= 合数 () ; ④91 是倍数, 13 是因数 () 。

⑤一个三位数同时是2 和3 的倍数, 这个数最小是120。 ()

( 2) 精挑细选。

①把12 分解质因数是 () 。

A.1×2×2×3=12 B.2×2×3=12

C.12=2×2×3

②一个数的最小倍数除以它的最大因数, 结果等于 ()

A. 最小倍数B. 最大因数B C. 本身D. 1

3. 统计成绩, 宣布结果。

师: 男 ( 女) 生就是今天的冠军, 祝贺男 ( 女) 生! 女 ( 男) 生就是今天的亚军, 今天的亚军就是明天的冠军, 掌声送给女 ( 男) 生!

【设计意图】“以赛代练”往往事半功倍。简单重复的练习只会打击学生的积极性, 而一旦引入比赛, 就会取得良好的教学效果。

四、实际应用, 提升能力

1. 出示端午节题目。

端午节, 爱心小队的同学们到敬老院看望老人, 他们带了24 个苹果和16 个芒果。这些水果最多可以分成多少份同样的礼物? 每份礼物中苹果和芒果各有几个?

巡视指导, 学生口答, 课件校对。

【设计意图】从生活问题中抽象出数学问题, 其实就是复习“最大公因数”的相关知识, 再用学会的数学知识去成功解答, 学以致用, 水到渠成。解答的同时还受到良好的爱心教育。

五、课堂总结, 拓展延伸

内容:“破译密码”

师: 老师非常想和同学们做朋友, 想把电话号码留给你们, 我把号码设置成了密码, 你们能破译吗? 以下是老师的电话号码: ABCDEFGHIJK, 提示如下:

A: 只有一个因数。

B:既是3的因数, 又是3的倍数。

C:它的因数有1、2、3、6。

D:不是质数, 也不是合数。

E:2和3的最大公因数。

F:它的最小的倍数是5。

G:1和3的最小公倍数。

H:12和18的最大公因数。

I:既是奇数, 又是合数。

J:5的最小因数。

K:5的最小倍数。

师: 同学们知道了老师的号码, 以后可要经常联系啊, 咱们可以聊聊因数, 谈谈倍数, 知无不言, 言无不尽。你也可以把自己的电话号码或者QQ号、微信号设置成密码形式, 和同学们互猜, 既有趣好玩, 又巩固知识。

因数和倍数题 篇7

一、对“因数和倍数”的学习体会

“因数和倍数”内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和通分以及分数四则计算的基础。因此,这个单元的教学一直是小学数学教材中的重要内容。

实验教材将“因数和倍数”的教学内容分散编排。有以下几个方面的特点:(1)精简教学内容。教材不再以整除的概念为基础引出因数和倍数,减去了“整除”的数学化定义,而是在直观的基础上,借助整除的模式“na=b”直接引出因数和倍数的概念。“分解质因数”和“用短除法分解质因数”不作正式教学,而作为补充知识。(2)注重联系实际。这部分内容的编排,尽量从学生已有的生活经验和知识基础出发,内容的呈现、展开注意贴近学生的认知特点;例题和习题都增加了联系学生生活实际的素材和插图;用铺纸片的实际问题情景引出最大公因数和最小公倍数概念等等。这样有利于学生理解有关整数的现实意义,也有利于培养学生的数学抽象能力。(3)增加探索性和开放性。课标强调学生自主探究、合作交流。特别是关于求两个数的最小公倍数和最大公因数的具体方法,教材引导学生联系找一个数的倍数、因数的方法进行有条理的思考,并鼓励策略多样化,淡化了传统教学中常用的分解质因数法(短除法)等内容,从而突出了基本的数学概念和基础的思考方法,知识结构合理而且易于掌握。

实验教材新编排明显改善了传统教材的几点不足:(1)传统教材突显了概念的紧密逻辑关系,但同一单元内概念多而集中。(2)抽象程度过高,学生对概念混淆,难理解、难辨析。如质数、质因数、互质数。(3)学习方式单一化,数学知识与现实意义脱离,缺乏趣味性。(4)学生解决问题的过程和方法过于模式化,不利于调动学生学习的主动性和积极性。

因数和倍数的教学新编排,旨在改善学生的学习方式,鼓励感受解决问题策略的多样性。因此教学中应注重强调学生的主体地位,放手让学生探究,鼓励用多种方法解决问题,努力培养学生探索意识和解决问题的能力,发挥学生的积极性和创造性。

二、对“因数和倍数”的教学思考

教材中删去了“整除”的数学化定义,整除的本质还应向学生更明确的补充与渗透。介于以下两点,其必要性很明显:

1.教材中“因数”一词概念模糊的问题客观存在。本套教材中因数和倍数概念的引入不是从过去的整除定义出发,而是在本质上以“整除”为基础,只是略去了许多中间描述。四年级学生由于还没有涉及小数的乘除法,不出现整除的定义并不会对学生理解因数和倍数这一对相互依存的概念内涵产生其他任何影响。

2.因数的意义是否明确,这是关于概念内涵的数学问题。概念的内涵是指概念所反映的对象的本质属性。本质属性是指对这一类事物有决定意义的属性。它必须具备两个条件:第一,这类事物本身必须具备这种属性,否则就不是这类事物;第二,能把这类事物与其他事物区别开来。在数学教学中,概念是学习性质、法则、公式等数学知识的基础,是培养数学能力的前提,是解答数学实际问题的重要条件。笔者认为,学生对概念内涵的把握应该有守恒性。

在传统教材的教学中,教师尚且出现了两种争鸣之说。一是认为“因数在现行小学数学教材和《数学课程标准》里都有两种意义。一种是在乘法里,两个乘数,又可以称为是因数。另一种是在数的整除中,因数是相对于‘倍数’而言的,跟以前所说的‘约数’同义。”另一不同观点则认为“小数是不能叫做因数的,因数必须是非O自然数。(理由是从1996年上海教育出版社出版的《中学数学全书》和1994年科学出版社出版的《数学名词》两本书中的有关理论得到论证)”试想,连教师都在如此争论不休的概念,学生又怎能搞得清、弄得明呢?况且,整除的前提条件再不明确,因数和倍数的概念内涵就更难以把握了。

因数和倍数教案14 篇8

2014年3月21日于张官屯乡刘成庄学校

沧县张官屯乡刘成庄学校 刘书元

课题:“因数和倍数”

教学内容:人教版五年级数学下册P12——P13 例1 教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:掌握找一个数的因数和倍数的方法。教学难点:能熟练地找一个数的因数和倍数。教学过程:

一、引入新课。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12,所以2是12的因数,6也是12的因数;12是2的倍数,12也是6的倍数。

3、你能不能用同样的方法说说另一道算式?(指名说)

你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。——谁来出一个算式考考全班同学?

5、今天我们就来学习因数和倍数。(出示课题:因数和倍数)

齐读p12的注意。

二、新授:

(一)找因数:

1、出示例1 18的因数有哪几个?

从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

学生尝试完成后汇报(18的因数有: 1,2,3,6,9,18)说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些? 汇报36的因数有: 1,2,3,4,6,9,12,18,36 问:怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)——这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,最大的是几? 看来,任何一个数的因数,最小的一定是(),而最大的一 定是()。

3、你还想找哪个数的因数?(18、5、42…)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示,如:18的因数

小结:我们找了这么多数的因数,怎样找不容易漏掉? 从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数呢? 汇报:2、4、6、8、10、16、……问:为什么找不完? 你是怎么找到这些倍数的?(生:只要用2去乘

1、乘

2、乘

3、乘

4、…)那么2的倍数最小是几?最大的你能找到吗?

2、让学生完成做一做1、2小题——找3和5的倍数。汇报——3的倍数有:3,6,9,12 这样写可以吗?为什么?应该怎么改呢? 改写成:3的倍数有:3,6,9,12,…… 你是怎么找的?(用3分别乘以1,2,3,……倍)5的倍数有:5,10,15,20,……

表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示 2的倍数 3的倍数 5的倍数

我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

归纳:一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数

三、课堂小结:我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

四、独立作业:完成练习二1~4题

教学反思:这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:

(一)、操作实践,举例内化,认识倍数和因数——我创设有效的数学学习情境,数形结合,变抽象为直观。

(二)、自主探究,意义建构,找倍数和因数——整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。

因数和倍数教学反思 篇9

《因数和倍数》这一资料,学生初次接触。在导入中我创设有效的数学学习情境,数形结合,变抽象为直观。让学生把12个小正方形摆成不一样的长方形,并用不一样的乘法算式来表示自我脑中所想,借助乘法算式引出因数和倍数的好处。由于方法的多样性,为不一样思维的展现带给了空间,激活学生的形象思维,而透过数学潜在的“形”与“数”的关系,为下方研究“因数与倍数”概念,由形象思维转入抽象思维打下了良好基础,有效地实现了原有知识与新学知识之间的链接。在学生已有的知识基础上,直观感知,让学生自主体验数与形的结合,进而构成因数与倍数的好处。使学生初步建立了“因数与倍数”的概念。这样,学生已有的数学知识引出了新知识,减缓难度,效果较好。

二.自主探究,合作学习

放手让每个同学找出36的所有因数,学生围绕教师提出的“怎样才能找全36的所有因数呢?”这个问题,去寻找36的所有因数。由于个人经验和思维的差异性,出现了不一样的答案,但这些不一样的答案却成为探索新知的资源,在比较不一样的答案中归纳出求一个数的因数的思考方法。既留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。透过展示、比较不一样的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。透过观察12,36,30,18的因数和2,4,5,7的倍数,让学生自我说一说发现了什么?由于带给了丰富的观察对象,保证了观察的目的性。诱发学生探索与学习的欲望,从而激活学生的思维。让学生在许多的不一样中透过合作交流找到相同。

三.在游戏中体验学习的快乐

在最后的环节中我设计了“找朋友”的游戏,层次是先找因数朋友,再找倍数朋友,最后为两个数找到共同的朋友。这样由浅入深的设计贴合学生跳一跳就能摘到果子的心理,同时也让学生在游戏中再次体验因数与倍数的特点,如找完因数朋友时我以你是我的最大的因数朋友点出一个数的因数的个数是有限的,找倍数朋友时起来的学生十分多,让学生再次体验一个数的倍数的个数是无限的。找共同的朋友则是一个思维的升华过程,能有效地激活学生的思维,在求知欲的支配下去进行有效地思考。这一环节使课堂气氛更加热烈,也让学生在简单的氛围中体验到学习的快乐。

因数与倍数问题常见错例 篇10

【错因分析】学生对质数、奇数的概念理解不清楚。2是质数,但它是偶数。质数与奇数是不同的概念,没有对应关系。同样,偶数与合数也没有对应关系。

【正确答案】(×)

【错例2】判断:8÷4=2,4是因数,8是倍数。(√)

【错因分析】学生没有理解倍数和因数是相互依存的。不能单纯说谁是倍数或谁是因数,而要说清谁是谁的倍数或因数。应该说4是8的因数,8是4的倍数。

【正确答案】(×)

【错例3】判断:一个数的倍数一定大于它的因数。(√)

【错因分析】学生在研究问题时,只看到一般现象,忽视了特殊现象,对倍数和因数理解得比较片面。如:8的因数有1、2、4、8,8的倍数有8、16、24……从中可看出,8即是8的倍数,也是8的因数。

【正确答案】(×)

【错例4】16的因数有1、16、2、8、4、4。

【错因分析】学生在找因数时,对因数的概念理解不清楚,出现把因数重复的现象。在找因数时,要注意因数不能重复。

【正确答案】16的因数有1、2、4、8、16。

【错例5】判断:自然数按因数的个数不同,分成了质数和合数。(√)

【错因分析】没有弄清质数和合数的含义,也没弄清自然数的分类。质数只有1和它本身两个因数,合数至少有三个因数。而1只有一个因数,它既不是质数也不是合数。自然数包括0和正整数。

【正确答案】(×)

【练一练】判断正误。

1 自然数按是否是2的倍数,分成了奇数和偶数。( )

2 所有的偶数都是合数。( )

3 2是因数,12是倍数。( )

4 一个数的因数一定小于它的倍数。( )

5 36有6个因数。(

“倍数与因数”的教学与评析 篇11

【教学目标】1、结合具体情境初步理解倍数和因数的含义, 初步理解倍数和因数相互依存的关系。2、依据倍数和因数的含义, 联系已有的知识、经验和方法, 自主探索并总结找一个数的倍数和因数的方法, 感受数学思考的魅力和智慧学习的理性价值。3、通过用动手操作活动丰富感性认识, 建立乘除法与倍数、因数的内在联系;深刻理解倍数和因数的本质内涵。4、在探索活动中体会观察、分析、归纳、猜想等过程, 体验数学问题的探索性和挑战性。使学生积极参与数学学习活动, 培养学生的好奇心和求知欲。

【教学重点】1、理解和掌握因数和倍数的意义。2、探索并理解因数和倍数之间的相互关系。

【教学难点】1、能够根据因数和倍数的意义描述两个数之间的关系。2、能根据解决问题的需要, 收集相关信息, 并进行分析、归纳, 发现数的特征。

【教学过程】

一、创设情境, 复习引新

师:同学们, 我们认识了自然数, 在自然数中, 数与数之间有许多非常有趣的联系, 你们想知道吗?那就让我们在非零自然数中来一起探究吧。我们先对对乘法口诀吧。

【评析:通过“对乘法口诀”来导入新课, 利用学生已有的知识经验, 这符合新课标强调的要从学生已有的生活经验出发, 让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程。创设这样的情境, 有利于激发学生的学习兴趣和强烈的求知欲望, 引导学生积极思考, 主动获取知识, 力求体现“以学生发展为本”的指导思想。】

二、导入新课, 学习因数与倍数的概念

1、师:谁会写积是45的乘法算式。

生1:1×45=45 3×15=45 5×9=45

生2:22.5×2=45

生3:刚才老师说了, 在非零自然数范围内进行学习。虽然22.5×2=45的算式是正确的, 但是22.5是小数, 不是非零自然数。

师:你真棒!不但有认真倾听的良好习惯, 还是一个特别爱动脑筋的孩子。

【评析:灵活、合理地运用教材, 创造性的对教材进行加工改造 (教材例题:36人进行队列操练, 每排人数要一样多, 可以怎样排列?) 。培养学生的质疑精神。注重对学生的多元评价。对学生良好数学学习习惯的培养。注重学生思维能力的培养, 根据积45去说算式是培养学生的逆向思维, 平时学生是根据算式说积 (顺向思维) 。】

2、学习倍数和因数的概念。 (1) 在乘法算式中根据因数和倍数的意义描述两个数之间的关系。

师:刚才同学们通过学习, 发现了乘积都是45的不同的乘法算式, 不要小看这些简单的乘法算式, 它们当中可含有很多的学问呢?大家想不想研究一下?

生:想。

师:你们能用刚才预习的有关知识说说这些算式中各部分之间的关系吗? (生说)

(2) 在除法算式中根据因数和倍数的意义描述两个数之间的关系。

师:孩子们, 你们想把乘积是45的这些乘法算式变成相应的除法算式吗?生说师写, 生根据算式说出谁是谁的倍数, 谁是谁的因数。

揭示并板书课题:倍数与因数生齐读一次课题。

【评析:预习对小学高段数学学习的辅助作用, 这也是对学生自学能力的培养。】

3、出示:4+3=7 7-4=3

师:我们能说7是4和3的倍数, 3和4是7的因数吗?生:不能。

师:为什么?

生:因为4+3=7 7-4=3是加法和减法, 倍数与因数是乘法和除法算式里才可以这样说。

4、小结:

看来我们只能在乘法或除法算式中找到一个数的倍数和因数。也就是说:只有一个自然数是两个自然数的乘积的时候, 它们之间才具有倍数和因数的关系。

【评析:通过列举“反例”4+3=7 7-4=3这样的式子, 故意变换事物的本质特征, 使之质变为与之形似的他事物, 让孩子们在比较与思辨中反衬和突出事物的本质特征, 从而更准确地认识倍数与因数的本质属性。】

5、练习:

师说出加、减、乘、除法各种算式, 生先辨别哪些式子具有因数、倍数关系;再说出谁是谁的因数, 谁是谁的倍数。

【评析:比较、变式练习, 所学知识的得以落实, 到达了及时巩固所学知识的目的。】

二、探究求一个数的因数的方法

1、引导学生观察板书的算式。生观察黑板上的算式, 找45的所有因数 (先自己独立找然后小组合作交流) 。思考:怎样才能找全, 不遗漏, 而且找起来比较快?

板书:45的所有因数:__________________。

师根据生说顺序进行板书。

师:你能把这些数按照一定的顺序写出来吗? (师生交流调整上面的书写顺序)

2、练习:小组合作找30、26、25、17任意一数的所有因数。 (师行间巡视、辅导)

小组汇报, 生边汇报边说出自己的找法 (得出:从小到大, 一对一对的找) 。师板书30、26、25、17的所有因数。

生观察这四个数的所有因数, 并说出自己的发现。

生1:这几个数的最小因数都是1, 最大的是它们自己。生2:这些数因数的个数有的多, 有的少。

师:每个数的因数个数能数清楚吗?生:能。

板书:一个数的因数的个数是有限的, 其中最小的一个是1, 最大的一个是它本身。 (生齐读)

【评析:学生在独立思考、合作、探究、交流的活动过程中寻求、体验、感受怎样找全一个数的所有因数, 并用自己的语言表达出来。这充分体现了让学生在做中学、在活动中悟的新课改理念。学生通过对四个数的所有因数的观察、比较、交流中逐步形成自己的数学思维能力和数学表达能力。】

三、探究求一个数的倍数的方法

1、以3为例找它的倍数。

生找3的倍数, 师板书:3的倍数有:3、6、9、12、……

师:我们这样继续写下去, 能写完吗? (不能)

生单独或小组合作分别找2、1的倍数, 并说说找的方法和自己的发现。

师:1是所有非零自然数的因数, 所有非零自然数都是1的倍数。

生观察3、2、1的倍数, 并说出自己的发现。

板书:一个数的倍数的个数是无限的, 其中最小的一个是它本身, 最大的找不到。 (生齐读)

【评析:学生已有了倍数与因数的概念和找一个数的所有因数的方法后, 对探究求一个数的倍数的方法就容易多了。通过说不完、写不完来体验、感受一个数的倍数的个数是无限的。】

四、课堂巩固

游戏 (举手或站立) :游戏规则:1.学生按座位顺序进行编号。2.老师随便说一个数 (此数不大于班上学生人数) 。3.生根据老师说出的数来找出它们的因数和倍数。例:师:60的因数请起立, 则学生根据手中的编号来确定自己是否该起立。反复练习, 直到全班学生都弄明白为止。

【评析:“好玩是孩子的天性”, 让孩子们在游戏中学习, 在游戏中巩固, 真正达到寓教于乐的境界。】

五、课堂作业

1、从下面五个数中选出两个数, 说说谁是谁的因数, 谁是谁的倍数。

2、你会在圆圈里填上合适的数吗?

7的倍数40以内6的倍数15的因数

六、课堂小结

师:孩子们, 美好的时光总是短暂的, 探索的脚步却不能停止啊!聪明的你们给我留下很的印象, 也希望《倍数和因数》能给你们留下深刻的印象。谈谈你们这节课的感受和收获吧!

生1:我觉得这节课的时间太短了。

生2:通过这节课的学习, 我知道了什么叫倍数, 什么叫约数, 和它们之间的关系。

生3:我知道了找一个数的倍数和约数的方法。我觉得这个方法挺有趣的。

【评析:课堂总结并不是一个孤立的环节, 也绝不是什么程序化的过程, 而是对整节课自然而然的点睛之笔。正是因为有孩子们在课堂上学习的投入, 才会有感而发!】

因数和倍数教学反思 篇12

1.加强概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

本册新教材采用整数除法的表示形式教学,便于学生感知因数和倍数的本质意义。注意因数与倍数的相互依存的关系;质数、合数与因数的关系;偶数、奇数与2的倍数的关系等,形成概念链,依靠理解促进记忆!

2.注意培养学生的抽象概括与归纳推理能力

关注由从具体到抽象、由特殊到一般的概括、归纳过程,即从个别性知识推出一般性结论。如质数、合数:写出1——20各数的因数进行归纳推理,熟悉20以内的质数,制作100以内质数表。

3.教给学生养成“有序学习”的良好学习习惯。

4.加强解决问题的教与学,新教材增加了探索两数之和的奇偶性的纯数学问题,可以根据两数之和的奇偶性的规律推理出两数之差、两数之积的奇偶性,并渗透解决问题的策略。

倍数和因数教学案例 篇13

杨岔小学 马占兵

一、认识倍数和因数

师:一起看大屏幕,数一数,几个正方形?(12)

第一个问题是如果老师请你把12个正方形摆成一个长方形,会摆吗?行不行?能不能就用一道非常简单的乘法算式表达出来? 生:1×12 师:猜猜看,他每排摆了几个,摆了几排? 生:12个,摆了一排。

师:(屏幕显示摆法)是这样吗?第二种摆法我们只要把他旋转一下就跟第一种怎么样?(一样)。我们可以把他忽略不计。还可以怎么摆?同样用一道乘法算式表达出来?

生:三四十二 师:这一次每排摆了几个,摆了几排?(屏幕显示摆法)同样第二种摆法也可以省。还有吗? 生齐:2×6 师:张老师来猜测一下同学们脑子里怎么想的,有同学可能想每排摆6个,摆2排。也有同学可能想每排摆2个,摆6排。(屏幕显示摆法)同样第二种摆法也可以省。

师:还有不同的想法吗?每排能摆5个吗?12个同样大小的正方形能摆3种不同的乘法算式,千万别小看这些乘法算式,今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上把3是12的因数,以往我们把他叫约数,现在叫因数,3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。师板书:因数和倍数 师:这儿还有两道乘法算式,先自己说一说谁是谁的因数?谁是谁的倍数?行不行? 师:谁先来? 生说略 师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊?

生:12是12的因数,12是12的倍数。师:虽然是拗口了点,不过数学上还真是这么回事,12的确是12的因数,12也是12的倍数。为了研究方便,以后来探讨因数和倍数的时候所说的数都是什么数啊? 生:自然数 师:而且谁得除外。生:0 师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。3、5、18、20、36 生说略。

二、探索找因数倍数的方法

师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才张老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完? 生1:

3、18 师:还有谁? 生2:36 师:3、18、36都是36的因数,只有这3个吗?

生1:1 生2:4 生3:6 师:其实要找出36的一个因数并不难,难就难在你有没有能力把36的

所有因数全部找出来?能不能?张老师作一下详细说明,因为这个问题有点难度,你可以独立完成也可以同桌完成,下面你选择你喜欢的方式,可以合作,也可以单干,想一想怎么不遗漏,注意了,当你找出了36的所有因数,别忘了填在作业纸上,如果能把怎么找到的方法写在下面更好。学生填写时师巡视搜集作业。

师:张老师找到了3份不同的作业,大家仔细观察这三份作业,可有意思了。我把他命名为A、B、C师板书。A:2、4、13、12、18、36 B:1、2、4、3、6、9、12、18、36 C:1、36、2、18、3、12、4、9、6 师:关于A这种方法你有什么话要说?(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?(学生沉默)一点都没有我们值得肯定的地方吗?你先来。

生1:都对的 师:有没有道理?看来要找一个人的优点挺困难的。生2:写全了 生大声说:没有!

师:正好触及了大家的公愤,看来要找一个人的优点不太好找了,是吧?其实这个同学挺不容易的,他已经找出不少了,对不对?说说有什么问题?

生:没有写全,少了3、6、9。师:大伙来思考一下,6、9这两个因数是36的因数吗?看来这个同学是没有找全,没有找全仅仅是因为粗心吗?是因为什么?

生:36÷4,只写了4,没写9 师:他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找? 生齐:两个两个找。

生2:先把1写在头,36写在尾,然后再把2写中间,这样依次写下去,这样比较美观。师:张老师提炼出两个字:“顺序”,好象还不仅仅是因为粗心的问题,没有按照一定的顺序。师:第二个同学有没有找全,有没有更好的建议送给他。

生:他应该把4、3调换一下。

师:做了一个微调就不仅仅是美观的问题,更带给我们一种寻找的有序。第三个同学是最没有顺序的,什么1、36,2、18了,你们觉得有道理吗?

师:你想提出抗议吗?你们觉得有顺序吗?(有)你自己来说?

生:他们那样还要头对尾头对尾的,像这样直接就可以写了。

师:有没有听明白,也是同样一对一对出现的。生:大小没有排,B大小排完后从小到大很舒服。

师:你看你那个舒服吗?

生:舒服 师:正是因为你的质疑,他把方法说了出来。他用了什么?

生:乘法口诀 师:非常感谢同学们给出的发言,正是你们的发言让我们感受到了如何寻找一个数的因数,有没有问题。

师:虽然这个同学找到了尝试完了1,找到

36、尝试完了2,找到18、3、12、4、9、6,自然数有很多,那你的7、8没有试,你怎么知道找全了呢? 生1:找到开始重复就不找了

生2:我认为应该找到比较接近如5、6,7、8找到比较接近就可以了。

师:体会体会

1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。

生:直接找更大数的所有的因数,这个同学很厉害,已经在用分解质因数的方法在找一个因数的个数了。

师:通过刚才的交流,有办法了吗?有没有方法不遗漏。试一个。20 生齐:1、2、4、5、10、20 再试一个:15,写在练习纸上。学生汇报

师:寻找一个数掌握的不错,这节课还要研究倍数呢。会找一书的倍数吗?找一个小一点的,3的倍数,谁来找一个。

生:

21、300 师:你能把3的倍数全部写下来吗? 生:不能。太多太多了。

师:那怎么办?写不完可以用省略号表示。试试看。学生练习纸上完成,汇报。师:同学们虽然找的答案差不多,但脑子里的方法各不相同。我想听听你是怎样找的? 生1:3×1、3×2 师:能理解吗?

生1:3+3=6、6+3=9 师:有理吗?不要小看加3了,当到数大的时候也比较方便。

生:略 师:寻找一个数的倍数的方法掌握了吗?试一试。7的倍数 学生练习纸上完成:50以内7的倍数。

师:谁来说说这一次你找了哪几个? 生:7、14、21、28 师:为什么不加省略号? 生:因为给了一个限制。

师:任何自然数的倍数是无限的。会寻找一个数的因数吗? 生:略

三、感受倍数和因数的神奇奥秘

师:透出一个信息,关于因数和倍数是不是蕴藏了很有意思的规律,下面这题就隐藏了一条规律。屏幕显示:老师这有9颗珠子全部放到十位和个位,1颗放十位,另外8颗放个位。这样就得到几?(18)要是不这样放,你还能得到其他的两位数吗? 生1:27 生2:36 师:把你知道的两位数跟同桌说一说。学生同桌说,师:如果把你们说的两位数按一定顺序排出来,就得到了这样的一排数,是这样吗?屏幕展示: 18、27、36、45、54、63、72、81 仔细观察9颗珠子拨的两位数,你发现了什么? 生:都是9的倍数

师:9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数都是(8的倍数)师:发现了什么?9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数(不一定都是8的倍数),7颗珠子、6颗珠子呢?其实这里的学问没有同学想的那么简单,张老师给大家布置一个小任务,自己在草稿本上画一画珠子,看看6颗5颗4颗拨出的两位数到底和珠子的个数有什么关系?这里蕴藏着非常丰富的规律,等待着同学们去发现。其实不仅在计数器上找到一些有趣的规律。

师:张老师问一个问题,好不好?1—100这100个数,思考一下,哪个数的因数最多?

生1:1 生2:99 师:还有谁要发表的?

生3:9 师问生2:为什么认为99的因数最多?

生:9是最大的。师:张老师公布一下答案: 60 师:可以一起找一找。可以负责任的告诉你,比99多多了。是不是数越大,因数就越多。你们知道一小时有多少分?(60分),一分=60秒,这里的60和刚才的60有关系吗?这里的60就和100以内的因数有关系,你们相信吗?特意给大家带来一本书。书的名字叫《数字王国》,学生读有关资料。

师:相信了吧,其实张老师一开始也是特别不相信,咱们历法上面的 1小时=60分,一分=60秒的进率竟然和100以内的数的因数有着这么大的关系,这本书详细记载着为什么一年有12个月,一天有24小时,同学们知道为什么用12、24作为进率,道理是一样的。数学中发现的规律 师:更有意思的在后面,张老师给大家介绍一个数,数学家把6称为“完美数”。想知道为什么吗?用最快的速度说一说6的因数?

生:1、2、3、6 师:把6划去,1+2+3=6,又回到了6本身,正是因为这样的数非常特别,所以数学家把这样特点的数称为是完美数。数学家找到了第一个完美数,就会去找第一个完美数,猜猜看,找到了没有?今天张老师不把答案直接告诉你们,我透露一下资料好不好?第二个完美数比20大,比30小,而且还是一个双数,好猜了吧。数学上的规律不是一下子直觉说出来的,那么这样先来说一说双数:22、24、26、28,猜猜看,可能是谁? 学生试这四个数。

师:写出所有的因数,然后把自己给去掉。

师:正确答案应该是22,我们一起来找一找,人们开始找第三个完美数,想知道第5个吗?师板书。为什么这么惊讶?同学们惊讶的背后张老师体会的过老,刚才找一个也花了一分多钟,要从几十亿数中找出这6个完美数,数学家们要付出多大的心血。你觉得什么力量使数学家们去不断努力?

生:好奇心 师:数学家们能透过枯燥的数学本身看到里面的东西,就像我们今天这堂课一样,透过数字蕴藏着大量丰富的规律。高斯曾经说过的把数学比作科学的皇后,数论是数学皇后头顶上的皇冠,我们研究的只是数论中的最最基本的一些小常识,换句话说这堂课我们没有摘取数学皇后头顶上的皇冠,我们摘取的只是皇冠上一小粒一小粒的珠子。

倍数和因数教学反思:

这是因数与倍数的案例,充满人性化的评价语,丰富多彩的文化信息,善于引导,让学生学会思考,让我颇受启发。我也尝试着按照这样的思路开始了我的课堂教学。基于时间的限制,我把“感受倍数和因数的神奇奥秘”这一块极富文化气息的内容放在了我的阅读课的教学中,很好地激发了学生的学习兴趣,让学生感受到了数学的奥秘。

老师的“能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?”还有,尽管学生是找错了,他这样说:“其实这个同学挺不容易的,他已经找出不少了,对不对?”……学生在潜移默化中感受到的是成功,是对数学学习的无限乐趣。相比之下,我的课堂上习惯性地少了些对学生学习的肯定,学生收获的成功不多,积极性不够。

老师敢于放手让学生自己找出36的因数和3的倍数,真正做到了“教育的引导者,引导学生去发现、思考。而我的课堂总是害怕学生这个不行,那个不行,所以不敢放手,学生也常在我设计的框框里思考,自然同样的教案我也没有上出这份精彩。

上一篇:“金秋”助学金发放仪式讲话稿(县委副书记)下一篇:副厂长竞聘演讲稿