高二化学选修4知识点

2024-08-05 版权声明 我要投稿

高二化学选修4知识点(精选10篇)

高二化学选修4知识点 篇1

化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中伴随着能量的释放或吸收。

一、化学反应的热效应

1、化学反应的反应热

(1)反应热的概念:

当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。用符号Q表示。

(2)反应热与吸热反应、放热反应的关系。

Q>0时,反应为吸热反应;Q<0时,反应为放热反应。

(3)反应热的测定

测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下:

Q=-C(T2-T1)

式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度。实验室经常测定中和反应的反应热。

2、化学反应的焓变

(1)反应焓变

物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ·mol-1。

反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。

(2)反应焓变ΔH与反应热Q的关系。

对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物)。

(3)反应焓变与吸热反应,放热反应的关系:

ΔH>0,反应吸收能量,为吸热反应。

ΔH<0,反应释放能量,为放热反应。

(4)反应焓变与热化学方程式:

把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H2(g)+

O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1

书写热化学方程式应注意以下几点:

①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq)。

②化学方程式后面写上反应焓变ΔH,ΔH的单位是J·mol-1或 kJ·mol-1,且ΔH后注明反应温度。

③热化学方程式中物质的系数加倍,ΔH的数值也相应加倍。

3、反应焓变的计算

(1)盖斯定律

对于一个化学反应,无论是一步完成,还是分几步完成,其反应焓变一样,这一规律称为盖斯定律。

(2)利用盖斯定律进行反应焓变的计算。

常见题型是给出几个热化学方程式,合并出题目所求的热化学方程式,根据盖斯定律可知,该方程式的ΔH为上述各热化学方程式的ΔH的代数和。

(3)根据标准摩尔生成焓,ΔfHmθ计算反应焓变ΔH。

对任意反应:aA+bB=cC+dD

ΔH=[cΔfHmθ(C)+dΔfHmθ(D)]-[aΔfHmθ(A)+bΔfHmθ(B)]

第二章、化学平衡

一、化学反应的速率

1、化学反应是怎样进行的

(1)基元反应:能够一步完成的反应称为基元反应,大多数化学反应都是分几步完成的。

(2)反应历程:平时写的化学方程式是由几个基元反应组成的总反应。总反应中用基元反应构成的反应序列称为反应历程,又称反应机理。

(3)不同反应的反应历程不同。同一反应在不同条件下的反应历程也可能不同,反应历程的差别又造成了反应速率的不同。

2、化学反应速率

(1)概念:

单位时间内反应物的减小量或生成物的增加量可以表示反应的快慢,即反应的速率,用符号v表示。

(2)表达式:v=△c/△t

(3)特点

对某一具体反应,用不同物质表示化学反应速率时所得的数值可能不同,但各物质表示的化学反应速率之比等于化学方程式中各物质的系数之比。

3、浓度对反应速率的影响

(1)反应速率常数(K)

反应速率常数(K)表示单位浓度下的化学反应速率,通常,反应速率常数越大,反应进行得越快。反应速率常数与浓度无关,受温度、催化剂、固体表面性质等因素的影响。

(2)浓度对反应速率的影响

增大反应物浓度,正反应速率增大,减小反应物浓度,正反应速率减小。

增大生成物浓度,逆反应速率增大,减小生成物浓度,逆反应速率减小。

(3)压强对反应速率的影响

压强只影响气体,对只涉及固体、液体的反应,压强的改变对反应速率几乎无影响。

压强对反应速率的影响,实际上是浓度对反应速率的影响,因为压强的改变是通过改变容器容积引起的。压缩容器容积,气体压强增大,气体物质的浓度都增大,正、逆反应速率都增加;增大容器容积,气体压强减小;气体物质的浓度都减小,正、逆反应速率都减小。

4、温度对化学反应速率的影响

(1)经验公式

阿伦尼乌斯总结出了反应速率常数与温度之间关系的经验公式:

式中A为比例系数,e为自然对数的底,R为摩尔气体常数量,Ea为活化能。

由公式知,当Ea>0时,升高温度,反应速率常数增大,化学反应速率也随之增大。可知,温度对化学反应速率的影响与活化能有关。

(2)活化能Ea。

活化能Ea是活化分子的平均能量与反应物分子平均能量之差。不同反应的活化能不同,有的相差很大。活化能 Ea值越大,改变温度对反应速率的影响越大。

5、催化剂对化学反应速率的影响

(1)催化剂对化学反应速率影响的规律:

催化剂大多能加快反应速率,原因是催化剂能通过参加反应,改变反应历程,降低反应的活化能来有效提高反应速率。

(2)催化剂的特点:

催化剂能加快反应速率而在反应前后本身的质量和化学性质不变。

催化剂具有选择性。

催化剂不能改变化学反应的平衡常数,不引起化学平衡的移动,不能改变平衡转化率。

二、化学反应条件的优化——工业合成氨

1、合成氨反应的限度

合成氨反应是一个放热反应,同时也是气体物质的量减小的熵减反应,故降低温度、增大压强将有利于化学平衡向生成氨的方向移动。

2、合成氨反应的速率

(1)高压既有利于平衡向生成氨的方向移动,又使反应速率加快,但高压对设备的要求也高,故压强不能特别大。

(2)反应过程中将氨从混合气中分离出去,能保持较高的反应速率。

(3)温度越高,反应速率进行得越快,但温度过高,平衡向氨分解的方向移动,不利于氨的合成。

(4)加入催化剂能大幅度加快反应速率。

3、合成氨的适宜条件

在合成氨生产中,达到高转化率与高反应速率所需要的条件有时是矛盾的,故应该寻找以较高反应速率并获得适当平衡转化率的反应条件:一般用铁做催化剂,控制反应温度在700K左右,压强范围大致在1×107Pa~1×108Pa之间,并采用N2与H2分压为1∶2.8的投料比。

二、化学反应的限度

1、化学平衡常数

(1)对达到平衡的可逆反应,生成物浓度的系数次方的乘积与反应物浓度的系数次方的乘积之比为一常数,该常数称为化学平衡常数,用符号K表示。

(2)平衡常数K的大小反映了化学反应可能进行的程度(即反应限度),平衡常数越大,说明反应可以进行得越完全。

(3)平衡常数表达式与化学方程式的书写方式有关。对于给定的可逆反应,正逆反应的平衡常数互为倒数。

(4)借助平衡常数,可以判断反应是否到平衡状态:当反应的浓度商Qc与平衡常数Kc相等时,说明反应达到平衡状态。

2、反应的平衡转化率

(1)平衡转化率是用转化的反应物的浓度与该反应物初始浓度的比值来表示。如反应物A的平衡转化率的表达式为:

α(A)=

(2)平衡正向移动不一定使反应物的平衡转化率提高。提高一种反应物的浓度,可使另一反应物的平衡转化率提高。

(3)平衡常数与反应物的平衡转化率之间可以相互计算。

3、反应条件对化学平衡的影响

(1)温度的影响

升高温度使化学平衡向吸热方向移动;降低温度使化学平衡向放热方向移动。温度对化学平衡的影响是通过改变平衡常数实现的。

(2)浓度的影响

增大生成物浓度或减小反应物浓度,平衡向逆反应方向移动;增大反应物浓度或减小生成物浓度,平衡向正反应方向移动。

温度一定时,改变浓度能引起平衡移动,但平衡常数不变。化工生产中,常通过增加某一价廉易得的反应物浓度,来提高另一昂贵的反应物的转化率。

(3)压强的影响

ΔVg=0的反应,改变压强,化学平衡状态不变。

ΔVg≠0的反应,增大压强,化学平衡向气态物质体积减小的方向移动。

(4)勒夏特列原理

由温度、浓度、压强对平衡移动的影响可得出勒夏特列原理:如果改变影响平衡的一个条件(浓度、压强、温度等)平衡向能够减弱这种改变的方向移动。

三、化学反应的方向

1、反应焓变与反应方向

放热反应多数能自发进行,即ΔH<0的反应大多能自发进行。有些吸热反应也能自发进行。如NH4HCO3与CH3COOH的反应。有些吸热反应室温下不能进行,但在较高温度下能自发进行,如CaCO3高温下分解生成CaO、CO2。

2、反应熵变与反应方向

熵是描述体系混乱度的概念,熵值越大,体系混乱度越大。反应的熵变ΔS为反应产物总熵与反应物总熵之差。产生气体的反应为熵增加反应,熵增加有利于反应的自发进行。

3、焓变与熵变对反应方向的共同影响

ΔH-TΔS<0反应能自发进行。

ΔH-TΔS=0反应达到平衡状态。

ΔH-TΔS>0反应不能自发进行。

在温度、压强一定的条件下,自发反应总是向ΔH-TΔS<0的方向进行,直至平衡状态。

第三章、水溶液中的电离平衡

一、水溶液

1、水的电离

H2O⇌H++OH-

水的离子积常数KW=[H+][OH-],25℃时,KW=1.0×10-14mol2·L-2。温度升高,有利于水的电离,KW增大。

2、溶液的酸碱度

室温下,中性溶液:[H+]=[OH-]=1.0×10-7mol·L-1,pH=7

酸性溶液:[H+]>[OH-],[ H+]>1.0×10-7mol·L-1,pH<7

碱性溶液:[H+]<[OH-],[OH-]>1.0×10-7mol·L-1,pH>7

3、电解质在水溶液中的存在形态

(1)强电解质

强电解质是在稀的水溶液中完全电离的电解质,强电解质在溶液中以离子形式存在,主要包括强酸、强碱和绝大多数盐,书写电离方程式时用“=”表示。

(2)弱电解质

在水溶液中部分电离的电解质,在水溶液中主要以分子形态存在,少部分以离子形态存在,存在电离平衡,主要包括弱酸、弱碱、水及极少数盐,书写电离方程式时用“⇌”表示。

二、弱电解质的电离及盐类水解

1、弱电解质的电离平衡。

(1)电离平衡常数

在一定条件下达到电离平衡时,弱电解质电离形成的各种离子浓度的乘积与溶液中未电离的分子浓度之比为一常数,叫电离平衡常数。

弱酸的电离平衡常数越大,达到电离平衡时,电离出的H+越多。多元弱酸分步电离,且每步电离都有各自的电离平衡常数,以第一步电离为主。

(2)影响电离平衡的因素,以CH3COOH⇌CH3COO-+H+为例。

加水、加冰醋酸,加碱、升温,使CH3COOH的电离平衡正向移动,加入CH3COONa固体,加入浓盐酸,降温使CH3COOH电离平衡逆向移动。

2、盐类水解

(1)水解实质

盐溶于水后电离出的离子与水电离的H+或OH-结合生成弱酸或弱碱,从而打破水的电离平衡,使水继续电离,称为盐类水解。

(2)水解类型及规律

①强酸弱碱盐水解显酸性。

NH4Cl+H2O⇌NH3·H2O+HCl

②强碱弱酸盐水解显碱性。

CH3COONa+H2O⇌CH3COOH+NaOH

③强酸强碱盐不水解。

④弱酸弱碱盐双水解。

Al2S3+6H2O=2Al(OH)3↓+3H2S↑

(3)水解平衡的移动

加热、加水可以促进盐的水解,加入酸或碱能抑止盐的水解,另外,弱酸根阴离子与弱碱阳离子相混合时相互促进水解。

三、离子反应

1、离子反应发生的条件

(1)生成沉淀

既有溶液中的离子直接结合为沉淀,又有沉淀的转化。

(2)生成弱电解质

主要是H+与弱酸根生成弱酸,或OH-与弱碱阳离子生成弱碱,或H+与OH-生成H2O。

(3)生成气体

生成弱酸时,很多弱酸能分解生成气体。

(4)发生氧化还原反应

强氧化性的离子与强还原性离子易发生氧化还原反应,且大多在酸性条件下发生。

2、离子反应能否进行的理论判据

(1)根据焓变与熵变判据

对ΔH-TΔS<0的离子反应,室温下都能自发进行。

(2)根据平衡常数判据

离子反应的平衡常数很大时,表明反应的趋势很大。

3、离子反应的应用

(1)判断溶液中离子能否大量共存

相互间能发生反应的离子不能大量共存,注意题目中的隐含条件。

(2)用于物质的定性检验

根据离子的特性反应,主要是沉淀的颜色或气体的生成,定性检验特征性离子。

(3)用于离子的定量计算

常见的有酸碱中和滴定法、氧化还原滴定法。

(4)生活中常见的离子反应。

硬水的形成及软化涉及到的离子反应较多,主要有:

Ca2+、Mg2+的形成。

CaCO3+CO2+H2O=Ca2++2HCO3-

MgCO3+CO2+H2O=Mg2++2HCO3-

加热煮沸法降低水的硬度:

Ca2++2HCO3-=CaCO3↓+CO2↑+H2O

Mg2++2HCO3-=MgCO3↓+CO2↑+H2O

或加入Na2CO3软化硬水:

Ca2++CO32-=CaCO3↓,Mg2++CO32-=MgCO3↓

四、沉淀溶解平衡

1、沉淀溶解平衡与溶度积

(1)概念

当固体溶于水时,固体溶于水的速率和离子结合为固体的速率相等时,固体的溶解与沉淀的生成达到平衡状态,称为沉淀溶解平衡。其平衡常数叫做溶度积常数,简称溶度积,用Ksp表示。

PbI2(s)⇌Pb2+(aq)+2I-(aq)

Ksp=[Pb2+][I-]2=7.1×10-9mol3·L-3

(2)溶度积Ksp的特点

Ksp只与难溶电解质的性质和温度有关,与沉淀的量无关,且溶液中离子浓度的变化能引起平衡移动,但并不改变溶度积。

Ksp反映了难溶电解质在水中的溶解能力。

2、沉淀溶解平衡的应用

(1)沉淀的溶解与生成

根据浓度商Qc与溶度积Ksp的大小比较,规则如下:

Qc=Ksp时,处于沉淀溶解平衡状态。

Qc>Ksp时,溶液中的离子结合为沉淀至平衡。

Qc

(2)沉淀的转化

根据溶度积的大小,可以将溶度积大的沉淀可转化为溶度积更小的沉淀,这叫做沉淀的转化。沉淀转化实质为沉淀溶解平衡的移动。

第四章 电化学

一、化学能转化为电能——电池

1、原电池的工作原理

(1)原电池的概念:

把化学能转变为电能的装置称为原电池。

(2)Cu-Zn原电池的工作原理:

如图为Cu-Zn原电池,其中Zn为负极,Cu为正极,构成闭合回路后的现象是:Zn片逐渐溶解,Cu片上有气泡产生,电流计指针发生偏转。该原电池反应原理为:Zn失电子,负极反应为:Zn→Zn2++2e-;Cu得电子,正极反应为:2H++2e-→H2。电子定向移动形成电流。总反应为:Zn+CuSO4=ZnSO4+Cu。

(3)原电池的电能

若两种金属做电极,活泼金属为负极,不活泼金属为正极;若一种金属和一种非金属做电极,金属为负极,非金属为正极。

2、化学电源

(1)锌锰干电池

负极反应:Zn→Zn2++2e-;

正极反应:2NH4++2e-→2NH3+H2;

(2)铅蓄电池

负极反应:Pb+SO42-=PbSO4+2e-

正极反应:PbO2+4H++SO42-+2e-=PbSO4+2H2O

放电时总反应:Pb+PbO2+2H2SO4=2PbSO4+2H2O。

充电时总反应:2PbSO4+2H2O=Pb+PbO2+2H2SO4。

(3)氢氧燃料电池

负极反应:2H2+4OH-→4H2O+4e-

正极反应:O2+2H2O+4e-→4OH-

电池总反应:2H2+O2=2H2O

二、电能转化为化学能——电解

1、电解的原理

(1)电解的概念:

在直流电作用下,电解质在两上电极上分别发生氧化反应和还原反应的过程叫做电解。电能转化为化学能的装置叫做电解池。

(2)电极反应:以电解熔融的NaCl为例:

阳极:与电源正极相连的电极称为阳极,阳极发生氧化反应:2Cl-→Cl2↑+2e-。

阴极:与电源负极相连的电极称为阴极,阴极发生还原反应:Na++e-→Na。

总方程式:2NaCl(熔)=(电解)2Na+Cl2↑

2、电解原理的应用

(1)电解食盐水制备烧碱、氯气和氢气。

阳极:2Cl-→Cl2+2e-

阴极:2H++e-→H2↑

总反应:2NaCl+2H2O

2NaOH+H2↑+Cl2↑

(2)铜的电解精炼。

粗铜(含Zn、Ni、Fe、Ag、Au、Pt)为阳极,精铜为阴极,CuSO4溶液为电解质溶液。

阳极反应:Cu→Cu2++2e-,还发生几个副反应

Zn→Zn2++2e-;Ni→Ni2++2e-

Fe→Fe2++2e-

Au、Ag、Pt等不反应,沉积在电解池底部形成阳极泥。

阴极反应:Cu2++2e-→Cu

(3)电镀:以铁表面镀铜为例

待镀金属Fe为阴极,镀层金属Cu为阳极,CuSO4溶液为电解质溶液。

阳极反应:Cu→Cu2++2e-

阴极反应: Cu2++2e-→Cu

3、金属的腐蚀与防护

(1)金属腐蚀

金属表面与周围物质发生化学反应或因电化学作用而遭到破坏的过程称为金属腐蚀。

(2)金属腐蚀的电化学原理。

生铁中含有碳,遇有雨水可形成原电池,铁为负极,电极反应为:Fe→Fe2++2e-。水膜中溶解的氧气被还原,正极反应为:O2+2H2O+4e-→4OH-,该腐蚀为“吸氧腐蚀”,总反应为:2Fe+O2+2H2O=2Fe(OH)2,Fe(OH)2又立即被氧化:4Fe(OH)2+2H2O+O2=4Fe(OH)3,Fe(OH)3分解转化为铁锈。若水膜在酸度较高的环境下,正极反应为:2H++2e-→H2↑,该腐蚀称为“析氢腐蚀”。

(3)金属的防护

高二化学选修4知识点 篇2

通过教学过程中的调查发现高中化学必修1、2给文科生的印象是:化学知识内容丰富齐全、探究活动多样有趣。然而, 给理科生的却是截然不同的感觉:化学知识太多、太杂, 像英语单词那样, 记不了也理解不透。例如必修1的第三章“金属及其化合物”和第四章的“非金属及其化合物”, 是按照单质、化合物来横向编排。具体编排为, 第一节介绍钠、铝、铁三中金属单质的性质, 第二节为钠、铝、铁三种金属的化合物的性质学习。教材这样编排的初衷是为了让高中化学与生产和生活结合的更明显, 更适合文科生。但对于两年后就要按高考大纲要求考试的大部分理科生来说, 必修阶段化学学习模式已经让学生养成定性分析习惯, 遇到选修4的定量计算转变就感到很突然。

二、化学必修模块与选修模块内容标准的对比分析

熟读本学科的课程标准, 能有效地指导教师上好新教材。然而通过研究高中化学课程标准中必修1及必修2的内容标准及教学实践, 可以清楚地得出结论, 必修1、2的内容标准主要的设计对象是文科生, 即知识浅显多样, 能力要求与高考要求还没接轨。而选修4《化学反应原理》的内容标准中出现了大量的抽象原理及有关计算的要求。若教师在必修模块完全按照必修模块的内容标准来教学, 那么, 在必修1、2学习结束后, 理科生就很难应对选修4大量的知识及能力要求。

以必修2中“化学反应与能量”及选修4中“化学反应与能量”的内容标准比较为例, 我就可以一目了然了。必修2中“化学反应与能量”的能力要求还未涉及计算, 选修4中新增了“反应热”和“焓变”, 及用盖斯定律进行有关反应热的简单计算。以及改进了原电池后增加了电解池, 要求写出电极反应和电池反应方程式, 并能解释电化学腐蚀的原因。同样的知识点重复出现要求却不同, 对于理科生来讲, 必修阶段按内容标准的要求来进行的教学就是浪费时间。

三、衔接模式探究

为因材施教, 目前有两种文理分科时间安排。一种是高一学年结束后再分科, 另一种是高一上学期结束就分科。前者比较符合课程标准的要求, 主要站在广大文科生的角度, 照顾文科生, 教学内容的难度偏低。后者是高一下学期就开始分科, 对于化学科而言, 文科生可以放心的按照内容标准继续教学, 对于理科生, 就可以开始增加难度。比如化学能与热能, 可以适当引导学生多做键能的计算, 并根据反应物和生成物断键吸热与成键放热之差判断放热反应、吸热反应。同样, 原电池可以加深正负极电极反应的书写, 尤其是科技前沿研究的燃料电池、熔融盐电池的正负电极判断及电极反应式的书写;可逆反应化学反应速率计算的“三段式”法;增加化学平衡移动方向的判断等。理科生在必修阶段做了充分的认知及方法能力准备后, 到了选修4阶段, 就更容易入门, 而不是束手无策。学生掌握每个知识点的周期短, 就能省出大量时间来进行强化练习, 也能使高考第一轮复习提前。这种模式我们可以称为“难度均摊的衔接模式”。

另一种是“先易后难的衔接模式”, 即把更多时间让给选修模块, 很符合新教材理念中学生的认知先后顺序。经过几年新教材的教学实践经验, 选择上面的分摊难度的衔接模式能让学生在必修阶段就积累较大的知识与能力势能, 这些势能会帮助学生在知识难度大的选修阶段应对自如。而对于贵州省黔东南少数民族学生占多数的地区, 学生的知识基础、处理信息、构建知识的能力等都不够快、不够稳。如果采用先易后难的衔接模式, 学生会觉得很痛苦, 犹如鸟儿长大到该飞向蓝天了却苦于没有丰满的羽翼。

还有一种是“避免重复的衔接模式”, 化学反应与能量、化学反应速率和化学平衡在必修2和选修4均出现, 那么, 高一下学期分科后就不上必修2中的化学反应与能量、化学反应速率和化学平衡, 因为知识难度大不到高考的要求。直接跳过上完“有机化合物”及“化学与自然资源开发利用”后, 在选修4中扎实有序, 循序渐进地进行化学反应与能量、化学反应速率和化学平衡的教学。“避免重复的衔接模式”一定程度上能解决学生因必修阶段知识和能力要求级别低而养成学习化学“浅尝则止”的习惯, 知识学习以及能力训练一次解决。

上面的这三种衔接模式各有优缺点, “难度均摊的衔接模式”对于高中化学必修和选修模块中重复出现而难度要求不同的内容, 可以把知识难度平均起来, 分摊时间和精力展开教学, 稳扎稳打, 步步为营。教学经验告诉我们, 这种教学衔接模式比较适合中等生占多数的班级。

“先易后难的衔接模式”把更多时间让给选修模块, 既符合新教材理念中学生的认知先后顺序, 也不脱离高考的要求。需要教师对学生的学习情况有非常准确的把握的同时, 掌握各章节的教学时间。“先易后难的衔接模式”适合小班教学, 以及高二才分文理科的学校。

“避免重复的衔接模式”对教师的要求比较高, 需要教师有丰富的教学经验, 并已在本学科的教学教育工作中获得较高荣誉, 才能被学生认可。

四、需要解决的问题。

以上三种必修与选修的衔接模式在实际教学过程中很难实施, 存在的问题是多方面的。其一, 需要整个教研组团队的力量做支撑, 单干不能形成气候。其二, 如何把握好学生的认知动态。其三, 教师熟悉教材与课标的程度, 是否有扎实的高考基本功, 是否对科技前沿保持敏感, 是否研读每年的考试大纲来指导教学并能预测未来考试方向。这些都是值得深入思考和解决的问题。

摘要:现行的人教版新课标高中化学的知识按照全新的认知模式编排, 由过去按元素化合物及化学反应原理的纵向编排, 转为按对知识的认知顺序分类的横向的探究式编排。必修模块的内容标准与选修模块难度要求差距较大, 这对于教育水平、经济水平不够发达贵州地区, 尤其是少数民族聚居的贵州省黔东南地区的老师和学生来说, 是带来了很多教学矛盾。其中, 理科化学必修1、2与选修4的衔接是教师在教学上比较头痛的问题, 如何有效地解决问题, 服务广大学生将是本文探讨的问题。

关键词:衔接模式,考试大纲,三维目标,中差生

参考文献

高二化学选修4知识点 篇3

【关键词】思维导图;高中化学;实际应用

高中化学选修课在新课程改革背景下教学目的再次产生变更,要通过教学培养高中生动手操作及逻辑思维能力,为以后学生学习探究奠定基础。作为高中化学教师,笔者在了解新课程改革对高中化学选修课的具体要求后,结合自身实际工作经验,分析思维导图教学模式在高中化学选修4第三章“水溶液中的离子平衡”中的应用。总结出一些在初中化学教学实验教学中应用的新方法。

1 分析选修4第三章的重要性

高中化学选修4第三章教学时,化学平衡的相关知识学生在前面已经学习过,自身也对化学平衡有一定的了解,因此为提高教学效率在建立化学平衡及平衡移动等相关知识时可以利用化学平衡原理。这一章节是化学平衡内容的延伸与拓展,电离平衡等是基本反应原理中最重要的组成部分,对学生而言也是一个较难的知识点。分析历年高考题目可以发现,该章节内容是必考内容之一,也是高考的难点之一,相关题目具有较强的综合性,有必要做好该章节内容的教学工作。通过学习该章节内容的学习,可以在学生脑海中建立一个完整的化学平衡知识体系,通过分析如何建立各种平衡于不同的电解质溶液中,帮助学生突破知识难点的学习。学习过程中教师可以将其与实际生活联系起来,比如解释牙齿表面硬层的脱矿与矿化关系就可以利用溶液平衡的原理,激发学生学习化学的兴趣,进而将化学知识运用到实际生活中。

2 思维导图在高中化学选修4第三章的应用分析

在运行思维导图进行化学授课时,需要做好以下工作,确保思维导图效果的发挥,提高教学质量。

2.1 理清内容构建完整思维导图

在这一章节知识点的较多且繁琐,牵扯到整个高中阶段的众多知识点,这就给学生学习及理解造成极大的困扰。化学是一门实验性科学,本章节学习过程中也涉及到众多的实验现象,其中很多现象需要学生进行记忆,比如离子之间的反应、沉淀颜色等。为了帮助学生理清思路,教师可以引导学生自己构建思维导图,通过手绘或者电脑绘图的方式表明各个知识点的相互转化的关系。学生在构建思维导图的过程中,可以帮助学生有效理清思路,同时更为清楚的展现相关知识点及彼此间的联系。学生还会不自主的对导图进行分支理解,从而有效区分类似的概念与知识点,提高化学知识水平。

2.2 帮助学生分析思维导图

思维导图可以帮助学生延伸思维及拓展思路,在本章节内容学习中,与整个中学阶段学习的化学知识有着紧密的联系,反而有效促进整体化学结构中思维导图的应用。化学教师授课过程中,可以借助多媒体信息技术以及网络知识体系,或者直接将自己的知识储备对该章节的理解绘制成思维导图,在课堂教学中利用思维导图帮助学生将各个零散的知识点串联起来,完善知识架构,促进化学知识体系的完善,进而提高对本章节内容的掌握程度。比如在讲解反应类型时,可以构建基本反应类型、离子参与反应及电子转移等为主的思维导图,实现零散知识具体化。

2.3 利用思维导图帮助记忆

在选修4第三章内容讲解过程中,教师可以充分利用思维导图,强化该章节的知识主体,提高学生对知识点的掌握。思维导图可以帮助学生形成良好的化学思维能力。学生在学习过程中需要充分调动大脑,借助清晰的思维导图,实现深化知识记忆的目的。比如在讲解离子共存问题时,为提高教学成果,教师可以将学生划分成数个小组,让每个小组作为一个整体探讨离子共存的影响条件。然后小组间在构建及绘制思维导图的过程中进行比赛,这样可以充分调动起学生学习积极性。构建思维导图过程可以注意一下关键点:强酸性溶液中才会存在弱碱性阳离子,比如常见的Fe3+、Cu2+等;碱性溶液中存在弱酸阴离子,如CO32-,SO32-;阴阳离子生成难溶性的盐不能共存等等。在构建思维导图的过程中,囊括了关于离子共存的所有知识点,学生还会不断发散思维,提高课堂教学效率。

2.4 思维导图培养学生探究能力

当前在化学课堂教学中多采用注入式实验,这个过程中学生只是观看,缺乏对实验活动的主动思考和探索。通过构建思维导图可以提高学生探究性能力,这教师应当在教学过程中经常进行相应问题的设计和提出,并且对学生的思维进行合理的引导,将研究问题情境为学生创设出来,使学生能够将问题的关键挖掘出来,并达到寻求出问题的有效解决方法的目的。学校应当将丰富多样的信息源提供给学生,并且对现代化教学手段建设进行强化,有效开放实验室,将良好的环境建立起来,让学生实现对采集知识和获取知识的能力的培养。在进行化学阶段性复习时,高中化学教师可以引导学生再现当时思维导图建构过程,并将思维导图的各分支点扩散,建立各个小节、各个分支间的有效联系,不断加深学生的知识印象。

3 结束语

新课程改革对于教师的发展和社会的进步具有十分重要的意义和价值,是高中化学教师中教师应当着力培养的内容之一。本文分析思维导图在高中化学选修课教学方中存在的问题,并提出一定的解决措施,但仍存在一定局限,希望化学教师应当重视实验教学研究以推动教学成效的提升。唯有如此,才能达成提高课堂教学效率,促进学生成绩提升的目的。

参考文献

[1]胡春梅.论思维导图在初中数学教学中的应用[J].考试周刊,2014(93):112.

[2]奉飞鹏.思维导图引导 小组合作复习--元素及其化合物复习课教学探索[J].时代教育,2013(06):89.

[3]张曙光.基于思维导图的化学实验教学优化模式初探[J].化学教与学,2011(09):101.

作者单位

高二化学选修4知识点难点总结 篇4

1、电池的分类:化学电池、太阳能电池、原子能电池

2、化学电池:借助于化学能直接转变为电能的装置

3、化学电池的分类:一次电池、二次电池、燃料电池

4、常见一次电池:碱性锌锰电池、锌银电池、锂电池等

5、二次电池:放电后可以再充电使活性物质获得再生,可以多次重复使用,又叫充电电池或蓄电池。

6、二次电池的电极反应:铅蓄电池

7、目前已开发出新型蓄电池:银锌电池、镉镍电池、氢镍电池、锂离子电池、聚合物锂离子电池

8、燃料电池:是使燃料与氧化剂反应直接产生电流的一种原电池。

9、电极反应:一般燃料电池发生的电化学反应的最终产物与燃烧产物相同,可根据燃烧反应写出总的电池反应,但不注明反应的条件。负极发生氧化反应,正极发生还原反应,不过要注意一般电解质溶液要参与电极反应。以氢氧燃料电池为例,铂为正、负极,介质分为酸性、碱性和中性。当电解质溶液呈酸性时:负极:2H2—4e—=4H+正极:O2+4 e—4H+ =2H2O当电解质溶液呈碱性时:负极:2H2+4OH——4e—=4H2O正极:O2+2H2O+4 e—=4OH—另一种燃料电池是用金属铂片插入KOH溶液作电极,又在两极上分别通甲烷(燃料)和氧气(氧化剂)。

10、电极反应式为:负极:CH4+10OH——8e— =CO32—+7H2O;正极:4H2O+2O2+8e— =8OH—。电池总反应式为:CH4+2O2+2KOH=K2CO3+3H2O 10、燃料电池的优点:能量转换率高、废弃物少、运行噪音低

高二化学选修4知识点 篇5

高中化学选修共三册,高二两学期学完两册。其教学特点介于讲练与讲读之间。因此,从形式到内容,从知识到技能,从态度情感到价值观,从试验到推理,从理论到实践,从教学环节把握到测验考试反馈都需要全方位的计划安排。依据新课改的要求及学科特点,遵循教育规律,贯彻教学原则,把实验教学与理论讲解并用,把思想教育与技能提高结合,知识构建与生活实际联系。指导学生运用化学知识解决工农业生产和日常生活中具体问题。在教学中,培养学生实验操作、观察理解、逻辑推理、思维创新、自学能力等。

一、深挖教材,注重课标。

认真贯彻教育部和省教育厅有关新课程改革的精神。以学生发展为本,使学生在获得作为一个现代公民所必须的基本化学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的终身学习、终身受益奠定良好的基础。为新课程下的化学高考做准备。

二、摸清情况,因材施教。

我带高二理科班,从成绩上看,学习基础参差不齐。我在教学中将要进一步了解学生的知识水平、心理状态、接受能力、兴趣爱好和个性差异,注重师生情感互动,先获得学生的信任,最后形成一条感情的链条,紧紧把师生连接起来,也要协调好学生之间的关系,让学生有一个宽松愉快的学习环境,为提高学习效率打下感情基础。

三、紧扣课标,认真备课。

按照高中教育特点、教育规律、教学要求进行教学,对《化学选修4》教学内容(实验、思考与交流、学与问、科学探究、实践活动、科学史话、科学视野、资料卡片、归纳与整理、习题、复习题、附录等)、《化学实验教学指导必修4》、《资源与学案》的难广度,注重备学生,备教材,备教法,搞好板书设计为上课做到必要准备。

认真学习新课标,转变教学理念。加强教育教学的理论学习,研究新课标:组织切实有效的学习讨论活动,用先进的教育理念支撑深化教育改革,培养学生的合作交流意识;转变教师的教学方式 转变学生的学习方式:改变学生的学习方式为主,提倡研究性学习、发现性学习、参与性学习、体验性学习和实践性学习,以实现学生学习方式多样化地转变,促进学生知识与技能,情感、态度与价值观的整体发展,为学生的终身学习打下坚实的基础;改变备课方式,提高备课质量:例题的选择,习题的配备与要求,可根据每个班级学生的实际,灵活处理。重视教学过程的反思,尽可能做到每节课后要反思教学过程;树立“团队”精神,注重发挥备课组的集体力量:集体备课,教案基本统一。同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,教案应体现三维目标(知识与技能、过程与方法、情感态度与价值观),并及时进行教学反思、归纳总结修改、在课后记下教学随笔。备课组要做到资源共享。作业在完成课本上的习题的基础上,根据不同层次的学生,要求完成补充习题《学法大视野》,并完成必要的实验探究和演示、学生实验。

四、全面把握,突破难点。

对于化学概念、知识与技能从备课到上课,要注意新旧知识的连接点;同时要根据教材内容的广度、深度和《课程标准》的要求,结合学生的基础来确定重难点,找出突破难点的方法,螺旋上升地安排核心化学概念、知识与技能的内容。新课程强调化学教学是化学活动的教学,《课程标准》要求教学的有效目标必须既注重学生能力的培养,又强调师生双边、多边活动的过程。因此,教学中应该围绕着如何组织和设计有效的化学活动来展开。设置问题应遵循由易到难、由简到繁、由浅到深、由具体到抽象的原则,突出促进人的发展,体现学科特点、教师特色,教学思路过程要有特色。

五、钻研教材,精讲巧练。

新课程理念下的新授课应重视五点。一是新知识的引入:新知识的引入是实现旧知识向新知识迁移的过程。在新知识引入中既应重视与旧知识的联系,又应创设有利于迁移的情景,因此能否讲好引入是讲好新课的一个关键;二是树立化学课堂教学是一种化学活动的教学观念:《课程标准》中的化学教学过程是积极引导学生进行化学活动的教学,化学活动是学生经历化学学习过程的活动,同时也是学生自己建构化学知识的活动;三是应鼓励学生自主探索与合作交流,有效的化学学习过程不能单纯地依赖模仿与记忆,注重应引导学生主动的经历观察、实验、猜测、验证、推理与交流等化学活动,从而使学生形成自己对化学知识的理解和有效的策略,另外,通过课题研究和学生动手实验,学生不断提高了自身的观察力、想象力、猜测力,同时使学生在自主探索与合作交流的过程中培养学生的创造精神和动手实践能力;四是应重视培养学生应用化学的意识和能力:化学源于实践又应用于实践,最终的目的也是为了应用,因此新授课应注重发展学生应用化学的意识和能力;五是应重视培养学生动手能力和实践创造精神:培养学生动手能力和实践创造精神是新课程的新理念。动手能力和实践创造体现出学生的观察、思考、实验、探究、创作,是一个“考察”与“做”的过程,以思维和活动为主要形式,强调学生的亲身经历,促进学生积极参与活动。

六、适度作业,巩固知识。

作业是使学生掌握所学知识、培养各种能力的有效手段,也是记录学生成长和评价反馈的重要手段。但是作业过多过难,则会加重学生的课业负担,使学生疲于应付,严重地束缚和影响学生的智力发展和身心健康。故应考虑如下几点:一是适量性:作业一定要适量,使适量的作业既可以达到巩固所学知识和提高各种能力的目的,又能够留出足够的时间让学生自己自学、总结、归纳和反思;二是针对性:根据学生的个性特点,设计或布置一些有针对性的、适合其个性发展的作业,培养和促进每位学生发展其特长;三是实践性:作业要尽可能结合社会、生产和学生的日常生活实际,必要时还可以自编一些题目,让学生动手、动脑,理论联系实际,提高其分析问题、解决问题和实际操作能力;作业批改要坚持教师全批全改与学生订正相结合;对学困生的作业,还要在批改后及时具体指导、及时补差。

七、关注差异,分类辅导。

课外辅导是教师完成教学任务的重要的辅助手段之一。根据基础差异灵活采取一般辅导、个别辅导、学生互相辅导等形式。在班上成立课外活动小组、兴趣小组、社会活动小组等,效果较好。

八、及时测评,反馈信息。

必要的测验检查是检测教学效果、激励学生学习的一个有效方法。各章及时过关考试,认真对待段考、期考。并做好试卷分析,以便查漏补缺。

芷江一中 杨华山

高二化学选修4知识点 篇6

【题1】在恒温时,一固定容积的容器内发生的反应2NO2(g)

N2O4(g)达到平衡时,再向容器内通入一定量的NO2(g)重新达到平衡后,与第一次平衡时相比,NO2的体积分数(C)A.不变

B.增大

C.减小

D.无法判断

【解析】恒温、定容平衡后再加入NO2(g),相当于增大了容器的压强,平衡向着生成N2O4的方向移动,体积分数减小。

【题2】某温度下,在一个容积可变的容器中,反应2X(g)+Y(g)

2Z(g)达到平衡时,X、Y和Z的物质的量分别为4mol、2mol、4mol。保持温度和压强不变,对平衡混合物中三者的物质的量做如下调整,可使平衡右移的是(C)

A.均减半

B.均加倍

C.均增加1mol

D.均减小1mol 【解析】在容积可变的情况下,如果均加倍的话,对平衡时的各物质来讲,浓度均没有发生变化,故正逆反应速率均没有发生改变,平衡不发生移动,均减半与此类似。由于反应物的系数之和比生成物的大,所以均增加1 mol的话,可认为先增加1molA、0.5 mol B、1 mol C,这时平衡不移动,再增加0.5 mol B,平衡向正反应方向移动,对反应物和生成物来讲,他们的反应速率的变化就不会一样,导致正逆反应速率不相同,平衡不发生移动。均减少1 mol与此类似,只不过平衡移动方向正好相反罢了。【题3】一定温度下,可逆反应X(g)+3Y(g)A.Z生成的速率与Z分解的速率相等

B.单位时间内生成n mol X,同时生成3n mol Y C.X、Y、Z的浓度不再发生变化

D.X、Y、Z的分子数之比为1:2:3

【解析】判断可逆反应是否达到平衡的标志是:(1)反应混合物中各组分的浓度随时间的改变而不发生改变(2)V正=V逆。故AC正确。对于B,因为在任何时刻,有n mol A产生时必有3n mol B产生,二者表示的都是逆反应速率,因此无法判断是否达到平衡状态。而D只是反应的一种特定情况,不一定是平衡状态。【题4】可逆反应:3X(g)

3Y(?)+Z(?)ΔH>0。随温度升高,气体平均相对分子质量有变

2Z(g)达到平衡的标志是(AC)

小的趋势,则下列判断正确的是(CD)

A.Y和Z可能都是固体

B.Y和Z一定都是气体 C.若Z为固体,则Y一定是气体

D.Y和Z可能都是气体

【解析】升高温度平衡向正反应方向移动,而气体平均相对分子质量有变小的趋势,说明Y和Z至少有一种是气体或者都是气体。

【题5】压强变化不会使下列化学反应的平衡发生移动的是(A)A.H2(g)+I2(g)C.2SO2(g)+O2(g)2HI(g)

B.3H2(g)+N2(g)2SO3(g)

D.C(s)+CO2(g)

2NH3(g)2CO(g)【解析】固态或液态物质的体积受压强的影响很小,可忽略不计,改变压强只对有气体参加

用心

爱心

专心

然后比较大小即可。平衡常数越大,表示反应进行得越彻底。【题10】反应L(s)+aG(g)

bR(g)达到平衡时,温度和压强对该反应的影响如右图所示。图中:压强P1>P2,x轴表示温度,y轴表示平衡混合气中G的体积分数。据此,可判断(BC)

A.上述反应是放热反应

B.上述反应是吸热反应 C.a>b

D.a

【题11】在某温度下,反应ClF(g)+F2(g)平衡。下列说法中,正确的是(AD)

A.温度不变,缩小体积,ClF的转化率增大

B.温度不变,增大体积,ClF3的产率提高

C.升高温度,增大体积,有利于平衡向正反应方向移动 D.降低温度,体积不变,F2的转化率降低

【解析】由已知条件可知,该反应为吸热、气态物质物质的量减少的反应,则升高温度、缩小体积均有利于平衡向正向移动。

【题12】在温度T时将NH4HS(s)置于抽真空的容器中,当反应NH4HS(s)达到平衡时,测得总压力为p,则该反应的平衡常数Kp=

。【解析】

NH4HS(s)

NH3(g)+H2S(g)

NH3(g)+H2S(g)

ClF3(g);ΔH=268 kJ/mol,在密闭容器中达到

开始时

平衡时

1p 2

31p 21112则该反应的平衡常数Kp=p(H2S)•P(NH)=p•p=p

224【题13】在一定条件下,xA+yB

zC可逆反应达到平衡,试填空:

(1)已知A、B、C都是气体,在减压后平衡向逆反应方向移动,则x、y、z的关系是。

用心

爱心

专心

(2)已知C是气体且x+y=z,在加压时化学平衡如发生移动则平衡必定向 方向移动。(3)已知C、B是气体,现增加A物质的量(其他条件不变),平衡不移动,说明A是

态。【解析】(1)减压后平衡向气态物质物质的量增大的方向移动,由于A、B、C都是气体,因此x+y>z。

(2)加压后平衡向气态物质计量数减小的方向移动,由于C是气体,因此在加压时化学平衡如发生移动,则平衡必定向逆方向移动。(3)改变固态或者液态的量,平衡不移动。

【题14】PCl5随温度升高分解为PCl3和Cl2,在473 K时PCl5的起始浓度为0.050 mol/L,达到平衡时有26%分解,求473 K时PCl5分解反应的平衡常数。【解析】

PCl5(g)

PCl5(g)+Cl2(g)起始浓度(mol/L)0.050

0

0平衡浓度(mol/L)0.050-x

x

x 由题意可知x=0.05026%=0.013 mol/L 则

Kc=[Cl2][PCl3][PCl5]x21molL1

(0.050x)31(0.013)2molL4.610molL(0.0500.013)用心

爱心

高二化学选修4知识点 篇7

高二文科数学选修4-1《几何证明选讲》

班级_姓名座号

1.如图,在四边形ABCD中,EF//BC,FG//AD,则

EFFG.BCAD

2.如图,EF∥BC,FD∥AB,AE=1.8cm, BE=1.2cm, CD=1.4cm.则

.B的点,3.如图,AB是半圆O的直径,C是半圆O上异于A,CDAB,垂足为D,已知AD

2,CB则CD.F 图

204.如图,点A、B、C是圆O上的点,且AB=4,ACB30o,则圆O的面积等于.《中学数学信息网》系列资料版权所有@《中学数学信息网》

欢迎光临《中学数学信息网》zxsx127@163.com

5.如图,△ABC中,∠C=900,⊙O切AB于D,切BC于E,切AC于F,则 ∠.6.如图,已知圆上的弧ACBD,过C点的圆的切线与BA的 延长线交于 E点,若ACE350,则BCD.7.如图, 已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若ABC30, AC2,则AD的长为.8.如图,圆内的两条弦AB、CD相交于圆内一点P,已知

PAPB3,PCPD,则CD.o

BA

D

欢迎光临《中学数学信息网》zxsx127@163.com

9.如图,已知AB是⊙O的一条弦,点P为AB上一点,PCOP,PC交⊙O于C,若AP4,PB2,则PC的长是()

PO

A

B

A.3B

.C.2D

10.如图,圆O的弦ED,CB的延长线交于点A。若BD⊥AE,AB=4,BC=2,AD=3,则DE=;CE=.11.如图,割线PBC经过圆心O,PBOB1,PB绕点O逆时 针旋120°到OD,连PD交圆O于点E,则PE.12.如图,四边形ABCD是圆O的内接四边形,延长 AB和DC相交于点P。

BC

若PB=1,PD=3,则的值为.AD

欢迎光临《中学数学信息网》zxsx127@163.com

13.如图,过O外一点P作一条直线与O交于A,B两点,已知半径为4,PA=2,点P到O的切线长PT =4,则 点O到弦AB的距离为.14.如图,已知RtABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则

15.如图,PT是圆O的切线,PAB是圆O的割线,若PT2,PA1,P60o,则圆O的半径r.BD

__________.DA

16.如图, AC和AB分别是圆O的切线,B、C 为切点,且 OC = 3,AB = 4,延长OA到D点,则△ABD的面积 是.17.如图,⊙O的割线PAB交⊙O于A、B两点,割线 PCD经过圆心O,PE是⊙O的切线。已知PA=6,AB=7,PO=12,则O的半径是.参考答案

B

欢迎光临《中学数学信息网》zxsx127@163.com

1.2.3.4.16p5.4506.350

7.8.9.10.11.16

15.112.13.14.16.48

高二数学知识点总结选修2 篇8

一、基础知识

(1)常用逻辑用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简单的逻辑联结词(或、且、非);全称量词与存在性量词,全称命题与特称命题的否定.

(2)圆锥曲线:曲线与方程;求轨迹的常用步骤;椭圆的定义及其标准方程、椭圆的简单几何性质(注意离心率与形状的关系);双曲线的定义及其标准方程、双曲线的简单几何性质(注意双曲线的渐近线)、等轴双曲线与共轭双曲线;抛物线的定义及其标准方程;抛物线的简单几何性质;直线与圆锥曲线的常用公式(弦长公式、两根差公式).

圆锥曲线的几何性质的常用拓展还有:焦半径公式、椭圆与双曲线的焦准定义、椭圆与双曲线的“垂径定理”、焦点三角形面积公式、圆锥曲线的光学性质等等.

(3)空间向量与立体几何:空间向量的概念、表示与运算(加法、减法、数乘、数量积);空间向量基本定理、空间向量运算的坐标表示;平面的法向量、用空间向量计算空间的角与距离的方法.

二、重难点与易错点

重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解.

(1)区分逆命题与命题的否定;

(2)理解充分条件与必要条件;

(3)椭圆、双曲线与抛物线的定义;

(4)椭圆与双曲线的几何性质,特别是离心率问题;

(5)直线与圆锥曲线的位置关系问题;

(6)直线与圆锥曲线中的弦长与面积问题;

(7)直线与圆锥曲线问题中的参数求解与性质证明;

(8)轨迹与轨迹求法;

(9)运用空间向量求空间中的角度与距离;

高二生物选修三细胞工程知识点 篇9

(2)特征:具有持久性、稳定性和不可逆性.

(3)意义:是生物个体发育的基础.

(4)原因:基因选

1、干细胞的概念:动物和人体内保留着少量具有和分化能力的细胞.

2、干细胞的分类:

1)全能干细胞:具有形成完整个体的分化潜能.

2)多能干细胞:具有分化出多种细胞组织的潜能.

3)专能干细胞:只能向一种或两种密切相关的细胞类型分化.如神经干细胞可分化为各类神经细胞,造血干细胞可分化为红细胞、白细胞等各类血细胞.

高二化学选修4知识点 篇10

第一单元、习题参考答案

一 A、D2 D3(1)烯烃(2)炔烃(3)酚类(4)醛类(5)酯类(6)卤代烃 二

1.4 4 共价 单键 双键 三键 2.3 3.B 4.C(CH3)4 5.CH3CH=CH2 三

1.B 2.(1)3,3,4-三甲基己烷(2)3-乙基-1-戊烯(3)1,3,5-三甲基苯 3.四

1.重结晶(1)杂质在此溶剂中不溶解或溶解度较大,易除去(2)被提纯的有机物在此溶剂中的溶解度,受温度的影响较大蒸馏30 ℃左右

2.C10H8NO2 348 C20H16N2O4 3.HOCH2CH2OH 部分复习题参考答案

4.(1)2,3,4,5-四甲基己烷(2)2-甲基-1-丁烯

(3)1,4-二乙基苯或对二乙基苯(4)2,2,5,5-四甲基庚烷 5.(1)20 30 1(2)5 6% 1 有机化合物的命名法

有机化合物命名有俗名、习惯命名法(又称普通命名法)和系统命名法,其中系统命名法最为通用,最为重要。(1)俗名根据有机化合物的来源、存在与性质而得到的名称。例如,甲烷又称坑气、沼气;甲醇又称木醇等。(2)普通命名法用天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸表示碳原子数在10以内的简单有机化合物,碳原子数在10以上的用汉字数字表示,如十一、十二、十三„„异构体以“正”“异”“新”等词区分。如: 直链烷烃或其直链烷烃的衍生物用“正”字表示,如“正己烷”“正戊醇”等。在烃的碳链末端带有甲基支链的用“异”字表示,如“异己烷”“异丁烯”等。

限于含有五、六个碳原子的烷烃或其衍生物中,具有季碳原子(即连接四个烃基的碳原子)的用“新”字表示,如“新己烷”“新戊醇”等。

上述习惯命名法仅适用于结构简单的有机化合物,结构复杂的有机化合物需用系统命名法。在介绍系统命名法之前,先熟悉基的命名。

(3)基名一个化合物失去一个一价原子或原子团,余下的部分称为“基”。如烷烃(RH)失去一个氢原子即得到烷基(R-),常见的烷基有:

此外,还有一些常见的烃基:(4)系统命名法

随着有机化合物数目的增多,有必要制定一个公认的命名法。1892年在日内瓦召开了国际化学会议,制定了日内瓦命名法。后由国际纯粹与应用化学联合会(IUPAC)作了几次修订,并于1979年公布了《有机化学命名法》。中国化学会根据我国文字特点,于1960年制定了《有机化学物质的系统命名原则》,1980年又根据IUPAC命名法作了增补、修订,公布了《有机化学命名原则》。

本章第三节就是根据我国《有机化学命名原则》,介绍了烷烃的命名法,也介绍了烯、炔的命名法。其他官能团化合物命名的基本方法可分为以下四步:

① 选取含官能团的最长碳链为主链;

② 从靠近官能团的一端开始给主链碳原子编号,得出主链上支链或取代基的位次号。编号要遵循“最低系列原则”,即从不同方向给碳链编号时,得到不同的编号系列,比较各系列的位次,最先遇到最小位次者,为最低系列。例如: 1,3,5-三氯己烷 2,3,5-己三醇

(不是2,4,6-三氯己烷)(不是2,4,5-己三醇)

③ 确定支链或取代基列出顺序。当主链上有多个不同的支链或取代基时,应先按“顺序规则”排列支链或取代基的优先次序,命名时“较优”基团后列出。“顺序规则”要点如下: a.比较主链碳原子上所连各支链、取代基的第一个原子的原子序数的大小(同位素按相对原子质量的大小),原子序数较大者为“较优”基团。例如: I>Br>Cl>F>O>N>C>D>H b.第一个原子相同时,则比较与第一个原子相连的原子的原子序数,以此类推直到比较出大小。例如:-CH2Br>-CH3 这两个基团的第一个原子相同(均为C原子),则比较C原子上所连的原子,分别是Br,H,H(按原子序数由大到小排列)与H,H,H,因为Br>H,所以-CH2Br>-CH3。同样道理,下列烷基的较优顺序为: ④ 写出化合物的全称。例如:

4-甲基-2-羟基戊酸 3-甲基-5-氯庚烷

在教科书中仅要求学生掌握简单烃类化合物与简单官能团化合物的命名方法,支链、取代基在化合物命名时,仅要求按“简单在前,复杂在后”的顺序排列,不要求“顺序规则”的内容。这里介绍“顺序规则”仅为便于理解“由简到繁”的列出顺序。

如果在教学中遇到问题可根据“最低系列原则”和“顺序规则”予以处理。2 有机化合物的同分异构现象

有机化合物有着非常丰富的同分异构现象,概括如下:

有机化合物的分子结构包括三个层次,即构造、构型、构象。

构造是指有机物分子中各原子或原子团之间的结合顺序或排列顺序; 构型是指有机物分子中的各个原子或原子团在空间的排列方式;

构象是指在有机物分子中,由于围绕单键旋转而产生的原子或原子团在空间的不同排列形象。

(1)构造异构 构造异构就是指那些具有相同的分子式,而分子中的原子或原子团相互结合的顺序不同而产生的异构现象。构造异构主要有碳链异构、位置异构与官能团异构。① 碳链异构由于碳链骨架不同而产生的异构现象。例如: 环己烷与甲基环戊烷

② 位置异构 由于取代基或官能团在碳链或碳环上的位置不同而产生的异构现象。例如: CH3CH2CH2CH2OH 与CH3CH2CHCH3OH 1-丁醇 2-丁醇

邻溴甲苯 间溴甲苯 对溴甲苯 或2-溴甲苯 或3-溴甲苯 或4-溴甲苯

③ 官能团异构具有相同的分子组成,由于官能团不同而产生的异构现象,例如: 具有相同分子式的烯烃与环烷烃之间也存在异构现象:

CH3CH=CH2(丙烯)与 环丙烷

此外,还有一种可以互相转变的特殊的官能团异构即互变异构现象,例如乙酰乙酸乙酯存在着酮式与烯醇式两种互变异构体的平衡体系:

酮式 烯醇式

(2)构型异构 构型异构是指分子中的原子或原子团在空间的排列方式不同而产生的异构现象,有顺反异构和对映异构两类,将分别在第二章与第四章教学资源中介绍。

习题参考答案

1.D 2.C 3.D4.5.没有。因为顺-2-丁烯和反-2-丁烯的碳链排列是相同的,与氢气加成后均生成正丁烷。1.4,2.B 3 己烷既不能使溴的四氯化碳溶液褪色,也不能使高锰酸钾酸性溶液褪色;1 己烯既能使溴的四氯化碳溶液褪色,也能使高锰酸钾酸性溶液褪色;邻二甲苯不能使溴的四氯化碳溶液褪色,但能使高锰酸钾酸性溶液褪色;因此用溴的四氯化碳溶液和高锰酸钾酸性溶液可鉴别己烷、1 己烯和邻二甲苯。1 A、D 2 复习题参考答案

1.C 2.B、D 3.B 4.D 5.A、C 6.A 7.CH3CCl=CHCl或CH3CH=CH2 CH3C≡CH 8.C2H6C2H2CO2 9.2-甲基-2-戊烯 10.14 L 6 L 11.2.3 t 12.160 g

第二单元、习题参考答案 1.D 2.C 3.D 4.5.没有。因为顺-2-丁烯和反-2-丁烯的碳链排列是相同的,与氢气加成后均生成正丁烷。<习题参考答案 1.4,2.B 3己烷既不能使溴的四氯化碳溶液褪色,也不能使高锰酸钾酸性溶液褪色;1己烯既能使溴的四氯化碳溶液褪色,也能使高锰酸钾酸性溶液褪色;邻二甲苯不能使溴的四氯化碳溶液褪色,但能使高锰酸钾酸性溶液褪色;因此用溴的四氯化碳溶液和高锰酸钾酸性溶液可鉴别己烷、1己烯和邻二甲苯。4

四、习题参考答案 1A、D 2

复习题参考答案

1.C 2.B、D 3.B 4.D 5.A、C 6.A 7.CH3CCl=CHCl或CH3CH=CH2 CH3C≡CH 8.C2H6C2H2CO2 9.2-甲基-2-戊烯 10.14 L 6 L 11.2.3 t 12.160 g

四、习题参考答案 1.C 2.3.醇分子间可形成氢键,增强了其分子间作用力,因此其沸点远高于相对分子质量相近的烷烃。甲醇、乙醇、丙醇能与水分子之间通过氢键结合,因此水溶性很好;而碳原子数多的醇,由于疏水基烷基较大,削弱了亲水基羟基的作用,水溶性较差。

4.C6H6O

四、习题参考答案 OH 1.有浅蓝色絮状沉淀产生;有红色沉淀产生;

2.D 3.

四、习题参考答案 1.A、C

四、习题参考答案 1.A、C

四、习题参考答案

2.D 3.4 mol 4.16.8 t 1.01 t

四、习题参考答案

1.C 2.A 3.D 4.B 5.D 6.1.04 t

四、习题参考答案

1.D 2.A 3.B 4.C 5.D 6.10 000

部分复习题参考答案

8.C 9.B 10.C 11.B 12.C 13.B 14.B 15.16.略

17.(1)分别取少量三种溶液于试管中,分别加1~2滴碘—碘化钾溶液①。溶液变为蓝色,说明原试管中的溶液为淀粉溶液;无明显现象的为葡萄糖溶液和蔗糖溶液。(2)另取两只试管,分别取少量葡萄糖溶液、蔗糖溶液,分别加入银氨溶液,水浴加热3~5 min(或与新制的氢氧化铜溶液,加热反应),有银镜产生的是葡萄糖溶液,无现象的是蔗糖溶液。

18.略 19.77.8 g 20.3.8×

kg ① 碘—碘化钾溶液的配制:取10 g碘化钾,溶于50 mL蒸馏水中,再加入碘5 g,搅拌使其溶解。加碘化钾为提高碘在水中的溶解性。

习题参考答案

四、习题参考答案

1.聚合度8× ~2.4×

9.6×~2.9×

4.7×~7.6×

1.0× ~1.5×

4.6×~5.6×

2.9×~5.9×

2.C 3.a和d 4.B 5.硅橡胶、习题参考答案

1. 2.B

上一篇:村远程教育终端站点典型材料下一篇:二年级状物作文:小鸡