9.14完全平方公式

2024-06-25 版权声明 我要投稿

9.14完全平方公式(精选12篇)

9.14完全平方公式 篇1

教学目标

1.使学生巩固地掌握用完全平方公式分解因式。

2.使学生学习多步骤、多方法的分解因式。重点难点

重点:掌握多步骤、多方法的方法。

难点:让学生学会观察多项式的特点,恰当地安排步骤、恰当地选用方法分解因式。教学过程

一、复习

1.提问:什么是完全平方公式法分解因式? 2.练习:把下列各式分解因式:(1)x2y3–x3y2–xy;(2)9(a+b)2–(a–b);(3)(s+t)2–18(s+t)+81;(4)x2y2–8xyz+16z2;(5)a6–25a4;

(6)–10mn–25n2–m2。

以上6道题目的因式分解,有的是一个步骤完成的,如(1)、(3)、(4)用完全平方公式法。有的要用两个步骤完成的,如(2)、(5)、(6)都先经过提公因式,再分别用平方差公式、或完全平方公式。还有的如(2),先用平方差公式,再用提公因式法提数字公因式。通

过这几道题目的复习练习,我们要知道做因式分解的目的,首先,要有观察力,能发现多项式的公因式,会识别它可以用什么公式进行因式分解。其次,要将因式分解进行到底。只要因式中有多项式,而这个多项式还可以因式分解,包括有公因数我们就要把工作进行下去,直到因式的各项不能再分解为止。

二、范例讲解

例6 把3ax2+6axy+3ay2分解因式。

[教学要点]让学生观察后发现:(1)这是一个三项式;(2)各项有公因式3a。其次,在提出公因式后,让学生继续发现括号内三项是一个完全平方式。因此,还可以用完全平方公式继续分解为二项式的平方。

例(补充)把–16x4y6+24x3y5–9x2y4分解因式。

[教学要点]让学生发现;(1)这是一个三项式;(2)各项有公因式x2y4;(3)为了适应完全平方公式的形式,各项还要变号,为此提一个含有“–”的公因式–x2y4:

–16x4y6+24x3y5–9x2y4 =–x2y4(16x2y2–24xy+9)=–x2y4(4x–3)2。

例(补充)把(x2+y2)2–4x2y2因式分解。

[教学要点](1)让学生发现原式是二项平方差。因此可用平方差公式分解因式;(2)用平方差公式分解因式后,两个因式都是三项式,它们又都是完全平方式,因此可继续用完全平方公式在分解。

(x2+y2)2–4x2y2

=[(x2+y2)+2xy][(x2+y2)–2xy] =(x+y)2(x–y)2。

学生易出现的错误是,在用平方差完成分解因式后,不再继续分解下去。因此要特别强调第二步的观察。让学生发现还可以用完全平方公式继续分解,否则不算做完这题。

三、课堂练习(补充)1.把下列各式分解因式:(1)–4xy–4x2–4y2;(2)3ab2+6a2b+3a3;(3)(s+t)2–10(s+t)+25;(4)0.25a2b2–abc+c2。2.把下列各式分解因式:(1)x2y–6xy+9y;(2)2x3y2–16x2y+32x;(3)16x5+8x3y2+xy4;(4)(a2+3a)2 –(a–1)2。

四、作业设计

1.复习乘法的平方差公式,乘法的完全平方公式计算:(1)(3m+2n)(2n–3m);(2)(2a3–b2)(b2+2a3);(3)(–a+2b)(–a–2b);22 11

(4)(–4x–3)(4x–3);(5)(–b2+4a2)2;(6)(t2+12)2;(7)(a+b)(a2–b2)(a–b);(8)(a+2b–3)(a+2b+3)。2.把下列各式分解因式:(1)2a4b2–4a3b2+10ab4;(2)16x4y–8x2y2;(3)10(x–y)2–5(x–y)3;(4)6(x–2)2+5(2–x);(5)5(m–n)3+10(n–m)5;(6)(a–1)+x2(1–a);*(7)ab–(a2+b2);21(8)(x+y)2+4(x+y)z+4z2。3.把下列各式分解因式:(1)16x–x3;(2)9(x+a)2+30(x+a)(x+b)+25(x+b)2;(3)a3+4ab2–4a2b;(4)–mn+2m2n–m3n;**(5)(s2+2s)2–(2s+4t2)2;(6)(x2+y2)2–(y2+z2)2;(7)(a–b)(a2–c2)+(b–a)(b2–c2);

9.14完全平方公式 篇2

(1) (P+1) 2= (P+1) (P+1) =___;

(2) (m+2) 2= (m+2) (m+2) =___;

(3) (p-1) 2= (p-1) (p-1) =___;

(4) (m-2) 2= (m-2) (m-2) =___.

通过计算、探究, 寻找规律, 得出完全平方公式, 原文如下:一般的, 我们有 (a+b) 2=a2+2ab+b2; (a-b) 2=a2-2ab+b2即两数和 (或差) 的平方等于它们的平方和, 加 (或减) 它们积的2倍.教学过程中, 常有学生很容易把符号搞错, 究其原因, 我觉得教材对完全平方公式的语言描述不够恰当, 现提点个人意见与大家交流, 不足之处还请指正.

完全平方公式是根据乘方的意义和多项式与多项式相乘的法则得出的, 而多项式与多项式相乘的法则 (先用一个多项式的每一项乘另一个多项式的每一项, 再把所得的积相加) 中语言描述的核心是“项×项”, 项是带有符号的, 这在多项式的概念, 单项式与多项式相乘的法则 (用单项式去乘以多项式的每一项, 再把所得的积相加) , 都用到了“项”、“和”, 并且教学中反复强调, 多项式是单项式的和, 每一项包括它前面的符号, 在计算时一定要注意确定积中各项的符号, 这在学生头脑中已经根深蒂固, 但在完全平方公式语言描述中, 竟然“冒出”差与减来, 有的学生弄不明白了, 特别是对于两“数”, 虽然提醒学生公式中字母a、b可以代表任何一个数, 一个单项式或一个多项式, 但还易出现符号错误, 百思不得其解.例如对于计算 (-a-b) 2有一部分学生就不会直接运用完全平方公式, 而要将其转化为 (a+b) 2后, 才会运用公式, 直接计算的话, 前者出现错误明显高于后者.

当然, 教材的设计由整式的乘法到完全平方公式是一个循序渐进过程, 体现了“螺旋型”课程, 但是其语言描述却违背了奥苏贝尔的同化论——学习是否有意义, 取决于新知识与学生已有旧知识之间是否建立了联系, 认知结构中新旧知识的相互作用导致新知识被同化, 从而使新知识获得了意义, 而且旧知识也因此得到了修正而获得新的意义, 新知识中, “减、差”显然不能与旧知识中的“项、和”建立联系.

如果将教材中 (a+b) 2=a2+2ab+b2, (a-b) 2=a2-2ab+b2合二为一即 (a+b) 2=a2+2ab+b2, 因 (a-b) 2=[a+ (-b) ]2, 而语言描述为两项和的平方, 等于各项的平方和, 加上它们两项积的2倍, 运用此描述来计算, 一提到“项”学生自然而然就想到包括它前面的符号, 就可减少出现符号错误, 此时再来计算 (-a-b) 2就显得容易多了, 两项是-a, -b.因此 (-a-b) 2= (-a) 2+2· (-a) · (-b) + (-b) 2=a2+2ab+b2, 此基础上推导三项和的平方 (a+b+c) 2=a2+b2+c2+2ab+2ac+2bc, 用语言描述为三项和的平方, 等于各项的平方和, 加上它们两两积的2倍.对于n项和的平方 (a1+a2+…+an) 2=aundefined+aundefined+…+aundefined+2a1a2+2a1a3+…+2an-1an.语言描述为n项和的平方, 等于各项的平方和, 加上它们两两积的2倍.

9.14完全平方公式 篇3

平方差公式首先站起来说道:“我的形象好呀,你看,我的左边是两个二项式的积,在这两个二项式中有一项完全相同,另一项互为相反数,右边是完全相同项的平方减去符号相反项的平方.”

完全平方公式毫不示弱:“我的形象不比你逊色,我的左边是一个二项式的完全平方,右边是一个二次三项式,其中(首末)两项是公式左边二项式中的每一项的平方,中间一项是二项式中两项乘积的2倍.”

乘法公式大伯说:“别吵!别吵!光形象好还不够,要有真本事才行!”

平方差公式说:“这个我可不含糊,只要符合‘两数和与两数差相乘的形式,就可用我平方差公式解决.如计算(xy+1)(xy-1)直接运用平方差公式,得(xy+1)(xy-1)=(xy)2-12=x2y2-1.”

完全平方公式说:“只要符合‘两数和(或差)的平方的形式,就可用我完全平方公式搞定,如计算(4x-3y)2,直接运用完全平方公式,得(4x-3y)2=(4x)2-2·4x·3y+(3y)2=16x2-24xy+9y2.”

……

平方差公式与完全平方公式争论不休.

乘法公式大伯:“别争了,其实你们本是一家人,都可由公式(x+p)(x+q)=x2+(p+q)x+pq(*)得到.在公式(*)中,若令p=y,q=-y,就得到平方差公式(x+y)(x-y)=x2-y2;在公式(*)中,若令p=q=y,就得到两数和的平方公式(x+y)2=2x+2xy+y2,若令p=q=-y,就得到两数差的平方公式(x-y)2=x2-2xy+y2.

有些问题单独用你们两个公式都可以解决,如x+y=5,且x-y=1,则xy=_____.

解法1:由完全平方公式,得(x+y)2=x2+2xy+y2,(x-y)2=x2-2xy+y2.

∴(x+y)2-(x-y)2=4xy,即52-12=4xy.∴xy=6.

解法2:在平方差公式(a+b)(a-b)=a2-b2中,令a=x+y,b=x-y,得2x·2y=(x+y)2-(x-y)2,即4xy=52-12.∴xy=6.

有些问题需要你们两个公式合作才能解决,如计算[(x+2)(x-2)]2,先由平方差公式,得 (x2-22)2=(x2-4)2.再由完全平方公式,得(x2)2-2·x2·4+42=x4-82+16.

再如计算:(2x+y+z)(2x-y-z),先由平方差公式,得[(2x+(y+z)][(2x)-(y+z)]=(2x)2-(y+z)2.再由完全平方公式,得4x2-(y2+2yz+z2)=4x2-y2-2yz-z2.

乘法公式大伯接着说道:“你们两个都有各自的特点,是乘法公式的重要组成部分,你们应该取长补短,齐心协力为数学王国作贡献,我劝你们不要再争什么‘老大了!”

完全平方公式教学反思 篇4

本节课属于八年级数学上册《整式乘除与因式分解》第二节中的内容,前一节已学习习近平方差公式,这一课主要研究完全平方公式的特征及应用。教学关键是引导学生正确理解完全平方公式的推导过程,几何背景,并能准确应用完全平方公式解决相关问题。

教学后我进行反思如下:本课的知识要点是经历探索完全平方公式的过程,了解公式的几何背景,会应公式进行简单的计算,教学已基本达到了预期目标,能突出重点,兼顾难点。

本节课上学生体会了数形结合及转化的数学思想,并知道猜想的结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。采用以小组自主探究的学习方式,同时各小组展开激烈的比赛。整节课都在紧张而愉快的气氛中进行。学生非常活跃。人人都能积极参与。

先从代数式的几何意义出发,激发学生的图形观,利用拼图的方法,使学生在动手的过程中发现规律,并通过小组合作,探究归纳公式,然后强调数值的计算,使学生掌握公式的计算技巧。从而突出以学生为主体的探索性学习原则。让学生自编符合完全平方公式和平方差公式结构的计算题,从而有效地将两类公式区分开,深刻认识公式的结构特征,并大大激发了学生的学习积极性。

同时课后感觉应该引导学生用文字概括公式的内容,从而培养学生抽象的数学思维能力和语言表达能力。对需要帮助的学生进行针对性的个别指导较少。对于学生计算中存在的问题应让学生自己纠错,教师不应全权代劳。如利用两数和的公式计算环节,两位学生分别讲述自己的想法之后,教师应该让全体学生根据其方法进行计算,自主验证,即使有些学生写不出来,也会因为经过思考而印象深刻,如果为了节省时间教师自己代劳,那样就不能够充分体现学生的主体作用,而且效果也较前者差些。

在今后的教学中应注意从以下几个方面改进:

1、在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式,法则道理的基础上进行记忆,比如:我们要借助面积图形对完全平方公式做直观说明。

数学《完全平方公式》教案 篇5

1.会运用完全平方公式进行一些数的简便运算

二、学习重点

运用完全平方公式进行一些数的简便运算

三、学习难点

灵活运用平方差和完全平方公式进行整式的简便运算

四、学习设计

(一)预习准备

(1)预习书p26-27

(2)思考:如何更简单迅捷地进行各种乘法公式的运算?[

(3)预习作业:1.利用完全平方公式计算

(1)(2) (3)(4)

2.计算:

(1) (2)

(二)学习过程

平方差公式和完全平方公式的逆运用

由 反之

反之

1、填空:

(1)(2)(3)

(4)(5)

(6)

(7)若,则k=

(8)若是完全平方式,则k=

例1计算:1. 2.

现在我们从几何角度去解释完全平方公式:

从图(1)中可以看出大正方形的边长是a+b,

它是由两个小正方形和两个矩形组成,所以

大正方形的面积等于这四个图形的面积之和.

则S= =

即:

如图(2)中,大正方形的边长是a,它的面积是 ;矩形DCGE与矩形BCHF是全等图形,长都是 ,宽都是 ,所以它们的面积都是 ;正方形HCGM的边长是b,其面积就是 ;正方形AFME的边长是 ,所以它的面积是 .从图中可以看出正方形AEMF的面积等于正方形ABCD的面积减去两个矩形DCGE和BCHF的面积再加上正方形HCGM的面积.也就是:(a-b)2= .这也正好符合完全平方公式.

例2.计算:

(1) (2)

变式训练:

(1) (2)

(3) (4)(x+5)2C(x-2)(x-3)

(5)(x-2)(x+2)-(x+1)(x-3) (6)(2x-y)2-4(x-y)(x+2y)

拓展:1、(1)已知,则=

(2)已知,求________,________

(3)不论为任意有理数,的值总是

A.负数B.零C.正数D.不小于2

2、(1)已知,求和的值。

(2)已知,求的值。

(3).已知,求的值

回顾小结

1.完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号。

2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择。

初中数学完全平方公式教案 篇6

【知识与技能】

理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算,了解完全平方公式的几何背景.【过程与方法】

经历探索完全平方公式的过程,并从推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,培养学生的数形结合意识.【情感态度】

在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感受数学的内在美.【教学重点】

1.弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;

2.会用完全平方公式进行运算.【教学难点】

会用完全平方公式进行运算.一、课题引入

用不同的方法表示图形的面积

(1)(m+3)(2)(2+3x)(3)(a+b)

2得出公式: aba22abb2

222记忆方法:首平方,尾平方,首尾2倍放中央

【教学说明】

让学生观察、思考、总结、归纳,使之掌握基本的数学活动经验,让学生用文字语言表示公式,提高学生运用数学语言的能力.二、学以致用 练习1:(1)(t5)2(2)(2a3)2(3)(x22y)2练习2: 52a326mn42【教学说明】

让学生熟悉公式的特征,培养学生的观察、分析、归纳概括的能力;让学生思考.三、能力提升

(7)(n1)2n2(8)(2ab)2(2ab)2

四、课堂小结

通过这节课的学习活动,你有什么收获?

五、课后作业

1、思考(a-b)=a-2ab+b这个等式怎么用几何图形直观的解释

2、完成练习册本课时的习题。

六、课后反思

第8课时 完全平方公式(范文) 篇7

教学目标:完全平方公式的推导及其应用.完全平方公式的几何解释.视 学生对算理的理解,有意识地培养学生的思维条理性和表达能力. 教学重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用。教学难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用。教学过程:

一、提出问题,学生自学:

1.问题:根据乘方的定义,我们知道:a2=a·a,那么(a+b)2 应该写 成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?

(1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______.(2)(p-1)2=(p-1)(p-1)=________;(m-2)2=_______.2.得到结果:(1)(p+1)2=(p+1)(p+1)=p2+2p+1(m+2)2=(m+2)(m+2)= m2+4m+4(2)(p-1)2=(p-1)(p-1)= p2-2p+1(m-2)2=(m-2)(m-2=m2-4m+4 3.分析推广:结果中有两个数的平方和,而2p=2·p·1,4m=2·m·2,恰好是两个数乘积的二倍。(1)(2)之间只差一个符号。

推广:计算(a+b)2=_____ ___(a-b)2=_____ ___

二、得到公式,分析公式:

1.结论:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2 即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 2.几何分析:图(1),可以看出 大正方形的边长是a+b,它是 由两个小正方形和两个矩形 组成,•所以大正方形的面积 等于这四个图形的面积之和.

三、运用公式直接运用: 1.应用完全平方公式计算:

(1)(4m+n)2(2)(y-)2(3)(-a-b)2(4)(b-a)2 2.简便计算:

(1)1022(2)992(3)50.012(4)49.92

四、附加练习:

1.计算:(1)(4xy)2(2)(3a2b4ab2c)2

(3)(5x)2= 10xy2y4

(4)(3ab)(3ab)(5)(x)2(6)(x)2 2.在下列多项式中,哪些是由完全平方公式得来的?(1)x24x4(2)116a2(3)x21(4)x2xyy2(5)9x23xyy2

五、小结:

141x1x12

用完全平方公式分解因式教学反思 篇8

根据新课程标准要求和学生的起点能力,本节课的具体目标有两个,一个是会用完全平方公式分解因式,一个是会综合运用提取公因式法、公式法分解因式。我以“问题情境——建立数学模型——解释、应用与拓展”的模式组织课堂教学。整堂课教下来我觉得自己做的比较好的几点是:

1、突显特点。这节课的重点是运用完全平方公式分解因式,而完全平方式的判定是关键。所以我比较重视完全平方式特点分析,应用。尤其强调完全平方式标准模式的书写,这也是学生思维过程的暴露,有利于中等及中等以下学生对新知识的掌握,提高学生解题的准确率,对提高那些拐脚的偏理科的数学尖子生的表达能力也有好处。对以后灵活掌握用配方法解一元二次方程,求代数式最值等知识有正向迁移作用。有利于学生思维能力的发展。

2、自主训练。我以先引导学生分析多项式特点,再让学生尝试分解因式的方式完成例题教学。对课本上的练习题放手让学生自己完成,体现了以教师为主导,以学生为主体,及时反馈,及时巩固教学方式。

3、及时归纳。根据初一学生认知特点,教学中我给予学生及时的多归纳,总结,使学生掌握一定的条理性和规律性,有利于学生的创新和发展。如完全平方式特点形象概括(口诀记忆法,结构的对称美),因式分解步骤概括(一提二套三查),以及换元思想,配方法的提出。

4、重视动态生成。教学中我发现704班学生思维很活跃,接受能力比较强,我对例题教学作了及时调整,由师生合作完成改为先引导学生观察、分析多项式特点,再让学生自主完成解题过程。不足之处:

(1)探索用于因式分解的完全平方公式及特点分析时,没有把握好时间,这是导致后面时间不够的原因之一。

(2)用现代化教学手段的能力有待加强。(课件使用不熟悉,没有利用投影仪,这也是导致时间不够的一个原因。例如填表练习讲评时,若利用投影仪,将会节省时间,同时能充分暴露学生解题错误。)

(3)表格没有充分利用。表格最后一行我设计为空格的目的是在讲评了表格里上述内容后,插入这样一个教学环节:根据完全平方式特点,请你在表格的最后一栏里构造一个完全平方式,并分解因式。当学生基本完成后,组织学生同桌交流,交流方式为:请把你的构思告诉同伴,先一个听,一个评。然后调换角色。

(4)没有发现学生书写错误。学生扮演过程中有两处出错,我没发现。

(5)公式中的字母a,b可以表示数,单项式,多项式的广泛意义只是让学生体验,没有让学生开口表达。

9.14完全平方公式 篇9

【设计理念】因式分解是学生进一步学习数学不可或缺的基础知识和基本技能。本节课以培养学生熟练运用完全平方公式因式分解,以反复练习促进此方法的熟练掌握,以老师讲解例题与方法,学生多多练习为具体的教学指导思想。

一、教材分析

本节的内容主要是用完全平方公式来因式分解。因式分解是整式的一种重要的恒等变形,它和整式的乘法,尤其是多项式的乘法关系十分密切。因式分解的几种基本方法都是直接依据整式乘法的各个法则和乘法公式。完全平方公式是一种重要的因式分解的方法,学好用完全平方公式因式分解,是学生进一步学习数学不可或缺的工具。

二、学情分析

在知识上:学生在学习用完全平方公式因式分解之前,已经学习了用平方差公式因式分解。这两种方法都是整式乘法的逆运用,所以应先复习整式乘法内容,再学习用公式法分解因式,可以加强学生对公式的熟练使用。

在思想上:学生个体有所差异,所以应准备一些难度大的题目,以便一些做得快的学生做。另外,平方差公式与完全平方公式都有平方项,容易混淆,讲解时应加以区分。

三、教学目标

1、知识目标: 要求学生掌握完全平方公式,并能熟练运用完全平方公式分解因式,并能区分完全平方公式以及平方差公式。

2、能力目标:要求学生通过综合运用提公因式法、完全平方公式分解因式,进一步培养学生的观察和联想能力。通过对完全平方公式的逆向变形及将一个整式看做“元”进行分解,发展学生的观察、类比、归纳、预见等能力,进一步体会换元思想,提高处理数学问题的技能。

3、情感目标:让学生品尝成功的喜悦,从而激发其求知的热情。

四、教学重难点

1、重点:用完全平方公式因式分解。

2、难点:例4的分解和化简过程较为复杂,要求用换元的思想;能否很好区分平方差公式和完全平方公式。

五、教学方法 教法:讲授法

学法:探究学习法

六、教学过程

(1)复习

提问:我们已经学了哪些因式分解的方法? 练一练:因式分解 1.a3b-ab3

2.m2(16x-y)+n2(y-16x)

3.x4-y4

4.(x+2y)2-(x-3y)2 提问:除了平方差公式,还学过哪些乘法公式?

(2)新课

观察下列式子、它们具有什么特点?

(1)x2+12x+36;

(2)-2xy-x2-y2;(3)a2+2a+1;

(4)4x2-4x+1;我们已经学了完全平方公式:

把完全平方公式反过来:

即两数的平方和,加上(或者减去)这两数的积的2倍,等于这两数和(或者差)的平方。我们把多项式

叫做完全平方式。

练一练:下列哪些式子是完全平方式,哪些不是?请说明理由。(口答)

(1)x2+12x+36;

(2)-2xy-x2-y2;

(3)a2+2a+1;

(4)4x2-4x+1;

(5)ax2+2a2x+a3;

(6)-3x2+6xy-3y2(7)

(8)

思考:完全平方公式有什么特征?

1、有三项

2、有两项可以写成某数的平方,第三项是平方项底数积的两倍。

3、平方项只能为正,第三项可正可负。

巩固:书P119做一做(请学生起来回答)例3:把下列各式分解因式(1)(3)

(2)

(教师板书一步一步写出解题过程,并指引学生)指出解题步骤:

(1)先写成公式特色,再判断能否用公式。(2)平方项若是负数,要提取符号加括号。(3)有公因式的先提取公因式,再用完全平方公式分解。

练一练:书P118 分解因式1.16x2+24x+9 2.-x2+2xy-y2 思考:什么时候用完全平方公式,什么时候用平方差公式?

1、完全平方公式是三项,有三项就考虑完全平方;若是两项,且为差的形式,则考虑平方差。

2、若是看不出来就先考虑提取公因式再考虑公式法。

例4:分解因式:(1)3ax2+6axy+3ay2(2)(a+b)2-12(a+b)+36

练一练:

1、计算:

2、将

再加上一项,使它成为的形式,你有几种方法?

(先让学生自己思考一下,然后请同学起来回答,在请其他人补充)拓展:

1、当m+n=3时,式子

2、当a+b=8,ab=10时,式子(请学生上台书写)

(3)小结

1、如何用符号表示完全平方公式?

2、完全平方公式的结构特点是什么?

3、我们学了哪些因式分解的方法?

七、作业布置

1、作业本、课时14.3.2P119页

2、绩优学案

八、板书设计

1、小结的内容平方差公式

2、因式分解 完全平方公式:

=____________.=_____________.3、因式分解的步骤:一提(提取公因式),二使用公式法,三查(分解彻底,化简)

九、反思

1、先复习一下前一节课所学的知识,然后回顾以前的知识:整式的乘法,然后引出完全平方公式。

2、讲解完知识点先做一个练习,从练习中归纳出完全平方公式的特点,以便更好理解。

3、从练习中总结解题方法,可以让学生了解自己哪里错了,印象更加深刻,这样下次就不容易错。

4、不是一味的讲课,多提提问题让学生思考,可以让他们融入课堂,学得更加深刻。

5、多让学生做练习,而不是听老师讲解,可以从练习中熟悉完全平方公式,也更好应用。

9.14完全平方公式 篇10

王晓宏

尊敬的各位领导、老师:

大家好!非常感谢为我提供这样一个难得的交流和学习的机会,希望各位老师多多指教。我今天的说课课题是:完全平方公式。

以下我就四个方面来介绍这堂课的说课内容:第一方面教材分析,第二方面教学方法与学法指导,第三方面教学设计,第四方面说课小结。

一、教材内容的分析

(一)教材的地位和作用

完全平方公式是初中代数的一个重要组成部分,是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,而且公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过对公式的学习来简化某些整式的运算,且在以后学习因式分解、解一元二次方程、配方法、勾股定理及图形面积计算都有举足轻重的作用。本节内容共安排两个课时,这次说课是其中第一个课时。

(二)教学目标

1、知识与技能:

理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。

2、过程与方法:

通过让学生经历完全平方公式的探求过程,使学生体会数、形结合的优势,熟悉完全平方公式的特征,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。

3、情感价值观目标:

体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心。

(三)教学重难点

重点:体会完全平方公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

难点:判别要计算的代数式是哪两个数的和(或差)的平方。

(四)教(学)具准备:多媒体课件。

二、教学方法与学法指导

(一)学生学情的分析

初一学生的抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。所以教学中应尽可能多地让学生动手操作,突出完全平方公式的探索过程,自主探索出完全平方公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力、合作交流能力和数学化能力。

(二)、教法学法的选择

1、说教法:由本节课实际,我采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。边启发,边探索,边归纳,突出以学生为主体的探索性学习活动,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。并采用小组讨论,大组竞赛等多种形式激发学习兴趣。

2、说学法:引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。

(三)、教材处理

根据本节内容特点,本着循序渐进的原则,我将以“扩建后的正方形广场面积是多少?”这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的平方公式,将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳方法,再通过分层次练习,加以巩固。

三、教学设计

1、创设情景,导入新知

在复习整式乘法的基础上,创设情境:一块边长为a米的正方形实验田,因需要将其边长增加 b 米。形成四块 实验田,以种植不同的新品种,用不同的形式表示广场的总面积,并进行比较。

设计意图:从现实生活中的数学情景出发,培养学生对数学的热爱和运用数学的能力。我选择用填空形式引导:

⑴ 四块面积分别为:、、、;

⑵ 两种形式表示广场的总面积:

① 整体看:边长为 的大正方形,S= ;

②部分看:四块面积的和,S=。

在学生探究出(ab)2a22abb2的基础上,提问:你能用多项式乘法法则说明理由吗?

222(ab)a2abb设计意图:学生运用多项式乘法法则推导出并说出每一步运算的道理。让学生在直观认识的基础上,在从代数角度推导公式,可以培养学生的逻辑推理能力。

2、合作交流,探究新知 提问:如果将该正方形田地的边长缩减b米,则其边长又为多少?面积呢?

要求:让学生分组动手拼图:用手头的彩色纸,在原有的正方形广场上,拼出现在的广场,探究其面积的不同表示方法及其内在联系,体会完全平方公式的几何背景。(小组成员之间要相互合作、相互交流)

222在学生探究出(ab)a2abb的基础上,提问:你能用多项式乘法法则说明理由吗?

设计意图:通过实际操作,鼓励学生经历观察、操作、交流等过程,培养学生的自主探究的学习习惯。鼓励学生自己探索,鼓励算法

22多样化,尤其是对(ab)[a(b)]这种用已获得的知识来解决问题的方法,渗透了转化的数学思想,应给予肯定。

3、观察特征、深入探究

222222(ab)a2abb(ab)a2abb在学生自主探究出和这两个公式,并明白其几何解释后,鼓励学生自主探究这两个公式的结构特征。

问题:① 这两个公式有何相同点与不同点? ② 你能用自己的语言叙述这两个公式吗?

顺口溜强化记忆:首平方,尾平方,首尾两倍中间放,合是加差是减。

设计意图: 教材对这两个公式的语言叙述比较抽象,理解有一定难度,为此结合两个公式的特征,可用顺口溜强化记忆。

4、范例解析,深化新知(1)、探求规律,注重双基

例1:给出一组简单的习题,对照公式,模仿练习。(口答)(1)(a5)2(2)(y7)2(3)(3x)2(4)(2y)2(5)(x2y)2(6)(10ab)2

x(7)(3y)2(8)(2x3y)2

2让学生通过口答明确运用完全平方公式计算的一般步骤:(1)确定首尾,分别平方;

(2)确定中间系数与符号,得到结论。

练习1:进一步强化学生对法则的理解,遵循由浅入深,循序渐进的原则,设计以下练习:

①(2x3y)2 ②(2x3y)2 ④(3)2 ⑥(13x)(3x1)

t3六个小组选代表回答问题。

考虑到运用法则,解决问题

练习2:下列计算是否正确?如何改正?

①(ab)2a2b2 ②(ab)2a2b2(a2b)2a22ab2b2 设计意图:对学生可能会出现的错误作及时的预防。(3)、发散练习,勇于创新 用完全平方公式计算:

1(1)992(2)100.12(3)10

22学生掌握了这种方法后,可让同桌相互出题,比一比,再次体会公式的妙用,实现了对完全平方公式的理性认识。

设计意图:基本的数学运算是数学知识最直接的应用,也是学生体会公式“优势”的最佳实例。上题能开阔学生的思维,学生对公式的理解也获得了升华。

4、畅谈收获,归纳总结

本节课我们又学习了乘法的两个公式: 我们在运用公式时,要注意以下几点:

公式中的字母a、b可以是任意代数式;公式的结果有三项,不要漏项和写错符号

5、作业布置延伸新知

采用必做题和选做题,分层要求。必做题是基础训练题,全体同学必须完成;选做题是提高训练题,可根据自己的能力,选择完成。

设计意图:作业布置做到既面向全体学生,又给基础较好的学生充分的发展空间,满足不同学生的不同需求。

四、说课小结

我将本节课定位为探究式教学活动,通过对教材进行适当的整合。让学生带着原有的知识背景、生活体验和理解走进学习活动,并通过自己的主动探索,与同学合作交流、反思等,构建对知识的形成和运用。

平方差公式 篇11

(3)(a+3b)(a-3b); (4)(1-5y)(l+5y).

例3  计算(-4a-1)(-4a+1).

让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.

解法1:(-4a-1)(-4a+1)

=[-(4a+l)][-(4a-l)]

=(4a+1)(4a-l)

=(4a)2-l2

=16a2-1.

解法2:(-4a-l)(-4a+l)

=(-4a)2-l

=16a2-1.

根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.

课堂练习

1.口答下列各题:

(l)(-a+b)(a+b); (2)(a-b)(b+a);

(3)(-a-b)(-a+b); (4)(a-b)(-a-b).

2.计算下列各题:

(1)(4x-5y)(4x+5y); (2)(-2x2+5)(-2x2-5);

教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.

《平方差公式》教案 篇12

三、合作交流

如图,边长为a的大正方形中有一个边长为b的小正方形.

(1)请表示图中阴影部分的面积.

(2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? a a b

(3)比较(1)(2)的结果,你能验证平方差公式吗?

四、巩固练习

1、利用平方差公式计算

(1)(a+2)(a-2) (2)(3a+2b)(3a-2b)

(3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

2、利用平方差公式计算

(1)803797 (2)398402

3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )

A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以

4.下列多项式的乘法中,可以用平方差公式计算的是( )

A.(a+b)(b+a) B.(-a+b)(a-b)

C.( a+b)(b- a) D.(a2-b)(b2+a)

5.下列计算中,错误的有( )

①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

A.1个 B.2个 C.3个 D.4个[来源:中.考.资.源.网WWW.ZK5U.COM]

6.若x2-y2=30,且x-y=-5,则x+y的值是( )

A.5 B.6 C.-6 D.-5

7.(-2x+y)(-2x-y)=______.

8.(-3x2+2y2)(______)=9x4-4y4.

9.(a+b-1)(a-b+1)=(_____)2-(_____)2.

10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.

11.利用平方差公式计算:20 19 .

12.计算:(a+2)(a2+4)(a4+16)(a-2).

五、学习反思

我的收获:

我的疑惑:

六、当堂测试

1、下列多项式乘法中能用平方差公式计算的是( ).

(A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[

2、填空:(1)(x2-2)(x2+2)=

(2)(5x-3y)( )=25x2-9y2

3、计算:

(1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)

4.利用平方差公式计算

①1003997 ②14 15

七、课外拓展

下列各式哪些能用平方差公式计算?怎样用?

1) (a-b+c)(a-b-c)

2) (a+2b-3)(a-2b+3)

3) (2x+y-z+5)(2x-y+z+5)

4) (a-b+c-d)(-a-b-c-d)

上一篇:今日说法 观后感下一篇:我很幸福,因为有你作文

热门文章
    相关推荐