不等式证明四

2024-07-22 版权声明 我要投稿

不等式证明四(精选10篇)

不等式证明四 篇1

教材:不等式证明四(换元法)

目的:增强学生“换元”思想,能较熟练地利用换元手段解决某些不等式证明问题。

过程:

一、提出课题:(换元法)

二、三角换元:

证一:证二:由x > 0 , y > 0,2x + y = 1,可设x

则2sin,2ycos2 11212(1cot2)(1tan2)22xysincos

3(2cot2tan2)32

2例三:若x2y21,求证:|x22xyy2|2

证:设xrsin,yrcos,(0r1),1则|x22xyy2||r2cos22r2cossinr2sin2|

r2|cos2sin2|2r2cos22r22 4

例四:若x > 1,y > 1,求证:xy1(x1)(y1)

证:设xsec2,ysec2,(0,)2)2

小结 若x2y21,则可令x = sec, y = tan(02)。

)。2

若xR,则可令x = tan()。22若x≥1,则可令x = sec(0

三、代数换元:

例六:证明:若a > 0,则a2112a2 2aa

1证:设xa,aya2

21,(a0,x2,y2)2a2121则x2y2aa22 aa

xya11a2222(当a = 1时取“=”)

aa

四、小结:

五、作业:

不等式证明四 篇2

一、合并意识

分析:不等式的左边是由一个等差数列和一个等比数列对应项相比构成的新数列的前n项和, 所以考虑用错位相减法.

点评:对于“a1+a2+a3+……+anm) ”型不等式的证明首先要想办法对左边求和, 如果不能直接求和可以通过适当放缩后再求和.

二、拆分意识

分析:不等式左边是一个数列的前n项和, 所以考虑将不等式右边也拆成某个数列的前n项和的形式, 逐项比较大小, 可以使数列不等式得以证明.

要证原不等式只需证即可, 进一步用分析法易证上式, 所以原不等式成立.

点评:对于“a1+a2+a3+……+anf (n) ) ”型不等式的证明要么想办法对左边求和, 要么将右边分成n项之和, 逐项比较, 易得结论.

三、放缩意识

在证明“a1+a2+a3+……+anf (n) ) ”时, 如果左边不易直接求和, 可以适当放缩后转化为等比数列求和或裂项求和.

点评:本题显然利用放缩法更容易证明, 但需要观察分析得出放缩不等式, 在学习过程中也需要积累一些常见的放缩不等式, 熟练掌握不等式的放缩技巧和方法.

四、构造意识

证明数列不等式, 如果根据命题的具体结构与特点, 构造数列并利用数列的单调性来证明, 可使证明过程简单清晰, 收到事半功倍的效果.

所以数列{an}为递增数列, 故, 当且仅当n=2时取等号, 故原不等式成立.

点评:若要证明“f (n) >g (n) ”型的数列不等式, 可以构造数列{f (n) -g (n) }.

利用导数证明不等式 篇3

策略一:利用已知函数证明

例1 (2009辽宁高考改编)设f(x)=ex(-x2+x+1).

证明:当x1,x2∈[0,1]时,有|f(x1)-f(x2)|<2.

思路 直接利用已知函数的单调性求出最值.

证明:∵f′(x)=ex(-x2-x+2)=-ex(x+2)(x-1) .

∴当x∈[0,1]时,f′(x≥0)(当且仅当x=1时f′(x)=0),

从而f(x)在x∈[0,1]时单调递增,

故f(x)在[0,1]的最大值为f(1)=e,最小值为f(0)=1,

从而对任意x1,x2∈[0,1],有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=e-1<2.

评注:根据题目特点,通常利用以下结论可证不等式成立.

(1) 对定义域内任意x1,x2,|f(x1)-f(x2)|≤|f(x)max-f(x)min|.

(2) f(x)max<0f(x)<0;f(x)min>0f(x)>0.

策略二:作差构造函数证明

(1) 直接作差构造函数

例2 证明:x∈(1,+∞)时,12x2+lnx<23x3.

思路:把代数式移至一边,使另一边为0,构造新函数.

证明:设F(x)=23x3-12x2-lnx,

则F′(x)=2x2-x-1x=(x-1)(2x2+x+1)x,

当x>1时,F′(x)=(x-1)(2x2+x+1)x>0,

从而F(x)在(1,+∞)上为增函数,∴F(x)>F(1)=160,

∴当x>1时,12x2+lnx<23x3 .

评注:本题欲证f(x)

利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式 .

(2) 变形后构造函数 

例3 (全国卷理22节选)设函数f(x)=1-ex. 证明:当x>-1时,f(x)≥xx+1.

证明:当x>-1时,原不等式等价于ex≥1+x,

令F(x)=ex-1-x,则F′(x)=ex-1,

当x∈(-1,0)时,F′(x)<0,此时F(x)单调递减,

当x∈(0,+∞)时,F′(x)>0,此时F(x)单调递增,

于是x=0时,F(x)取得极小值也为最小值,

故当x>-1时,F(x)≥F(0),即ex≥1+x∴f(x)≥xx+1.

评注:当直接作差构造函数无法证明时,可将不等式适当变形后构造函数,然后运用导数判断该函数的单调性或求出最值,从而达到证明不等式的目的,这也是转化与化归思想的重要体现. 变形技巧可以是利用不等式的性质、放缩等, 以达到化繁为简,例5就是应用放缩法的典型一例.

(3) 换元后构造函数

例4 若x∈(0,+∞),求证1x+1<lnx+1x<1x.

思路:考察目标式子的结构,直接作差较繁,若换元则可使式子化简.

证明:令1+1x=t,x>0,∴t>1,x=1t-1

则原不等式1-1t<lnt1-1t,

∵t∈(1,+∞),∴f′(t)>0,∴f(t)在t∈(1,+∞)上为增函数,

∴f(t)>f(1)=0,∴t-1>lnt.

令g(t)=lnt-1+1t,∴g′(t)=1t-1t2=t-1t2,

∵t∈(1,+∞),∴g′(t)>0,∴g(t)在t∈(1,+∞)上为增函数.

评注:本题通过换元t=1+1x,0

策略三:分离变量构造函数证明

例5 若a>b>e,证明ba>ab

证明:原题等价于lnaa<lnbb,设f(x)=lnxx,则f′(x)=1-lnxx2,

当x>e时,f′(x)≤0,当x>e时,f(x)单调递减,

∵a>b>e,∴lnaa<lnbb,即bn>ab.

评注:此题不是直接作差构造函数,而是根据题目的特点采取两边取对数,然后将两个变量分别变形到式子的两边再构造函数,是分离变量思想的运用.

策略四:构造两个函数证明

例6 已知f(x)=xlnx.

(1) 求f(x)的最小值.

(2) 证明:对一切x∈(0,+∞),都有lnx>1ex-2ex成立.

思路:(1) 易得f(x)min=f1e=-1e.

(2) 直接作差构造函数无法证明,注意到第(1)问研究的结果对(2)的启发,可先将原不等式等价变形为:xlnx>xex-2e,可知左式是已知函数f(x)的表达式,其最小值已经求得,故可研究右式的最大值.

证明(2)时x∈(0,+∞)时,原不等式可等价变形为:xlnx>xex-2e.

设g(x)=xex-2e,x∈(0,+∞),则g′(x)=xex-2e=1-xex,

当x∈(0,1)时,g′(x)>0,此时g(x)单调递增,

当x∈(0,1)时,g′(x)<0,此时g(x)单调递减,

故x=1时,g(x)取得最大值g(1)=-1e,

而由(1)知f(x)min=f1e=-1e,且两者最值不能同时取得,

故xlnx>xex-2e恒成立,即lnx>1ex-2ex.

评注:本题充分利用已知函数,将所证不等式巧妙变形,通过证明f(x)min>g(x)max,从而证得f(x)>g(x).

由上述实例可见,用导数证明不等式的关键是根据不等式的结构特征灵活巧妙构造一个

不等式的证明 篇4

教学目标

1.知识与技能

(1).理解绝对值的几何意义并能用其证明不等式和解绝对值不等式.(2).了解数学归纳法的使用原理.(3).会用数学归纳法证明一些简单问题.(4).了解证明不等式的常用方法.2.过程与方法

通过自主学习、课上讨论、提问、分析点评,让学生更加熟练解决有关不等式证明有关的问题.3.情感、态度和价值观

(1)培养学生分析、探究问题的能力,进一步培养学生学习数学的兴趣及综合运用基本知识解决问题的能力.(2)培养他们合作、交流、创新意识以及数形结合、抽象理解能力,使学生学会数学表达和交流,发展数学应用意识.学法与教具

(1)学法:课下自主复习、课堂上合作探究.(2)教具:教学案、多媒体.一、【知识梳理】

不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容.1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述.(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野.2.不等式证明还有一些常用的方法:、放缩法、反证法、函数单调性法、、数形结合法等.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法.证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.(1)反证法的一般步骤:反设——推理——导出矛盾(得出结论);(2)放缩法:“放”和“缩”的方向与“放”和“缩”的量的大小是由题目分析、多次尝试得出,要注意

放缩的适度。常用的方法是:

131

①添加或舍去一些项,如:a1a,n(n1)n,aa

242

②将分子或分母放大(或缩小)如:

1n

n(n1)n

ab),2

1n(n1)

③真分数的性质:“若0ab,m0,,则

ambm(lg

④利用基本不等式,如:lg3lg5(n(n1)

lg3lg

2)(lg

2)

(lg4)

lg4;

n(n1)

.⑤利用函数的单调性

⑥利用函数的有界性:如:sinA1,AR;2x0,xR.⑦利用常用结论: Ⅰ、1K1K

2K2K1k(k1)1k

K

2K

2K1k

K1K

12(K1K)(kN,k1)

*

K

2(KK1)(kN,k1)

*

Ⅱ、1k



1k

1 ;

1k

1k(k1)

1k1

1k

1k1

(程度大)

Ⅲ、1k

1

(k1)(k1)

2k1

();(程度小)

⑧绝对值不等式:ababab;

nn1n1

⑨应用二项式定理.如:2(11)1CnCn12(n1)(n4)

3构造法:通过构造函数、方程、数列、向量或不等式来证明不等式.二、【范例导航】

例1.设不等式2x11的解集为M.(I)求集合M;(II)若a,b∈M,试比较ab+1与a+b的大小.

解:(I)由2x11解得0x1.所以Mx0x1(II)由(I)可知aMbM,故0a1,0b1 所以(ab1)(ab)(a1)(b1)0故ab1ab

例2.已知a、b、c∈R+,且abc1求证:(1a)(1b)(1c)8(1a)(1b)(1c).剖析:在条件“abc1”的作用下,将不等式的“真面目”隐含了,给证明不等式带来困难,若用“abc”换成“1”,则还原出原不等式的“真面目”,从而抓住实质,解决问题.证

a,b,cR且abc

1

∴要证原不等式成立,即证

(abc)a(abc)b(abc)c8(abc)a(abc)b(abc)c

也就是证

(ab)(ca)(ab)(cb)(ac)(bc)8(bc)(ca)(ab)1

∵(ab)(bc)2(ab)(bc)0,(ac)(bc)2(ac)(bc)0(ab)(ac)2(ab)(ac)0,三式相乘得①式成立.故原不等式得证.例3.证明不等式1

1213

1n

2n(nN)

证:对任意nN,都有: 1k

2k12k13

2k

k11n

2(kk1),2)2(n

n1)2n.因此122(21)2(3

例4.证明

:(1)(1)(1

112n1)

2n12n1

75

2n12n1

2n1

3

2n1

2证明方法

一、1

(1

13)(1

512n

1

2n2n1)

43

65

(2n1)(2n1)2n12n1



2n2n1

53)(1

5476

2n176

证明方法

二、设B则AB又因为所以A

435465

2n2n

12n1



2n

2n12n,2n1

32n2n1

2n12n

2n1

4,A

2n1

2AB

2n13

例5.已知:a,b,c都是小于1的正数;求证(1a)b,(1b)c,(1c)a中至少有一个不大于.证明:假设(1a)b

14,(1b)c

14,(1c)a

1232,14,则有

12,(1c)a

∵a,b,c都是小于1的正数,(1a)b从而有(1a)b

(1b)c

(1c)a

(1b)c

1bc

1ca

32

但是(1a)b(1b)c(1c)a

1ab

故与上式矛盾,假设不成立,原命题正确.

【说明】反证法是利用互为逆否命题具有等价性的思想进行推证的.反证法必须罗列各种与原命题相异的结论,缺少任何一种可能,则反证都是不完全的,遇到“至少”、“至多”、“唯一”等字句的命题常用反证法.

三、【解法小结】

1.综合法就是“由因导果”,从已知不等式出发,不断用必要条件替换前面的不等式,直至推出要证的结论.2.分析法就是“执果索因”,从所证不等式出发,不断用充分条件替换前面的不等式,直至找到成立的不等式.3.探求不等式的证法一般用分析法,叙述证明过程用综合法较简,在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程,以适应学生习惯的思维规律.有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证题目的.4.由于高考试题不会出现单一的不等式的证明题,常常与函数、数列、三角、方程综合在一起,所以在教学中,不等式的证明除常用的三种方法外,还需介绍其他方法,如函数的单调性法、判别式法、换元法(特别是三角换元)、放缩法以及数学归纳法等,在放缩法中一定要注意放缩的尺度问题不能过大也不能过小.四、【布置作业】

必做题:

1.不等式x3x1a3a对任意实数x恒成立,则实数a的取值范围为()

A.,14,2.设an

sin1

2sin22

B.,25,C.1,2D.,12,

sinn2

n

, 则对任意正整数m,n(mn), 都成立的是()

mn2

A.anam

mn2

B.anam C.anam

n

D.anam

n

3.(陕西长安二中2008届高三第一学期第二次月考)设

1ba

()()1,那么()222

A.aaabbaB.aabaabC。abaabaD.abbaaa

4.(2012,四川文)设a,b为正实数,现有下列命题:

① 若a2b21,则;ab1 ②若③若

1b1a

1,则ab1;

ab1,则ab1;

④若a3b31,则ab1.其中的真命题有___________(写出所有正确的题号)必做题答案:

1.A解析:因为x3x1a3a对任意x恒成立,又因为x3x1最大值为4所以 a3a4解得a4或a

sinn12

n

12.C

anam

sinn22

n2



sinm21

m

sin(n1)2

n1

sin(n2)2

n2



sinm2

m

n1

n2



m

n1

n2



m

12

n1

m1

n

m

n

1

故应选C

16.答案C17、①④

选做题:(辽宁2011理21)已知函数f(x)lnxax2(2a)x.(I)讨论f(x)的单调性;(II)设a0,证明:当0x

1x

时,f(1a

x)f(1a

x);

(III)若函数yf(x)的图像与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f(x0)0. 解:(I)f(x)的定义域为(0,), f(x)

1x

2ax(2a)

(2x1)(ax1)

x

)(i)若a0则f(x)0,所以f(x)在(0,单调增加.(ii)若a0则由f(x)0得x

1a

且当x(0,)时,f(x)0,当x

a

11a

时,f(x)0,1单调增加,在(,)单调减少.所以f(x)在(0)a

a

(II)设函数g(x)f(a1ax

1x

1a

x)f(1a

x)则g(x)ln(1ax)ln(1ax)2ax

1a

g(x)

a1ax

2a

1a

2ax

1ax

1a,当0x时,g(x)0,而g(0)0,所以g(x)0.故当0x时,f(x)f(x)

(III)由(I)可得,当a0函数yf(x),的图像与x轴至多有一个交点,11

,且f0不妨设aa

1ax

2故a0,从而f(x)的最大值为f

A(x1,0)B(x20),0x1x2,则0x1

2a

1a

1a

由(II)得f(x1)f(

x1)f(x1)0从而x2

2a

x1,于是x0

x1x2

1a

由(I)知,f(x)0

五、【教后反思】

几何法证明不等式 篇5

^2<(a^2+b^2)/2

(a,b∈R,且a≠b)

设一个正方形的边为C,有4个直角三角形拼成这个正方形,设三角形的一条直角边为A,另一条直角边为B,(B>A)A=B,刚好构成,若A不等于B时,侧中间会出现一个小正方形,所以小正方形的面积为(B-A)^2,经化简有(B+A)^2=4AB,所以有((A+B)/2)^2=AB,又因为(A^2+B^2)/2>=AB,所以有((A+B)/2)^2<=(A^2+B^2)/2,又因为A不等与B,所以不取等号

可以在直角三角形内解决该问题

=^2-(a^2+b^2)/2

=<2ab-(a^2+b^2)>/4

=-(a-b)^2/4

<0

能不能用几何方法证明不等式,举例一下。

比如证明SINx不大于x(x范围是0到兀/2,闭区间)

做出一个单位圆,以O为顶点,x轴为角的一条边

任取第一象限一个角x,它所对应的弧长就是1*x=x

那个角另一条边与圆有一个交点

交点到x轴的距离就是SINx

因为点到直线,垂线段长度最小,所以SINx小于等于x,当且尽当x=0时,取等

已经有的方法:第一数学归纳法2种;反向归纳法(特殊到一般从2^k过渡到n);重复递归利用结论法;凸函数性质法;

能给出其他方法的就给分

(a1+a2+...+an)/n≥(a1a2...an)^(1/n)

一个是算术,一个是几何。人类认认识算术才有几何,人类吃饱了就去研究细微的东西,所以明显有后者小于前者的结论,这么简单都不懂,叼佬就是叼佬^_^

搞笑归搞笑,我觉得可以这样做,题目结论相当于证

(a1+a2+...+an)/n-(a1a2...an)^(1/n)≥0

我们记f(a1,a2,……,an)=(a1+a2+...+an)/n-(a1a2...an)^(1/n)这时n看做固定的。我们讨论f的极值,它是一个n元函数,它是没有最大值的(这个显然)

我们考虑各元偏导都等于0,得到方程组,然后解出

a1=a2=……=an

再代入f中得0,从而f≥0,里面的具体步骤私下聊,写太麻烦了。

要的是数学法证明也就是代数法不是用向量等几何法证明.....有没有哪位狠人帮我解决下

【柯西不等式的证明】二维形式的证明

(a^2+b^2)(c^2+d^2)(a,b,c,d∈R)

=a^2·c^2+b^2·d^2+a^2·d^2+b^2·c^2

=a^2·c^2+2abcd+b^2·d^2+a^2·d^2-2abcd+b^2·c^2

=(ac+bd)^2+(ad-bc)^2

≥(ac+bd)^2,等号在且仅在ad-bc=0即ad=bc时成立。

一般形式的证明

求证:(∑ai^2)(∑bi^2)≥(∑ai·bi)^2

证明:

当a1=a2=…=an=0或b1=b2=…=bn=0时,一般形式显然成立

令A=∑ai^2B=∑ai·biC=∑bi^2

当a1,a2,…,an中至少有一个不为零时,可知A>0

构造二次函数f(x)=Ax^2+2Bx+C,展开得:

f(x)=∑(ai^2·x^2+2ai·bi·x+bi^2)=∑(ai·x+bi)^2≥0

最值证明不等式 篇6

ln x(2)证明:f(x)=>x-1(x>0,x≠1)x

18.证:令g(x)=x-1-f(x),原不等式等价于 g(x)>0(x>0,x≠1).

g(x)满足g(1)=0,且

x-1+ln xg′(x)=1x当0

2当x>1时,x-1>0,ln x>0,所以g′(x)>0,故g(x)单调递增.

所以g(x)>g(1)=0(x>0,x≠1).

利用构造图形证明不等式 篇7

一、构造图形, 用面积关系证明

例1设a, b, c, d, m, n为正实数, 且a+b=d+c=m+n=R, 求证:an+bc+dm

证明构造边长为R的正三角形ABC, 在AB, BC, CA上取点D, E, F, 使AD=a, DB=b, BE=c, EC=d, CF=m, FA=n, 显然S△ADF+S△BDE+S△CEF

∴an+bc+dm

例2若a≥c, b≥c, c>o, 求证:

证明构造矩形ABCD如图在AB上取E, 使

由S△DEC=S△ADE+S△BEC得

二、构造图形用勾股定理, 余弦定理证明

例3已知:a, b, c是正数, 且c>a, c>b, 求证:

证明构造正方形ABCD, 边长为C点H, E, F, G分别在四边上, AH=DF=a, BE=AG=b, EG交HF于O.

由OD+OB≥BD, OA+OC≥AC得

例4设a, b, c是正数, 求证:

证明构造图形如图△ABC中, ∠BAC=120°, AB=a, AC=c, AD平分∠BAC, AD=b, 由余弦定理, 得:

由BD+DC≥BC (当D在BC上时取“=”) , 得

以下两题, 可供读者解决.

1.已知:x, y, z是正数:

利用微积分证明不等式 篇8

关键词:微积分;不等式;证明

不等式是数学的重要内容之一,在解各类方程,有关函数的问题,三角证明,几何证明等许多方面都有广泛的应用。初等数学中的常用方法有很多,比如分析法、综合法、比较法、配方法、判别式法、反证法、参数法、数学归纳法、换元法等等,上述方法种类多样,一般来说比较讲究解题技巧。而用微积分证明不等式相对于上述方法,有时可大大降低解题技巧的需要,进而简化解题过程。微积分证明不等式常用的方法有:微分中值定理、函数的凹凸性方法、函数的极值最值方法、函数的单调性法以及利用积分性质证明不等式。本文就对这些方法进行阐述和介绍。

一、微分在证明不等式中的应用

1.1 利用函数单调性证明不等式

定理1:设函数y=f(x)在区间[a,b]上可导,若y=f'(x)>0 (或y=f'(x)<0)时,则函数y=f(x)在区间[a,b]上为递增(减)函数。

例1证明:≤+。

思路:首先构造一个可导函数,利用定理1对函数求导,然后通过判断函数符号,从而确定函数的单调性。

证:构造函数f(x)=,则f'(x)=>0,(求导,讨论符号)

∴ f(x)=为单调递增的函数。(确定函数单调性)

有≤=+

≤+。

原题可证。

注:构造合适的函数是本题解题的关键。

1.2利用微分中值定理证明不等式

定理2:微分中值定理(拉格朗日定理):如果函数y=f(x)满足下列条件:(1) 在区间[a,b]上连续;(2)在区间[a b]内可导。 则在区间(a,b)内至少存在一点ξ,使得f'(ξ)=。

思路:由于ξ在a、b之间,因此f'(ξ)将有一个取值范围,即有一个取值范围,这样就得到一个不等式,即利用ξ在(a,b)内的特点来证明不等式。

例2. 证明不等式

证明:设f(x)=lnx,x∈[a,b](构造函数),则f'(x)=,x∈[a,b],

函数满足定理条件,所以存在ξ(a<ξ

ln=lnb-lna=,由于<<,

1.3利用函数的极值和最值证明不等式

定理3: (极值的必要条件)若函数y=f(x)在x0可导,且在x0处取得极值,则f'(x0)=0。

定理4: (极值第一充分条件) 设函数y=f(x)在x0连续,在区间[a,b]内可导。

(1) 若当x∈(a,x0)时, f'(x)≥0;当x∈(x0,b) 时, f'(x)≤0,则f(x)在x0处取得极大值;

(2)若当x∈(a,x0)时, f'(x)≤0;当x∈(x0,b)时, f'(x)≥0,则f(x)在x0处取得极小值。

思路分析:将要证明的不等式转化为求函数极值或最值的问题,即要证明f(x)≥g(x),只要求函数F(x)≡f(x)-g(x)的极值,证明F(x)min≥0即可。

例3设a>ln2-1为任意函数,求证:x2-2ax+1<ex在x>0时恒成立。

证:问题在于证明f(x)=ex- x2+2ax-1>0(x>0),

因为f(0)=0,所以只要证明f'(x)=ex-2x+2a>0(x>0),

因此,问题又转化为证明f'(x)min>0即可。

令f"(x)=ex-2=0,得稳定点x=ln2,且是唯一的。

当x<ln2时, f"(x)<0;当x>ln2时, f"(x)>0。

所以f'(x)min=f'(ln2)=2-2ln2+2a

=2×(1-ln2)+2a >0,

证毕。

1.4 利用函数的凹凸性证明不等式

凹凸性是函数一个重要性质,它不仅是证明不等式的重要工具,也是讨论一些重要不等式的重要工具。

定义1 设f为定义在区间I上的函数,若对I上的任意两点x1,x2 和任意实数λ∈(0,1),总有:

f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2)

则称f为区间I上的凸函数。

反之:总有f(λx1+(1-λ)x2))≥λf(x1)+(1-λ)f(x2)

则称f为区间I上的凹函数。

定理5:设f为区间I上的二阶可导函数;则f为I上凸(凹)函数的充要条件是:f"(x)≥0(f"(x)≤0),x∈I。

函数的凹凸性特点:如函数f(x)是凸函数,则在(a,b)上有:[f(x1)+f(x2)]≤f()如函数f(x)是凹函数,则在(a,b)上有:[f(x1)+f(x2)]≥f()。

在解题时,可利用函数的凹凸性特点进行证明。

例4若x>0,y>0,且x≠y。试证:xlnx+ylny>(x+y)ln()。

分析:上面不等式等价于:(lnxx+lnyy)>ln()。不等式含f(),可考虑用函数凹凸性来证明。

证明:令f(x)=lnxx,则f'(x)=lnx+1, f"(x)=>0,(x>0),

因为f(x)为凹函数,对任意x,y∈(0,+∞ ) (x≠y),有:f()<, 即ln()<(lnxx+lnyy),

故xlnx+ylny>(x+y)ln()。

二、积分在证明不等式中的应用

2.1利用定积分性质证明不等式

定理6 (积分不等式性质) 设函数f(x)与g(x)为定义在[a,b]上的两个可积函数,若f(x)≤g(x),x∈[a,b],则有:

f(x)dx ≤ g(x)dx 。

例5 证明不等式:ln≤,(0<a≤b)。

分析:积分和微分是互逆运算,积分本身具有单调性,问题关键在于把不等式两边构造成积分的形式,使用牛顿-莱布尼茨公式,F(b)-F(a)=f(x)dx,再利用定理6便可以证明。

证明:不等式的左边ln=lnb-lna= f(x)dx,

右边b-a=dx,

令f(x)=,g(x)≡1在[a,b]上是可积函数,则

(+1)2dx≥0λ2+2λ+dx ≥0,

因此有 △=4()2-4·dx=4(ln)2-4(b-a)(- )≤ 0成立。

即(ln)2≤(b-a)(-)=,

而ln ≥0,b-a≥0,0 <a≤b,

于是有ln≤, (0<a≤b)成立。

结论得证。

2.2 利用积分有界性证明不等式

定理7:如果 f(x)在上的最大值为M,最小值为m,则有:m(b-a) ≤ f(x)dx≤M(b-a)。

例6已知: f(x)在-∞≤x≤+∞内连续,F(x)=

f(t)dt(a>0),设f(x)在区间(x-a,x+a)内的最大值和最小值分别为M,m。试证:F(x)-f(x)≤M-m。

证明:因为当x-a<t<x+a时,由性质,得

m·2a≤f(t)dt≤M·2a,

∴m≤F(x)≤M,

又∵m≤f(x)≤M,

∴-M≤-f(x)≤-m,

∴-(M-m)≤F(x)-f(x)≤M-m,

即F(x)-f(x)≤M-m。

故结论得证。

2.3利用二重积分性质来证明不等式

定理8:(二重积分得保序性)若f(x,y)与g(x,y)在D上可积,且f(x,y)≤g(x,y),(x,y)∈D,则:f(x,y)dб≤

g(x,y)dб 。

思路:当命题涉及积分 f(x)dx, g(x)dx,

f(x)g(x)dx,且f(x)与g(x)均单调增(减)时,可利用二重积分的保序性解题。

例7 设f(x),g(x)均为[a,b] 上得单调不减(增)连续函数,证明:(b-a) f(x)g(x)dx ≥ f(x)dx g(x)dx。

分析:命题符合上述特征,可利用二重积分的保序性,且注意以下事实: f(x)dx= f(y)dy,

f(x)dx g(y)dy=f(x)g(y)dxdy。

证明:由于f(x),g(x)同为单调不减(增)函数,

令F(x,y)= [f(x)-f(y)][g(x)-g(y)],

总由[f(x)-f(y)][g(x)-g(y)]≥0,

由二重积分得保序性,有:

[ f(x)g(x)-f(y)g(x)-f(x)g(y)+f(y)g(y)]dxdy≥0,即f(x)g(x)dxdy≥f(x)g(y)dxdy+f(y)g(x)dxdy,

于是有(b-a) f(x)g(x)dx ≥ f(x)dx g(y)dy=

基本不等式与不等式基本证明 篇9

第一部分:基本不等式变形技巧的应用

基本不等式在求解最值、值域等方面有着重要的应用,利用基本不等式时,关键在对已知条件的灵活变形,使问题出现积(或和)为定值,以便解决问题,现就常用技巧给以归纳。

技巧一:加减常数

1、求函数yx

点评:当各项符号不确定时,必须分类讨论,要保证代数式中的各项均为正。

技巧二:巧变常数

2、已知0x

点评:形如f(x)x(1ax)或f(x)x2(1ax2)等可有两种变形方法:一是巧乘常数;二是巧提常数,应用时要注意活用。

技巧

三、分离常数

3、已知x

5452121x1(x1)的值域。,求函数y=x(1-2x)的最大值。,则f(x)x3x32x4542有()32A、最大值B、最小值C、最大值D、最小值

32点评:通过加减常数,分离出一个常数是分式函数求值域常用的方法,这里一定要加减好“常数”,以利于问题的解决。

技巧

四、活用常数

4、若x,yR且满足

点评:通过配凑“1”并进行“1”的代换,整理后得到基本不等式的形式,减少了使用基本不等式的次数,有效地避免了等号不能同时取到的麻烦。

技巧

五、统一形式

例

5、已知a,b,cR,求(abc)(4x16y1,求x+y的最小值。1

ab1

c)的最小值。

点评:根据分母的特点,进行结构调整为统一的形式,这样便能快速求解。含有根号的问题也要注意形式的统一(如求函数yxx2(0x1)可变形为y第二部分:均值定理证明不等式的方法技巧

。x(1x)等)

1.轮换对称型

例1 若a,b,c是互不相等的实数,求

证:abc

222

abbcac.点评:分段应用基本等式,然后整体相加(乘)得结论,是证明轮换对称不等式的常用技

巧。

2.利用“1”的代换型

111

已知a,b,cR,且 abc1,求证 9.abc例2

点评:做“1”的代换。

.3.逆向运用公式型

a,bR,ab1求证: a

b

2.例3已知

点评:依据求证式的结构,凑出常数因子,是解决此类问题的关键。为脱去左边的根号,a

12,b

11

转换成 1a,1b,然后逆向运222

用均值不等式: 若

a,bR则 ab

ab2

.4.挖掘隐含条件证明不等式

111

a,bR,ab1求证:11.ab9 例4 已知

a,bR,ab1

12

ab说明a,bR,ab1的背后隐含ab

4ab

2点评:由于

着一个不等式ab

.5.用均值不等式的变式形式证明不等式

ab例5已知a,b,cR,求证:

bc

ca

2abc.点评:本题的关键在于对ab,bc,ca的处理,如果能找出

ab与ab间的关系,问题就可以

222222

解决,注意到

ab2ab2ab



ab2

2ab

ab 其中a,b,cR即可。解题时要注意a

b2ab的ab

变式应用。常用

ab2

积分不等式的证明方法 篇10

摘要

在高等数学的学习中,积分不等式的证明一直是一个无论在难度还是技巧性方面都很复杂的内容.对积分不等式的证明方法进行研究不但能够系统的总结其证明方法,还可以更好的将初等数学的知识和高等数学的结合起来.并且可以拓宽我们的视野、发散我们的思维、提高我们的创新能力,因此可以提高我们解决问题的效率.本文主要通过查阅有关的文献和资料的方法,对其中的内容进行对比和分析,并加以推广和补充,提出自己的观点.本文首先介绍了两个重要的积分不等式并给出了证明,然后分类讨论了证明积分不等式的八种方法,即利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用积分的性质、利用泰勒公式、利用重积分、利用微分中值定理,最后对全文进行了总结.

关键词:积分不等式,定积分,中值定理,柯西-施瓦兹不等式,单调性

南通大学毕业论文

ABSTRACT

When we study mathematics,the proof of integer inequality has always been seen as a complex content both in difficulty and skill.In this paper the proof methods of integral inequality are organized systematically to combine the knowledge of elementary mathematics and higher mathematics better.Also our horizons can be broadened,thinking can be divergencied and innovation ability can be improved,so as to improve our efficiency of problem solving.The paper is completed by referring to relevant literature,comparing and analysing related content, complementing and promoting related content.In this paper ,two important integral inequalities along with their proof methods are given first,and then eight approaches to proof integral inequalities are introduced,such as concavity and convexity of function,method of auxiliary function,important integral inequality, integral mean value theorem, integral property, Taylor formula,double integral and differential mean value theorem.Finally,the full paper is summarized.

Key words: Integral Inequality, Definite Integral,Mean Value Theorem,Cauchy-Schwarz Inequality, Monotonicty

南通大学毕业论文

1.引

不等式在数学中有着重要的作用,在数量关系上,尽管不等关系要比相等关系更加普遍的存在于人们的现实世界里,然而人们对于不等式的认识要比方程迟的多.直到17世纪之后,不等式的理论才逐渐的成长起来,成为数学基础理论的一个重要组成部分.众所周知,不等式理论在数学理论中有着重要的地位,它渗透到了数学的各个领域中,因而它是数学领域中的一个重要的内容.其中积分不等式更是高等数学中的一个重要的内容.

实际上关于定积分的概念起源于求平面图形的面积和一些其他的实际问题.有关定积分的思想在古代就有了萌芽,比如在公元前240年左右的古希腊时期,阿基米德就曾经用求和的方法计算过抛物线弓形和其他图形的面积.在历史上,积分观念的形成要比微分早.然而直到17世纪后半期,较为完整的定积分理论还没有能够形成,一直到Newton-Leibniz公式建立之后,有关计算的问题得以解决后,定积分才迅速的建立并成长起来.

本论文研究的积分不等式结合了定积分以及不等式.关于它的证明向来是高等数学中的一个重点及难点.对积分不等式的证明方法进行研究,并使其系统化,在很大程度上为不同的数学分支之间架起了桥梁.深刻的理解及掌握积分不等式的证明方法可以提升我们对其理论知识的理解,同时可以提高我们的创造思维和逻辑思维.

在论文的第三部分中对积分不等式的证明方法进行了详细的阐述.分别从利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用泰勒公式、利用重积分、利用微分中值定理、利用定积分的性质这八个方面给出了例题及证明方法.这样通过几道常见的积分不等式的证明题,从不同的角度,用不同的方法研究、分析了积分不等式的特点,归纳总结出了其证明方法.同时论文中也对有的题目给出了多种证明方法,这启示我们对于同一道积分不等式而言它的证明方法往往不止一种,我们需要根据实际情况采用合适的方法去证明,从而达到将问题化繁为简的目的.

南通大学毕业论文

2.几个重要的积分不等式

在高等数学的学习中我们遇到过许多重要的积分不等式,如Cauchy-Schwarz不等式,Young不等式等.它们的形式及证明方法都有很多种,在这一小结中我们将给出这两种积分不等式的证明方法.

2.1 Cauchy-Schwarz不等式

无论是在代数还是在几何中Cauchy-Schwarz不等式的应用都很广泛,它是不同于均值不等式的另一个重要不等式.其形式有在实数域中的、微积分中的、概率空间,F,P中的以及n维欧氏空间中的4种形式.接下来在这一部分中我们将对其在微积分中的形式进行研究.

定理2.1[1] 设f(x), g(x)在[a,b]上连续,则有

[f(x)g(x)dx]2{[f(x)]2dx} {[g(x)]2dx}.

aaabbb证明:要证明原不等式成立,我们只需要证

设Ftt2abaf2xdxat2bbgxdxfxgxdx0成立. a 222tfxdxgxdxfxgxdx,则只要证FbFa成立,aa由Ft在[a,b]上连续,在a,b内可导,得

Ftf2tg2xdxg2tf2xdx2ftgtfxgxdxaaa2222ftgx2ftgtfxgxgtfxdx atttt

ftgxgtfxdx0.

(2.1)a由(2.1)式可知Ft在[a,b]上递增,由ba,知FbFa,故原不等式成立.

证毕

实际上关于Cauchy-Schwarz不等式的证明方法有很多,这里我们采用的证明方法是较为普遍的辅助函数法,它将要证明的原积分不等式通过移项转变为了判断函数在两个端点处函数值大小的问题.通过观察我们可以进一步发现原Cauchy-Schwarz不等式能够改写成以下行列式的形式 t2 4 南通大学毕业论文

fxfxdxgxfxdx0,aabbbafxgxdxgxgxdxab由此我们可以联想到是否可以将它进行推广?答案是肯定的.下面我们将给出

CauchySchwarz不等式的推广形式.

定理2.2[2] 设fx,gx,hx在a,b上可积,则

hxfxdxfxgxdxgxgxdxhxgxdx0. fxhxdxgxhxdxhxhxdxaaabbbaaabbbaaabfxfxdxbgxfxdxb 证明:对任意的实数t1,t2,t3,有

bat1fxt2gxt3hxdx

bbbaaa2t12f2xdxt22g2xdxt32h2xdxbbaa

ba2t1t2fxgxdx2t1t3fxhxdx2t2t3gxhxdx0. 注意到关于t1,t2,t3的二次型实际上为半正定二次型, 从而其系数矩阵行列式为

babbaf2xdxbagxfxdxabhxb2fxdx

xfxhfaxgxdxdxbab2agxdxbaxhag0x.d x证毕 xdxgxhxdxh以上的推广是将Cauchy-Schwarz不等式的行列式由二阶推广到了三阶的形式,事实上Cauchy-Schwarz不等式是一个在很多方面都很重要的不等式,例如在证明不等式,求函数最值等方面.若能灵活的运用它则可以使一些较困难的问题得到解决.下面我们会在第三部分给出Cauchy-Schwarz不等式及其推广形式在积分不等式证明中的应用.

除了Cauchy-Schwarz不等式之外还有很多重要的积分不等式,例如Young不等式,相较于Cauchy-Schwarz不等式我们对Young不等式的了解比较少,实际上它也具有不同的形式且在现代分析数学中有着广泛的应用.接着我们将对Young不等式进行一些研究.

2.2 Young不等式

Young不等式,以及和它相关的Minkowski不等式,HÖlder不等式,这些都是在现代分

南通大学毕业论文

析数学中应用十分广泛的不等式,在调和函数、数学分析、泛函分析以及偏微分方程中这三个不等式的身影随处可见,是使用得最为普遍,最为平凡的知识工具.下面我们将给出积分形式的Young不等式的证明.

定理2.3[3] 设f(x)在[0,c](c0)上连续且严格递增,若f(0)0,a[0,c]且b[0,f(c)],则0f(x)dx0f1(x)dxab,其中f1是f的反函数,当且仅当bf(a)时等号成立.

证明:引辅助函数g(a)abf(x)dx,(2.2)

0aab把b0看作参变量,由于g(a)bf(a),且f严格递增,于是

当 0af1(b)时,g(a)0;当 af1(b)时,g(a)0;当 af1(b)时,g(a)0. 因此 当af1(b)时,g(a)取到g的最大值,即

gamaxgxgf1b

(2.3)

由分部积分得

f1(b)f1(b)0g(f(b))bf(b)作代换yf(x),上面积分变为

11f(x)dx0xdf(x),g(f1(b))f1(y)dy,(2.4)

0b将(2.2)式和(2.4)式代入(2.3)式得

abf(x)dxf(y)dyf1(x)dx,000ab1b即f(x)dxf1(x)dxab. 证毕

00ab 6 南通大学毕业论文

3.定积分不等式常见的证明方法

关于积分不等式的证明方法较为繁多,难度及技巧性也较大,因此对其进行系统的归纳总结是很有必要的.在这一部分中我们将归纳出利用辅助函数、微分中值定理、重要积分不等式及积分中值定理等证明积分不等式的方法.

3.1 利用函数的凹凸性

在数学分析以及高等数学中,我们常常会遇到一类特殊的函数—凸函数.凸函数具有重要的理论研究价值和广泛的实际应用,在有些不等式的证明中,若能灵活地利用凸函数的性质往往能够简洁巧妙的解决问题.下面给出一个例子加以说明.

定理3.1 若t定义在间隔m,M内,且t0,则t必为下凸函数.

定理3.2 设fx在[a,b]上为可积分函数,而mf(x)M.又设t在间隔mtM内为连续的下凸函数,则有不等式

1b1bfxdxfxdx. aabababb例3.1[4] 设fx在a,b上连续,且fx0,求证:fxdxaa12dxba. fx证明: 取u112, 因为u20,u30,u0 uuu即在u0时,yu为凸函数,故有

1b1bfxdxfxdx,aabababa即fxdxabba1dxbbfx12dxba.

证毕,故fxdxaafxba在上述的题目中我们可以发现在证明中常常先利用导数来判断函数的凹凸性,然后再利用凹(凸)函数的性质来证明不等式.然而对于实际给出的题目,我们往往需要先构造一个凹(凸)函数,然后才能利用其性质来证明我们所要证明的问题.

3.2 辅助函数法

辅助函数法是积分不等式证明中的一种非常重要的方法,往往我们会根据不等式的特点,构造与问题相关的辅助函数,考虑在相同的区间上函数所满足的条件,从而得出欲证明

南通大学毕业论文 的结论.在第二部分中我们用辅助函数法对Cauchy-Schwarz不等式进行了证明,下面将对用辅助函数法证明积分不等式进行进一步的探讨.

例3.2.1[5] 设函数fx在区间0,1上连续且单调递减,证明:对a(0,1)时, 有: fxdxaf(x)dx.

00a11x证明:令Fxf(t)dt 0x1,由fx连续,得Fx可导

x0则Fxfxxftdt0xx2 fxxfxfxf ,(0x). 2xx因为f(x)在[0,1]上单调减少,而0x,有fxf, 从而Ft0,Fx在(0,1]上单调减少,则对任意a(0,1),有F(a)F(1). 即

a111af(x)dxafxdx. 证毕 a,两边同乘即得f(x)dxfxdx,0000a本题根据积分不等式两边上下限的特点,在区间(0,1)上构造了一个辅助函数,进一步我们可以思考对于一般的情形,该题的结论是否依然成立呢?答案是肯定的.例3.2.2 设函数fx在区间0,1上连续且单调递减非负,证明:对a,b(0,1),且0ab1时,有: fxdx0aabf(x)dx. ab证明:令FxFx1xf(t)dt,0x1,由fx连续,得Fx可导, 则 x0x0fxxftdtx2 fxxfxfxf ,(0x). 2xx因为f(x)在[0,1]上单调减少,而0x,有fxf,从而Ft0,Fx在(0,1]上单调减少,则对任意0ab1,有F(a)F(b),即

1a1b ftdtftdt.

(3.1)

a0b0由f非负,可得fxdxfxdx.

(3.2)0abb结合(3.1)式和(3.2)式可得 即a1a1bfxdxfxdx. a0ba0abfxdxfxdx.

证毕

babbaa例3.2.3[6] 函数f(x)在[a,b]上连续,且fx0 试证:f(x)dx 8

1dx(ba)2. f(x)南通大学毕业论文

在例3.1中我们给出了本题利用函数的凹凸性证明的过程,在这里我们将给出其利用辅助函数法证明的过程.

证明: 构造辅助函数xftdtaxxadt2xa, 则 ft xfxxaxdt1ftdt2xaftafx

xaxftxfxdtdt2dt

afxaftxfxft2dt0, aftfx

所以x是单调递增的,即ba0,故fxdxabba12dxba. 证毕 fxabbxfxdxfxdx.

2a例3.2.4 设fx在a,b上连续且单调增加,证明:[7]

ba证明: 原不等式即为xfxdx则Fttft1t2a1taftf , a,t.

2abbfxdx0,构造辅助函数 aa2tattFtxfxdxfxdx ,ta,b,a2atat1fxdxfttaftfxdxa 2 2b因为at,fx单调增加,所以Ft0.故Ft在a,b上单调递增,且Fa0, 所以对x(a,b],有FxFa0.当xb时,Fb0.即

baxfxdxabbfxdx0,故原不等式成立, 证毕 a2通过以上几道题目的观察我们可以发现:

1.当已知被积函数连续时,我们可以把积分的上限或者是下限作为变量,从而构造一个变限积分,然后利用辅助函数的单调性加以证明.

2.辅助函数法实际上是一种将复杂的问题转化为容易解决的问题的方法.在解题时通常表现为不对问题本身求解而是对与问题相关的辅助函数进行求解,从而得出原不等式的结论.

3.3 利用重要积分不等式

在第2部分中我们给出了Cauchy-Schwarz不等式以及它的推广形式的证明过程,实际上Cauchy-Schwarz不等式的应用也很广泛,利用它可以解决一些复杂不等式的证明.在这一小节中我们将通过具体的例子来加以说明它在证明积分不等式中的应用.

南通大学毕业论文

例3.3.1[8] 函数fx在0,1上一阶可导,f1f00, 试证明:10112fxdxfxdx.

402证明:由fxftdtf0和fxftdtf10x1x

可得

f2xx0ftdt2xx1112dtf2tdtxf2xdx,(x0,), 0002111112dtf2tdt(1x)f2xdx,(x,1). xx02 f2xxftdt12因此 f2xdx 120112fxdx,(3.3)0811

2(3.4)fxdx.8010

112f2xdx将(3.3)式和(3.4)式相加即可以得到f2xdx[2]

112fxdx.

证毕 40b例3.3.2 设fx,gx在a,b上可积且满足:0mfxM,gxdx0,a则以下两个积分不等式

bafxgxdx2b2f2xdxg2xdxm2bag2xdx及

aaabbb bafxgxdx2MmMmbaaf2xdxg2xdx成立.

ab证明:取hx1,由gxdx0及定理2.2知

babaf2xdxfxgxdxfxdxbagxfxdxfxdx0 gxdxaab2abb0bab bafab2xdxagxdxafxdxagxdxbaafxgxdx22bb2b0.

2因此

 bafxgxdx2baf2xdxab1gxdxba2bafxdxgxdx.

(3.5)

2b2a 10 南通大学毕业论文

由mfx可知 bafxdx2b22m2ba,bb2因而bafxgxdxafxdxagxdxmbaag2xdx.

22MmMm由于0mfxM,因此fx.

22化简得f2xMmMmfx, 两边同时积分得 f2xdxMmbaMmfxdx, aabb22由算数-几何平均值不等式可知

于是2baf2xdxMmbaf2xdxMmba,abbaabf2xdxbafxdx2Mm4Mm2.

1则ba bafxdxgxdxba2b2abfxdxba2af2xdxbaf2xdxag2xdx

b2Mma4Mmb

(3.6)f2xdxg2xdx.

ab由式(3.5)和式(3.6)可知

bafxgxdx2MmMm2baf2xdxg2xdx.

证毕

ab以上两道题分别利用了Cauchy-Schwarz不等式及其推广形式.我们在证明含有乘积及平方项的积分不等式时应用Cauchy-Schwarz不等式颇为有用,但要注意选取适当的fx与gx,有时还需对积分进行适当的变形.

3.4 利用积分中值定理

积分中值定理展现了将积分转化为函数值,或者是将复杂函数积分转变为简单函数积分的方法.其在应用中最重要的作用就是将积分号去掉或者是将复杂的被积函数转化为相比较而言较为简单的被积函数,从而使得问题能够简化.因此合理的利用积分中值定理能够有效的简化问题.下面将通过两道例题来说明.

定理3.3(积分第一中值定理)若f(x)在[a,b]上可积且mf(x)M,则存在 11 南通大学毕业论文

u[m,M]使f(x)dxu(ba)成立.特别地,当f(x)在[a,b]上连续,则存在c[a,b],使abbaf(x)dxf(c)(ba)成立.

定理3.4(积分第一中值定理的推广)若函数fx,gx在区间a,b上可积,fx连续,gx在a,b上不变号,则在积分区间a,b上至少存在一个点,使得下式成立

fxgxdxfgxdx.

aabb定理3.5(积分第二中值定理的推广)若函数fx,gx在区间a,b上可积,且fx为单调函数,则在积分区间a,b上至少存在一个点,使得下式成立 fxgxdxfagxdxfbgxdx.

aabb例3.4.1 设函数fx在区间0,1上连续单调递减,证明:对a,b(0,1),且0ab1时,有fxdx0aabf(x)dx,其中fx0. ab对于这道题目我们在3.2.2中给出了其利用辅助函数法证明的过程,实际上这道题目还可以用积分第一中值定理来证明,下面我们将给出证明过程.

证明:由积分中值定理知

0afxdxf1a, 10,a; fxdxf2ba,2a,b;

ab因为12,且fx递减,所以有f1f2, 1a1b1bfxdxfxdxfxdx, 0aaababaab故 fxdxfxdx. 证毕

0ba即

例3.4.2 设fx在a,b上连续且单调增加,证明:baabbxfxdxfxdx.

2a同样地,在之前的证明中我们给出了此题利用辅助函数法证明的过程,仔细分析观察这道题目我们还可以发现它可以用积分第一、第二中值定理的推广形式来证明,接着我们将给出此题在这两种方法下的证明过程.

证法一

bababab2证明: xxfxdxxfxdxabfxdx. aa2222bab 12 南通大学毕业论文

abab由定理3.4可知,分别存在1a,,b, 222使得 ab2aabab2xfxdxfx1adx, 22abbabab abxfxdxfx2abdx, 2222 babab因此xfxdxa28b2ff,由于fx在0,1单调增加的,且

210121,所以有 f2f10.

ab从而xfxdx0,故原不等式成立, 证毕 a2b证法二

证明:由定理3.5可知:存在a,b,bababab使得 xfaxdxfbxfxdxdx aa222b fafbab.

由fx单调增加及a,b知fafb0,a0,b0.

bab可得xfxdx0,故原不等式成立, 证毕 a2通过上述两道题目我们可以了解到积分中值定理在实际应用中起到的重要作用就是能够使积分号去掉,或者是将复杂的被积函数转化为相对而言较简单的被积函数,从而使问题得到简化.因此,对于证明有关结论中包含有某个函数积分的不等式,或者是要证明的结论中含有定积分的,可以考虑采用积分中值定理,从而去掉积分号,或者化简被积函数.

3.5 利用积分的性质

关于积分的性质在高等数学的学习中我们已经学到了很多,我们可以利用它来证明许多问题.在这里我们主要利用定积分的比较定理和绝对值不等式等性质对问题进行分析处理.

例3.5.1[9] 设fx在0,1上导数连续,试证:x0,1,13 南通大学毕业论文

有 fxfxfxdx. 0证明:由条件知fx在0,1上连续,则必有最小值, 1即存在x00,1,fx0fx, 由ftdtfxfx0fxfx0ftdt, x0x0xx fxfx0ftdtfx0x0xxx0ftdtfx0ftdt

0101 fx0dt0110ftdtftdt01ftftftdtdt 0

1fxfxdx.故原不等式成立, 证毕

013.6 利用泰勒公式

在现代数学中泰勒公式有着重要的地位,它在不等式的证明、求极限以及求高阶导数在某些点的数值等方面有着重要的作用.关于泰勒公式的应用已经有很多专家学者对其进行了深入的研究,下面我们将举例说明利用泰勒公式也是证明积分不等式的一种重要方法.

定理3.6(带有拉格朗日型余项的Taylor公式)设函数f(x)在点x0处的某邻域内具有n1阶连续导数,则对该邻域内异于x0的任意点x,在x0与x之间至少存在一点,使得:

f(x0)fn(x0)2f(x)f(x0)f(x0)(xx0)(xx0)(xx0)nRn(x)

(1)

2!n!f(n1)()其中Rn(x)(xx0)n1(在x与x0之间)称为拉格朗日型余项,(1)式称为泰勒公(n1)!式.

例3.6.1[10] 设fx在a,b上有二阶连续导数,fafb0,Mmaxfx,xa,b试证明:fxdxabba123M.

证明:对xa,b,由泰勒公式得

f

fafxfbfxf1xax21xbx2faxa,x, , 2fbxx,b, , 2ab122, 两式相加得 fxfxxfaxfbx24 14 南通大学毕业论文

两边积分得 fxdxabbaab1b22dx, fxxdxfaxfbxa24bbbabab其中 fxxdxxdfxfxdx, aaa22于是有 fxdx故 ba1b22dx, faxfbxaa8Mb22dxMba3. 证毕 fxdxaxbx8a12b例3.6.2[6] 设fx在a,b上有二阶导数,且fx0,ab求证 fxdxbaf. a2b证明:将fx在x0ab处作泰勒展开得到 22ab1abababab, fxffxfxx,.

222222

ababab因为fx0,所以可以得到 fxffx,222babababb对不等式两边同时积分得到 fxdxfbafxadx. a222bab因为xdx0, 所以有afxdxbaa2babf. 证毕

2通过这两道题目我们大致可以了解到当题目中出现被积函数在积分区间上有意义且有二阶及二阶以上连续导数时,是提示我们用泰勒公式证明的最明显的特征.一般情况下我们选定一个点xo,并写出fx在这个点xo处的展开公式,然后进行适当的放缩或与介值定理相结合来解决问题.

3.7 利用重积分

在一些积分不等式的证明中,由于被积函数的不确定,从而我们不能求出其具体的数值,这时我们可以将定积分转换为二重积分再利用其性质来求解.以下列举了3种利用重积分来证明积分不等式的方法,这种技巧在高等数学中虽然不常见,但却是很重要的,下面我们将通过3道例题来进一步说明.

南通大学毕业论文

3.7.1 直接增元法

命题一[11]:若在区间[a,b]上f(x)g(x),则f(x)dxg(x)dx.

aa

bb例3.7.1[11] 设f(x),g(x)在[a,b]上连续,且满足:

xaf(t)dtg(t)dt,x[a,b],af(t)dtag(t)dt,证明:axf(x)dxaxg(x)dx.

axbbbb证明:由题得f(t)dtg(t)dt, aaxx从而可以得到dxf(t)dtdxg(t)dt,即dx[f(t)g(t)]dt0.

aaaaaabxbxbx左式dx[f(t)g(t)]dt [f(t)g(t)]dxdt(其中D{(x,t)|axb,atx})aaDbx dt[f(t)g(t)]dx (bt)[f(t)g(t)]dt

atabbb b[f(t)dtg(t)dt][tf(t)dttg(t)dt][tf(t)dttg(t)dt]0.

aaaaaabbbbaaaabbbbbb则 tf(t)dttg(t)dt0 , 即xf(x)dxxg(x)dx. 证毕

在本题中我们将一元积分不等式f(x)dxg(x)dx的两边同时增加一个积分变量

aaxxbadx,使得一元积分不等式化为二元积分不等式,然后巧妙的运用转换积分变量顺序的方法达到证明一元积分不等式的方法.3.7.2 转换法

在利用重积分来证明积分不等式的时候,我们不但可以采用直接增元法,还可以采用转换法.关于转换法又分为将累次积分转换为重积分,以及将常数转换为重积分这两种形式.下面我们将依次来介绍这两种方法.1.将累次积分转为重积分

命题二[11] 若f(x)在[a,b]上可积,g(y)在[c,d]上可积,则二元函数f(x)g(y)在平面区域D{(x,y)|axb,cyd}上可积,且

Df(x)g(y)dxdyf(x)dxg(y)dyf(x)dxg(x)dx.

acacbdbd其中D{(x,y)|axb,cyd}

例3.7.2[11] 设p(x),f(x),g(x)是[a,b]上的连续函数,在[a,b]上,p(x)0,f(x),g(x)为单调递增函数,试证:

南通大学毕业论文

babap(x)f(x)dxp(x)g(x)dxp(x)dxp(x)f(x)g(x)dx.

aaabbbaaabbb

证明:由p(x)f(x)dxp(x)g(x)dxp(x)dxp(x)f(x)g(x)dx可知:

babap(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx0,aaabbaabbb令Ip(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx, ab下证I0;

Ip(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx

aaaabbbb

同理

p(x)dxp(y)f(y)g(y)dyp(x)f(x)dxp(y)g(y)dy

aaaabbbbbabbabp(x)p(y)f(y)g(y)dxdybabap(x)f(x)p(y)gydxdy

aap(x)p(y)g(y)[f(y)f(x)]dxdy.

(3.7)bbbIp(x)dxaabab(p)x(f)x(g)xdxab(p)x(f)xdx()pxgxdx

a

p(y)dybbap()xf()xg()xdxab(p)y(f)ydy(p)xgxdxab p(y)p(x)g(x)[f(x)f(y)]dxdy.

(3.8)aa

(3.7)(3.8)得

2Ibabap(x)p(y)[g(y)g(x)][f(y)f(x)]dxdy, 因为f(x),g(x)同为单调增函数,所以[g(y)g(x)][f(y)f(x)]0 又因为p(x)0,p(y)0,故 2Ibabap(x)p(y)[g(y)g(x)][f(y)f(x)]dxdy0,即I0.

证毕

2.将常数转换为重积分的形式

在例3.7.2中我们介绍了将累次积分转换为重积分,在下面的例3.7.3中我们将对常数转换为重积分来进行说明.我们可以发现有这样一个命题,若在二重积分中被积函数f(x,y)k,则可得到kdk(ba)2,其中D{(x,y)|axb,ayb}.

D例3.7.3函数f(x)在[a,b]上连续,且fx0试证:f(x)dx

abba1dx(ba)2. f(x)本题与前面的例3.1以及例3.2.3是同一道题目,在这里我们将利用重积分证明此题. 证明:原题即为 f(x)dxabba1dyd, f(y)D 17 南通大学毕业论文

移项可得(Df(x)1)d0, f(y)2(Df(x)f(x)f(y)1)d(1)d(1)d0, f(y)f(y)f(x)DDf(x)f(y)f(x)f(y)2)d0,因为f(x)0,f(y)0,所以20. f(y)f(x)f(y)f(x)所以即为证(D故 (Dbbf(x)f(y)12)d0 恒成立,即f(x)dxdx(ba)2成立, 证毕

aaf(x)f(y)f(x)通过以上三道例题我们可以大致了解到,在这一类定积分不等式的证明过程中我们一般先将所要证明的不等式转化为二次积分的形式,进一步再转换为二重积分,最后利用二重积分的性质或其计算方法得出结论.这种方法克服了数学解题过程中的高维数转化为低维数的思维定势,丰富了将二重积分与定积分之间互化的数学思想方法.

3.8 利用微分中值定理

微分中值定理是数学分析中的重要的一个基本定理,它是指罗尔中值定理、拉格朗日中值定理、柯西中值定理以及泰勒中值定理这四种定理.关于微分中值定理的应用也是很广泛的,证明不等式是微分中值定理最基本的应用之一.在这里我们将对利用柯西中值定理及拉格朗日中值定理证明积分不等式进行研究.下面将通过两个例子来具体说明这两个定理在证明积分不等式中的应用,以及不同的微分中值定理在证明不等式时的区别.

例3.8.1[12] 设fa0,fx在区间a,b上的导数连续,证明:

2baa1bfxdx1maxfx. x2a,b证明:应用Lagrange中值定理,a,x,其中axb,使得

fxfafxa, 因为fa0, 所以fxMxa, Mmaxfx,xa,b从a到b积分得

a bfxdxMbaM2bxadxMxadxx2

aa2bM1122bamaxfxba.即222babafxdx1maxfx.证毕 x2a,b 18 南通大学毕业论文

例3.8.2[13] 设函数fx在0,1上可微,且当x0,1时,0fx1,f00试证:

fxdxf121003xdx.

证明:令Fxx0ftdt,Gxf3tdt,02xFx,Gx在0,1上满足柯西中值定理,则

fxdx10210f03xdxF1F0FG1G0G02fftdt0f32ftdt0f2 01

2ftdtftdtf2f0202f11 , 01.

2fff所以 10fxdx2f2xdx.

证毕

01通过以上两道题目可以发现:

1.在应用Lagrange中值定理时先要找出符合条件的函数fx,并确定fx在使用该定理的区间a,b,对fx在区间a,b上使用该定理.若遇到不能用该定理直接证明的,则从结论出发,观察并分析其特征,构造符合条件的辅助函数之后再应用Lagrange中值定理.

2.在研究两个函数的变量关系时可以应用Cauchy中值定理,在应用该定理证明不等式时关键是要对结果进行分析,找出满足Cauchy中值定理的两个函数fx,gx,并确定它们应用柯西中值定理的区间a,b,然后在对fx,gx在区间a,b上运用Cauchy中值定理.

无论是Cauchy中值定理还是Lagrange中值定理在积分不等式的证明中都各具特色,都为解题提供了有力的工具.总之在证明不等式时需要对结论认真的观察有时还需要进行适当的变形,才能构造能够应用中值定理证明的辅助函数,进而利用微分中值定理证明不等式.

南通大学毕业论文

4.总

我们通过查阅有关积分不等式的文献和资料,并对其中的相关内容进行对比和分析后,将有关的内容加以整理并扩充形成了本文.在论文中给出了两个重要的积分不等式的证明以及总结了八种积分不等式的证明方法.然而由于自己的参考资料面不够广,参考的大多数文献都是仅给出了例题及其证明方法,而并没有给出进一步的分析,同时自己的知识面较窄,能力有限,导致还有很多难度较大的问题尚未解决.例如,在实际的问题中,还有一些证明方法是我们所不知道的,并且还有一些不等式并不能用本文所给出的八种方法来证明,这就需要我们进一步的思考与研究.今后我们应该更多的参考其他资料,充分拓展思路,以便于提出新的观点.

南通大学毕业论文

参考文献

[1]王宇,代翠玲,江宜华.一个重要积分不等式的证明、推广及应用[J].荆州师范学院学报(自然科学 版),2000,23(5):106 [2] 张盈.Cauchy-Schwarz不等式的证明、推广及应用[J].高师理科学刊,2014,34(3):34-37 [3] 黄群宾.积分不等式的证明[J].川北教育学院学报,1996,6(4):22-27 [4] 李志飞.积分不等式的证明[J].高等数学研究,2014,17(6):50-51 [5]郝涌,王娜,王霞,郭淑利.数学分析选讲[M].北京:国防工业出版社,2014 [6]张瑞,蒋珍.定积分不等式证明方法的研究[J].河南教育学院学报(自然科学版),2011,20(2):18 [7]林忠.一个积分不等式的几种证明方法[J].成都教育学院学报,2006,20(12):66 [8]刘法贵.证明积分不等式的几种方法[J].高等数学研究,2008,11(1):122 [9] 苏德矿,李铮,铁军.数学强化复习全书[M].北京:中国证法大学出版社,2015 [10] 李小平,赵旭波.定积分不等式几种典型证法[J].高等数学研究,2009,12(6):13-17 [11] 黄云美.重积分在积分不等式证明中的应用[J].杨凌职业技术学院学报,2014,13(3):27-33 [12] 葛亚平.积分不等式证明的再认识[J].河南教育学院学报(自然科学版),2015,24(3):18-20 [13] 王丽颖,张芳,吴树良.积分不等式的证法[J].白城师范学院学报,2007,21(3): 19-22

上一篇:排练舞蹈方案下一篇:户外拓展培训哪家好