因数和倍数教学案例(精选9篇)
杨岔小学 马占兵
一、认识倍数和因数
师:一起看大屏幕,数一数,几个正方形?(12)
第一个问题是如果老师请你把12个正方形摆成一个长方形,会摆吗?行不行?能不能就用一道非常简单的乘法算式表达出来? 生:1×12 师:猜猜看,他每排摆了几个,摆了几排? 生:12个,摆了一排。
师:(屏幕显示摆法)是这样吗?第二种摆法我们只要把他旋转一下就跟第一种怎么样?(一样)。我们可以把他忽略不计。还可以怎么摆?同样用一道乘法算式表达出来?
生:三四十二 师:这一次每排摆了几个,摆了几排?(屏幕显示摆法)同样第二种摆法也可以省。还有吗? 生齐:2×6 师:张老师来猜测一下同学们脑子里怎么想的,有同学可能想每排摆6个,摆2排。也有同学可能想每排摆2个,摆6排。(屏幕显示摆法)同样第二种摆法也可以省。
师:还有不同的想法吗?每排能摆5个吗?12个同样大小的正方形能摆3种不同的乘法算式,千万别小看这些乘法算式,今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上把3是12的因数,以往我们把他叫约数,现在叫因数,3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。师板书:因数和倍数 师:这儿还有两道乘法算式,先自己说一说谁是谁的因数?谁是谁的倍数?行不行? 师:谁先来? 生说略 师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊?
生:12是12的因数,12是12的倍数。师:虽然是拗口了点,不过数学上还真是这么回事,12的确是12的因数,12也是12的倍数。为了研究方便,以后来探讨因数和倍数的时候所说的数都是什么数啊? 生:自然数 师:而且谁得除外。生:0 师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。3、5、18、20、36 生说略。
二、探索找因数倍数的方法
师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才张老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完? 生1:
3、18 师:还有谁? 生2:36 师:3、18、36都是36的因数,只有这3个吗?
生1:1 生2:4 生3:6 师:其实要找出36的一个因数并不难,难就难在你有没有能力把36的
所有因数全部找出来?能不能?张老师作一下详细说明,因为这个问题有点难度,你可以独立完成也可以同桌完成,下面你选择你喜欢的方式,可以合作,也可以单干,想一想怎么不遗漏,注意了,当你找出了36的所有因数,别忘了填在作业纸上,如果能把怎么找到的方法写在下面更好。学生填写时师巡视搜集作业。
师:张老师找到了3份不同的作业,大家仔细观察这三份作业,可有意思了。我把他命名为A、B、C师板书。A:2、4、13、12、18、36 B:1、2、4、3、6、9、12、18、36 C:1、36、2、18、3、12、4、9、6 师:关于A这种方法你有什么话要说?(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?(学生沉默)一点都没有我们值得肯定的地方吗?你先来。
生1:都对的 师:有没有道理?看来要找一个人的优点挺困难的。生2:写全了 生大声说:没有!
师:正好触及了大家的公愤,看来要找一个人的优点不太好找了,是吧?其实这个同学挺不容易的,他已经找出不少了,对不对?说说有什么问题?
生:没有写全,少了3、6、9。师:大伙来思考一下,6、9这两个因数是36的因数吗?看来这个同学是没有找全,没有找全仅仅是因为粗心吗?是因为什么?
生:36÷4,只写了4,没写9 师:他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找? 生齐:两个两个找。
生2:先把1写在头,36写在尾,然后再把2写中间,这样依次写下去,这样比较美观。师:张老师提炼出两个字:“顺序”,好象还不仅仅是因为粗心的问题,没有按照一定的顺序。师:第二个同学有没有找全,有没有更好的建议送给他。
生:他应该把4、3调换一下。
师:做了一个微调就不仅仅是美观的问题,更带给我们一种寻找的有序。第三个同学是最没有顺序的,什么1、36,2、18了,你们觉得有道理吗?
师:你想提出抗议吗?你们觉得有顺序吗?(有)你自己来说?
生:他们那样还要头对尾头对尾的,像这样直接就可以写了。
师:有没有听明白,也是同样一对一对出现的。生:大小没有排,B大小排完后从小到大很舒服。
师:你看你那个舒服吗?
生:舒服 师:正是因为你的质疑,他把方法说了出来。他用了什么?
生:乘法口诀 师:非常感谢同学们给出的发言,正是你们的发言让我们感受到了如何寻找一个数的因数,有没有问题。
师:虽然这个同学找到了尝试完了1,找到
36、尝试完了2,找到18、3、12、4、9、6,自然数有很多,那你的7、8没有试,你怎么知道找全了呢? 生1:找到开始重复就不找了
生2:我认为应该找到比较接近如5、6,7、8找到比较接近就可以了。
师:体会体会
1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。
生:直接找更大数的所有的因数,这个同学很厉害,已经在用分解质因数的方法在找一个因数的个数了。
师:通过刚才的交流,有办法了吗?有没有方法不遗漏。试一个。20 生齐:1、2、4、5、10、20 再试一个:15,写在练习纸上。学生汇报
师:寻找一个数掌握的不错,这节课还要研究倍数呢。会找一书的倍数吗?找一个小一点的,3的倍数,谁来找一个。
生:
21、300 师:你能把3的倍数全部写下来吗? 生:不能。太多太多了。
师:那怎么办?写不完可以用省略号表示。试试看。学生练习纸上完成,汇报。师:同学们虽然找的答案差不多,但脑子里的方法各不相同。我想听听你是怎样找的? 生1:3×1、3×2 师:能理解吗?
生1:3+3=6、6+3=9 师:有理吗?不要小看加3了,当到数大的时候也比较方便。
生:略 师:寻找一个数的倍数的方法掌握了吗?试一试。7的倍数 学生练习纸上完成:50以内7的倍数。
师:谁来说说这一次你找了哪几个? 生:7、14、21、28 师:为什么不加省略号? 生:因为给了一个限制。
师:任何自然数的倍数是无限的。会寻找一个数的因数吗? 生:略
三、感受倍数和因数的神奇奥秘
师:透出一个信息,关于因数和倍数是不是蕴藏了很有意思的规律,下面这题就隐藏了一条规律。屏幕显示:老师这有9颗珠子全部放到十位和个位,1颗放十位,另外8颗放个位。这样就得到几?(18)要是不这样放,你还能得到其他的两位数吗? 生1:27 生2:36 师:把你知道的两位数跟同桌说一说。学生同桌说,师:如果把你们说的两位数按一定顺序排出来,就得到了这样的一排数,是这样吗?屏幕展示: 18、27、36、45、54、63、72、81 仔细观察9颗珠子拨的两位数,你发现了什么? 生:都是9的倍数
师:9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数都是(8的倍数)师:发现了什么?9颗珠子拨的两位数都是9的倍数,8颗珠子拨的两位数(不一定都是8的倍数),7颗珠子、6颗珠子呢?其实这里的学问没有同学想的那么简单,张老师给大家布置一个小任务,自己在草稿本上画一画珠子,看看6颗5颗4颗拨出的两位数到底和珠子的个数有什么关系?这里蕴藏着非常丰富的规律,等待着同学们去发现。其实不仅在计数器上找到一些有趣的规律。
师:张老师问一个问题,好不好?1—100这100个数,思考一下,哪个数的因数最多?
生1:1 生2:99 师:还有谁要发表的?
生3:9 师问生2:为什么认为99的因数最多?
生:9是最大的。师:张老师公布一下答案: 60 师:可以一起找一找。可以负责任的告诉你,比99多多了。是不是数越大,因数就越多。你们知道一小时有多少分?(60分),一分=60秒,这里的60和刚才的60有关系吗?这里的60就和100以内的因数有关系,你们相信吗?特意给大家带来一本书。书的名字叫《数字王国》,学生读有关资料。
师:相信了吧,其实张老师一开始也是特别不相信,咱们历法上面的 1小时=60分,一分=60秒的进率竟然和100以内的数的因数有着这么大的关系,这本书详细记载着为什么一年有12个月,一天有24小时,同学们知道为什么用12、24作为进率,道理是一样的。数学中发现的规律 师:更有意思的在后面,张老师给大家介绍一个数,数学家把6称为“完美数”。想知道为什么吗?用最快的速度说一说6的因数?
生:1、2、3、6 师:把6划去,1+2+3=6,又回到了6本身,正是因为这样的数非常特别,所以数学家把这样特点的数称为是完美数。数学家找到了第一个完美数,就会去找第一个完美数,猜猜看,找到了没有?今天张老师不把答案直接告诉你们,我透露一下资料好不好?第二个完美数比20大,比30小,而且还是一个双数,好猜了吧。数学上的规律不是一下子直觉说出来的,那么这样先来说一说双数:22、24、26、28,猜猜看,可能是谁? 学生试这四个数。
师:写出所有的因数,然后把自己给去掉。
师:正确答案应该是22,我们一起来找一找,人们开始找第三个完美数,想知道第5个吗?师板书。为什么这么惊讶?同学们惊讶的背后张老师体会的过老,刚才找一个也花了一分多钟,要从几十亿数中找出这6个完美数,数学家们要付出多大的心血。你觉得什么力量使数学家们去不断努力?
生:好奇心 师:数学家们能透过枯燥的数学本身看到里面的东西,就像我们今天这堂课一样,透过数字蕴藏着大量丰富的规律。高斯曾经说过的把数学比作科学的皇后,数论是数学皇后头顶上的皇冠,我们研究的只是数论中的最最基本的一些小常识,换句话说这堂课我们没有摘取数学皇后头顶上的皇冠,我们摘取的只是皇冠上一小粒一小粒的珠子。
倍数和因数教学反思:
这是因数与倍数的案例,充满人性化的评价语,丰富多彩的文化信息,善于引导,让学生学会思考,让我颇受启发。我也尝试着按照这样的思路开始了我的课堂教学。基于时间的限制,我把“感受倍数和因数的神奇奥秘”这一块极富文化气息的内容放在了我的阅读课的教学中,很好地激发了学生的学习兴趣,让学生感受到了数学的奥秘。
老师的“能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?”还有,尽管学生是找错了,他这样说:“其实这个同学挺不容易的,他已经找出不少了,对不对?”……学生在潜移默化中感受到的是成功,是对数学学习的无限乐趣。相比之下,我的课堂上习惯性地少了些对学生学习的肯定,学生收获的成功不多,积极性不够。
老师敢于放手让学生自己找出36的因数和3的倍数,真正做到了“教育的引导者,引导学生去发现、思考。而我的课堂总是害怕学生这个不行,那个不行,所以不敢放手,学生也常在我设计的框框里思考,自然同样的教案我也没有上出这份精彩。
关键词:因数,倍数,小学
导入新课
1.回忆学过哪些数? (自然数, 分数, 小数……)
2.哪种类型的数学起来最容易? (大部分学生肯定会说自然数学起来最容易)
其实, 在数学中, 真正有分量的题目, 难倒一代又一代数学家的题目都在自然数领域, 以至于有位数学家发出这样的感慨:“自然数, 可真不自然呀!”今天, 我们将重新感受自然数, 看看里面蕴藏着哪些奇妙的内容, 我们又将会有哪些有趣的发现。
反思:苏格拉底的“产婆术”教育法就是通过巧妙设问在谈话中让对方彻悟的。学生根据以往的学习经验自然而然会认为自然数学起来最容易, 这是一种比较普遍的观点。而这时教师话锋陡转, 适时抛出一个与之相反的观点, 并有相应的论据作为支撑, 这足以搅动学生的思维, 激发探究的欲望。更重要的是, 教师对自然数的阐述把学生带入了数学史。让学生产生一种历史的纵深感, 与此同时, 又不露痕迹地将本课的知识点“因数和倍数”归置到了自然数这个知识体系当中。如果把自然数比作大海的话, 因数和倍数就是海面上众多的帆船之一, 它只有置身于大海的怀抱才能扬帆远航。
探索找一个非零自然数的所有因数的方法
找30的因数
反思:找一个数的因数是本节课的难点, 考虑到学生在认知背景、思维品质及思维方式上的差异, 学生中势必会出现不一样的思考过程和结果:或者全面、或者片面;或者有序、或者无序;或者肤浅、或者深刻。此时, 教师应该引导学生将自己的数学思考展示出来, 在师生之间、生生之间多维的对话、思辨、质疑、争论的过程中, 彼此取长补短, 相互吸纳, 使得片面的思维趋于全面, 无序的思维走向有序, 肤浅的认识归于深刻。思维品质在沟通中获得提升, 思维方式在比照中得以修正, 思维能力在对话中得到发展。而“怎么找到5就不找了呢?”这个问题又一次引发学生的思维风暴, 诱发学生的深层思考, 这就是一种本质的数学文化, 也是数学的魅力所在。
拓展延伸
1.在50、60、70、80、100中谁的因数个数最多?
当学生发现60的因数个数最多后, 教师揭示60进制中的奥秘:原来天文学规定, 1小时=60分, 1分=60秒, 与60的因数的个数有关。与24差不多大的数中, 24的因数最多, 1天=24小时;与12差不多大的数中, 12的因数最多, 1年=12个月。
反思:引领学生揭开1小时=60分、1分=60秒、1天=24时、1年=12个月等约定俗成的规则中所蕴含的奥秘, 使学生领略到数学与天文学的完美结合给我们的社会生活带来的便捷。也许此时, 科学的种子已悄悄地在某些学生的心田里生根, 假以时日, 这粒种子定会破土而出, 在阳光雨露的滋养下, 发芽, 开花, 最终结出累累硕果。
2.一个更有趣的规律———完美数。
(1) 拿出2号作业纸, 找出6的所有因数, 把其中最大的因数划掉, 再把剩下的因数加起来, 发现这些因数的和恰好也是6。
小结:这种现象很罕见。数学家把像6这样的, 去掉它的最大因数后, 剩下的因数相加的和是它本身的数叫“全数”, 也叫“完美数”。
(2) 这样的数会有第2个吗?寻找第2个完美数。
学生独立完成 (师提示:比20大, 比30小的偶数)
板书:28:1、2、14、4、7
师:找到了第1、2个完美数, 数学家会停止寻找的脚步吗?第3、4、5个完美数会是多少呢?一定超出你们的想象。屏幕显示:6、28、498、8128、33550336、858986059……)
想想看, 你们刚才找28都花了将近2分钟, 那数学家要从浩如烟海的自然数中找出这些完美数, 该付出怎样的艰辛呀!几年, 几十年, 甚至一辈子。完美数对生产生活并没有什么直接的用处, 是什么力量吸引数学家付了毕生的心血去寻找呢?
小结:伟大的数学家高斯说过:“人们通常把数学誉为科学的皇后, 而专门研究自然数性质的数学分支———‘数论’, 则是数学皇后头顶上的皇冠。”今天, 时间有限, 我们只是看到了皇冠上一粒小小的珠子, 但只要你沿着这条路走下去, 在数学看似抽象的百花园里, 你一定会收获很多东西。
反思:引着学生走进和因数有着密切关系的特殊的数学现象“完美数”, 感受完美数的美妙结构, 领略了凝聚在数学之中的美妙绝伦的思维方法、探索不止的数学精神、臻善达美的数学品格。最后从“数论”的角度重新考察“因数和倍数”, 使新的知识在深度和高度上获得提升。这对于一个人全面和谐的发展, 具有重要意义和积极影响。
关键词:因数;倍数;小学
导入新课
1.回忆学过哪些数?(自然数,分数,小数……)
2.哪种类型的数学起来最容易?(大部分学生肯定会说自然数学起来最容易)
其实,在数学中,真正有分量的题目,难倒一代又一代数学家的题目都在自然数领域,以至于有位數学家发出这样的感慨:“自然数,可真不自然呀!”今天,我们将重新感受自然数,看看里面蕴藏着哪些奇妙的内容,我们又将会有哪些有趣的发现。
反思:苏格拉底的“产婆术”教育法就是通过巧妙设问在谈话中让对方彻悟的。学生根据以往的学习经验自然而然会认为自然数学起来最容易,这是一种比较普遍的观点。而这时教师话锋陡转,适时抛出一个与之相反的观点,并有相应的论据作为支撑,这足以搅动学生的思维,激发探究的欲望。更重要的是,教师对自然数的阐述把学生带入了数学史。让学生产生一种历史的纵深感,与此同时,又不露痕迹地将本课的知识点“因数和倍数”归置到了自然数这个知识体系当中。如果把自然数比作大海的话,因数和倍数就是海面上众多的帆船之一,它只有置身于大海的怀抱才能扬帆远航。
探索找一个非零自然数的所有因数的方法
找30的因数
反思:找一个数的因数是本节课的难点,考虑到学生在认知背景、思维品质及思维方式上的差异,学生中势必会出现不一样的思考过程和结果:或者全面、或者片面;或者有序、或者无序;或者肤浅、或者深刻。此时,教师应该引导学生将自己的数学思考展示出来,在师生之间、生生之间多维的对话、思辨、质疑、争论的过程中,彼此取长补短,相互吸纳,使得片面的思维趋于全面,无序的思维走向有序,肤浅的认识归于深刻。思维品质在沟通中获得提升,思维方式在比照中得以修正,思维能力在对话中得到发展。而“怎么找到5就不找了呢?”这个问题又一次引发学生的思维风暴,诱发学生的深层思考,这就是一种本质的数学文化,也是数学的魅力所在。
拓展延伸
1.在50、60、70、80、100中谁的因数个数最多?
当学生发现60的因数个数最多后,教师揭示60进制中的奥秘:原来天文学规定,1小时=60分,1分=60秒,与60的因数的个数有关。与24差不多大的数中,24的因数最多,1天=24小时;与12差不多大的数中,12的因数最多,1年=12个月。
反思:引领学生揭开1小时=60分、1分=60秒、1天=24时、1年=12个月等约定俗成的规则中所蕴含的奥秘,使学生领略到数学与天文学的完美结合给我们的社会生活带来的便捷。也许此时,科学的种子已悄悄地在某些学生的心田里生根,假以时日,这粒种子定会破土而出,在阳光雨露的滋养下,发芽,开花,最终结出累累硕果。
2.一个更有趣的规律——完美数。
(1)拿出2号作业纸,找出6的所有因数,把其中最大的因数划掉,再把剩下的因数加起来,发现这些因数的和恰好也是6。
小结:这种现象很罕见。数学家把像6这样的,去掉它的最大因数后,剩下的因数相加的和是它本身的数叫“全数”,也叫“完美数”。
(2)这样的数会有第2个吗?寻找第2个完美数。
学生独立完成(师提示:比20大,比30小的偶数)
板书:28:1、2、14、4、7
师:找到了第1、2个完美数,数学家会停止寻找的脚步吗?第3、4、5个完美数会是多少呢?一定超出你们的想象。屏幕显示:6、28、498、8128、33550336、858986059……)
想想看,你们刚才找28都花了将近2分钟,那数学家要从浩如烟海的自然数中找出这些完美数,该付出怎样的艰辛呀!几年,几十年,甚至一辈子。完美数对生产生活并没有什么直接的用处,是什么力量吸引数学家付了毕生的心血去寻找呢?
小结:伟大的数学家高斯说过:“人们通常把数学誉为科学的皇后,而专门研究自然数性质的数学分支——‘数论’,则是数学皇后头顶上的皇冠。”今天,时间有限,我们只是看到了皇冠上一粒小小的珠子,但只要你沿着这条路走下去,在数学看似抽象的百花园里,你一定会收获很多东西。
反思:引着学生走进和因数有着密切关系的特殊的数学现象“完美数”,感受完美数的美妙结构,领略了凝聚在数学之中的美妙绝伦的思维方法、探索不止的数学精神、臻善达美的数学品格。最后从“数论”的角度重新考察“因数和倍数”,使新的知识在深度和高度上获得提升。这对于一个人全面和谐的发展,具有重要意义和积极影响。
大桥中心小学 陈明霞
教学目标
1、通过动手操作建立乘法与倍数、因数的内在联系,深刻理解倍数和因数的本质内涵,能举例说明倍数和因数
2、依据倍数和因数的含义,联系已有的知识、经验和方法,自主探索并总结找一个数的因数和倍数的方法,感受数学思考的魅力和智慧学习的理性价值。
3、使学生通过同桌合作、交流、尝试解决问题,培养学生交流能力和合作能力。
4、体会数学内容的奇妙、有趣,产生对数学的好奇心。教学重、难点
重点是认识因数和倍数。点是有序的、不遗漏的找一个数的因数和倍数
一、教学倍数和因数的概念
1、师:同学们喜欢拼图吗?(喜欢啊)那我们一起来玩个拼图游戏吧!请看大屏幕,这里有12个大小相同的小正方形,你能用这12个小正方形拼成一个大长方形吗?请用乘法算式表示你的摆法。生:(好,你说),4×3=12。师:你是怎样摆的
生:每排摆3个,摆成4排也可以每排摆4个,摆成3排,(你还有不同的摆法,请你说)
生:2×6=12我是每排摆2个,摆成6排,或每排摆6个,摆成2排(好,你说)
生:1×12=12每排摆1个,摆成12排,或每排摆12个,摆成1排
2、理解倍数与因数
师:今天我们要学的知识就蕴含在这些乘法算式中,因为4×3=12,所以12是4的倍数,12也是3的倍数,4是12的因数,3也是12的因数。师:自己再读一读,想一想,谁是谁的因数,谁是谁的倍数。师:谁能说说6×2=12中谁是谁的倍数,谁是谁的因数吗?
师:好,你说,12是6 的倍数,12 也是2的倍数。6是12的因数,2也是12的因数。(说的不错,)
师:谁能说说1×12=12中谁是谁的倍数,谁是谁的因数吗?
师:好,你说,1是12的因数,12也是12的因数。12是1 和12的倍数。师:说的真好,这就是我们今天这节课我们要学习的知识——因数和倍数(板书课题:因数和倍数)
师:在说因数和倍数时,我们一定要说清谁是谁的因数(或倍数)不能单独说谁是因数(或倍数)师:接下来同桌之间相互出一道乘法算式,并说清谁是谁的倍数,谁是谁的因数。师:瞧,这一桌同学配合的多好呀,完成任务的同学请举手。同学们,为了方便,我们在研究因数和倍数时,所说的数一般指不是0的自然数。师:(出示15*3=5)根据这道除法算式你也能找到因数与倍数的关系吗? 生: 15*3=5可以转化成3×5=15,所以3是15的因数,5也是15的因数。15是3的倍数,15也是5的倍数。师:你真是一个善于思考的孩子
二、探索方法 发现特征
1、找一个数的因数。
师:如果我随便说一个数,你能找出他的因数吗?30的因数有那些 生:
1、30 生:3、10、2、15 生:
5、6 师:找一个数的因数其实不难,难就难在有序的、不遗漏(板书:有序的、不遗漏)的找出一个数的所有的因数,谁能有序的不遗漏的说出30的所有因数。师:这么多同学都会呀,那就请同学们完成在作业纸上 师:请一个同学说一说30的因数有那些
师:你说,30的因数有:1、30、5、6、3、10 师:你有补充是吗?你说:1、30、2、15、3、10、5、6 能说说你是怎么想的吗?哦!1×30=30你就想到了1和30……
你还有不同的答案,好你说,你是说,你的答案与他相同,但想法不同,好你说
30*1=30你就想到了1和30……
老师很欣赏你,你会从不同的角度去思考数学问题。师:请你们认真观察这两份作业,第一位同学与后两位同学在思考问题上最大的不同是什么?
好,你说,第一个同学是想到什么写什么,后两位同学是按一定的规律写,他们都是从一想起(板书:规律)
说的太好了,我们在写一个数的因数时,要按一定的规律写,也就是一定要从一想起,这样才能做到有序、不遗漏。
有人说学习数学的过程就是一个不断提问和思考的过程,学到这你们有什么疑问吗?
找到了因数5和6为什么不继续往下找了。这个问题很有价值,是呀,老师也纳闷找到5 和6 为什么不继续往下找了。你知道,那你说,因为找到了5 ×6=30,就找到了因数5和6再继续往下找是6×5=30,找到的因数还是5和6就重复了。
你听明白了吗,也就是说,找一个数的因数时要按一定的顺序找,找到数字重复了就不能在往下找了。
现在同学们会有序、不遗漏的找一个数的因数了吗?
师:请同学们继续完成作业纸上的作业写出6、11、36的所有因数 师:请一个同学说说6的因数有哪些? 生:1、6、2、3 师:11的因数有哪些? 1、11 36 的因数有那些? 1、36、2、18、3、12、4、9、6 师:36的因数与前面3个数的因数有什么不同吗? 生:有两个6.师:这种情况我们只写一个6就可以了。课件出示30、6、11、36的因数。
师:认真观察这4个数的因数,看看你们能发现什么。
师生共同小结:一个数因数的个数是有限的,最小的因数是1,最大的因数是它本身。
2、找一个数的倍数。
师:刚才我们学习了找一个数的因数的方法,你能找出一个数的倍数吗? 生:能!
师:试试看,找个小的。
师:找一下2的倍数。30秒时间,把答案写在练习纸上。生:2、4、6、8、10(课件出示)师:有什么问题吗? 生:还有很多写不完。
师:那怎么办,怎样才能全都表示出来呢? 生:哦!可以加省略号。
师:你太厉害了!你把语文上的知识都用上了,太真聪明了!(课件出示:……)师:谁能总结一下怎样找2的倍数?
生:把2依次乘自然数1、2、3、4……得到的数就是2 的倍数。师:你真会思考!
2、找5的倍数。
师:我们再来练习找一下3和5的倍数。
生:3的倍数有:3、6、9、12、15……(课件出示)生:5的倍数有:5、10、15、20……(课件出示)师:认真观察这3个数的倍数,看看你能发现什么?
生:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
三、巩固练习
师;刚才同学们认识了倍数和因数,并且探索了求一个数因数和倍数的方法,想不想检查一下自己掌握得如何?
1、判断:一个数越大他的因数越多.()为什么 2、7的倍数:
40以内6的倍数: 18的因数:
四、自我梳理 课堂总结:
师:一节课马上就要结束了,通过这节课的学习你有哪些收获? 生:我学会了怎样找一个数的因数和倍数。生:我学会了怎样有序思考。……
数学课程标准“以人为本”的理念决定着数学教学目标的指向:适应并促进学生的发展。根据本节课知识的特点和学生的认知规律,我采用了主角转换、数形结合、合作学习等发展性教学手段进行教学,在教学中我注重体现以学生为主体的新理念,努力为学生的探究发现带给足够的空间。在课堂中,我主要围绕以下几方面来进行教学:
(1)捕捉生活与数学之间的联系,帮忙学生理解因数倍数相互依存的关系。
因数和倍数是揭示两个整数之间的一种相互依存关系,在课前谈话中我利用一个脑筋急转弯,渗透相互依存的关系。透过生活中人与人之间的关系,迁移到数学中的数和数之间的关系,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发了对数学的兴趣,又潜移默化地帮忙学生理解了因数倍数之间的相互依存关系。在教学中,也到达了预期的效果,学生对因数和倍数相互依存的关系理解的比较深刻。
(2)主角转换,让学生亲身体验数和数之间的联系。
因数和倍数这节课研究的是数和数之间的关系,知识资料比较抽象。因而,我采用了“拟人化”的教学手段,每人一张数字卡片,学生和老师都变成了数学王国里的一名成员。当学生想回答问题时都会高高地举起自我的号码,整节课学生都沉浸在自我的主角体验中,学生都把自我当成了一个数。透过对自我一个数的认识,举一反三,从而理解了数与数之间的因数和倍数关系,既充分激发了学生的学习兴趣,又十分有效地突破了教学难点。
(3)数形结合,让学生带着已有知识走进数学课堂。
“数形结合”是一种重要的数学思想。对教师来说则是一种教学策略,是一种发展性课堂教学手段;对学生来说又是一种学习方法。如果长期渗透,运用恰当,则使学生构成良好的数学意识和思想,长期稳固地作用于学生的数学学习生涯中。开课教师引导学生进行空间想象。
(4)重组教材,根据学生的实际状况,多种形式探究找因数倍数的方法。
教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际状况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出15的因数,在此基础上再让学生探究18的因数。透过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照必须的顺序一对对的找因数,能既找全又不遗漏。进而又借助体态语言——打手势,让学生说出20和24的因数,到达了巩固练习的目的。这样设计由易到难,由浅入深,贴合了学生的认知规律。而在探究倍数时,我则大胆的放手,让学生自主探索找一个数倍数的方法,给学生带给了广阔的思维空间。这样透过多种形式的教学,既激发了学生的学习兴趣,又极大地提高了课堂教学的实效性。
(5)趣味活动,扩大学生思维的空间,培养学生发散思维的潜力。
本课资料是认识倍数与因数,以及找一个数的倍数的方法。“倍数与因数”是整数学习中的重要概念,也是分数学习中的重要基础。
在教学时,利用教材中的图片,让学生说一说从图中能够找到哪些数,在比较中认识自然数和整数,使对数的认识进一步系统化。之后,利用整数乘法认识倍数与和因数,在解决问题过程中,引导学生列出算式。4x9=36,以这个整数乘法算式为例说明倍数与因数的含义,最终,经过教学活动“找一找”、“分一分”,从而引出因数与倍数的关系,探索找一个数的倍数的方法。在教学中要向学生说明:在研究倍数与因数时,范围限制为非零的自然数。引导学生体会一般能够用乘法算式来找一个数的倍数,要注意引导学生有序思考,让学生领会倍数与因数是相互依存的关系,逐步让学生体会到一个数的倍数的个数是无限的。
苏教版国标本四年级 (下册) 第70~72页
教学目标:
1.让学生理解倍数和因数的意义, 掌握找一个数的倍数和因数的方法, 发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
2.让学生初步意识到可以从一个数的角度来研究非零自然数的特征及其相互关系, 培养学生的观察、分析和抽象概括的能力。
3.体会数学内容的奇妙、有趣, 产生对数学的好奇心。
教学重点和难点:
掌握找一个数的倍数和因数的方法, 发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
教学准备:
了解学生在班级的学号。
课前和学生谈话:某某同学, 你好, 请问你叫什么名字?班级里谁是你的好朋友, 他 (她) 叫什么名字?
教学过程:
一、谈话引入
师:刚才课间的时候, 我通过了解记住了四 (3) 班一些同学的名字, 你叫菖菖菖, 我还知道你和某某同学是好朋友, 对吧?我还知道你叫菖菖菖, 你是好朋友? (学生哄堂大笑) , 你们笑什么?哦, 对了, 我应该说你和谁是好朋友, 那就对了, 我们不能说一个人是好朋友。今天我们就来学习研究自然数之间的一些朋友关系。 (板书:自然数) 哪位同学告诉我, 你知道的自然数有哪些呢? (指名回答)
【设计意图:通过轻松、愉快的谈话引入, 说明“一个人是好朋友”这样的关系不能成立, 从而为说清楚“倍数”和“因数”这两个好朋友之间的关系打下基础, 而且明确交代了研究“倍数”和“因数”是在自然数的范围之内。】
二、教学“倍数”及探究找一个数的倍数的方法
1. 教学“倍数”
师:好, 下面我们先来看一组非常熟悉的画面。屏幕出示3朵红花, 6朵黄花。红花几朵?黄花呢?你能告诉大家黄花的朵数是红花的几倍吗? (2倍)
师:说得真好, 再看下一题:屏幕出示3朵红花, 12朵蓝花。红花几朵?蓝花呢?你知道蓝花的朵数是红花的几倍吗?知道的同学一起说。 (4倍)
师:通过刚才的两幅图我们知道了:6是3的 () 倍;12是3的 () 倍。
那我们先来看看第一句话“6是3的 () 倍”, 在这句话中, “6”“3”这两个数都是自然数, 那么6和3之间就有一种关系, 是什么关系呢?是“倍数”关系, (板书:倍数那谁是谁的倍数呢? (6是3的倍数)
师:说得真好。
师:再看下面“12是3的 () 倍”这句话, 12和3也是自然数, 那么12和3之间也有这种“倍数”关系了, 我们也可以说12是3的倍数。好的, 你还知道哪个数也是3的倍数?你说, 你说, 你接着说, 你再说! (让学生说清楚谁是3的倍数)
我能说30是倍数吗?不行, 这就像我刚才说菖菖菖一个人是朋友, 那就不对了, 一定要说清楚哪个数是哪个数的倍数!
【设计意图:为了联系学生的生活实际, 先让学生由熟悉的概念“倍”唤醒了对已有知识的记忆, 再通过引导让学生知道了“倍数”的概念, 而且着重训练了“哪个数是3的倍数”这样科学、完整的说法, 和前面“好朋友”的说法自然而然联系到了一起, 学生印象更加深刻。】
师:哦, 真的太多了, 那你能不能从小到大不重复、不遗漏地写出3的倍数呢?
生:能。
师:好, 那就开始写。
学生在练习纸上写。
师:停!我想如果我不说停的话, 大家就会这么一直写下去了, 我想找位同学说说, 你写的数有哪些?
生报出写的3的倍数 (多请几位学生说说) 能够在这儿讨论得出3也是3的倍数。
师:我想听听你是怎么找的。
(从3的1倍数开始找起3×1, 然后2倍就是3×2、3倍是3×3、4倍是3×4……)
师:这样可以按照从小到大的顺序而且不重复、不遗漏地找到了3的倍数了, 你会了吗?
师:我看同学们都信心十足, 那我们来试一试。
请你口答:2的倍数有
5的倍数有
师:同学们已经学会了找一个数的倍数了, 那么你看看屏幕, 师读出 (3的倍数、2的倍数和5的倍数) 观察一下, 你有什么发现?
比一比, 一个数最小的倍数, 你有什么发现?
找一找, 一个数最大的倍数, 你有什么发现?
数一数, 一个数倍数的个数, 你有什么发现?
同桌讨论讨论后, 得出结论:
板书:最小本身、最大没有, 个数无限个
三、认识倍数和因数之间的关系
1. 引出倍数和因数的概念
师:我们已经认识了自然数中两个数之间的一种关系———倍数关系, 还有和倍数紧密相连的知识。我们先来研究一道题:这里有12个完全一样的正方形。把它们拼成一个长方形, 想一想, 每排摆几个?可以摆几排?
师:如果请你用一道乘法算式, 来把你所要摆的长方形的形状表示出来, 行吗?
生回答出一个算式。
师:你是这样摆的吗? (课件出示图形)
师:还可以怎样摆?
师:还有吗?
师:用12个完全一样的小正方形摆成长方形, 可以有三种基本摆法, 由此得到三个不同的乘法算式。这三道乘法算式, 看起来是多么简单, 多么熟悉。我们就看这个算式, 3×4=12, 从3、4、12这三个数中, 你可以知道哪个数是哪个数的倍数吗?倍数关系有了, 那么12和4之间、12和3之间还有什么样的关系呢?请打开课本第70页, 自己阅读。学生阅读课本后, 问学生:你通过自学知道了哪些知识? (因数)
师:很好, 那什么是因数呢?你能结合这个算式说一说吗? (板书:因数) 学生说完后, 出示课本一段话:“4×3=12, 12是4的倍数, 12也是3的倍数, 4和3都是12的因数。
师:看来这位同学看书看得很认真。那么请你根据2×6=12也来说说, 谁是谁的倍数, 谁是谁的因数? (指名说)
那么1×12=12, 这个算式谁来说说。
师:说得真好, 我刚才听到这位同学在说的时候有两句特别有趣, 是哪两句啊? (12是12的因数, 12是12的倍数。)
师:在数学上还真是这么回事, 12的确是12的因数, 12也是12的倍数。
师:还有问题吗?你们有没有注意到书上有一行小字:“为了方便, 我们在研究倍数和因数时, 所说的数一般指不是0的自然数。”就是我们刚才所说的, 我们今天研究的好朋友是不包括0的自然数。
【设计意图:通过设疑, 存在着“倍数”关系的两个数之间还有另外一种怎样的关系呢?让学生带着疑问去自学课本, 了解“因数”的概念, 培养了学生的自学能力, 在师生的问答之间完成了学习任务。学生更加明确了“倍数”和“因数”两者之间的关系。】
2. 练习倍数和因数
师:下面有几道算式, 请同学们说说哪个数是哪个数的倍数, 哪个数是哪个数的因数, 可以吗?
屏幕出示:11×4=44 12×5=6024÷4=6
四、探究找因数的方法
师:我们已经会找一个数的倍数了, 现在来学学如何找一个数的因数。
屏幕出现请你说出12的所有因数。 (不重复、不遗漏) 同桌讨论后汇报结果。
师:你真棒, 你能说说是怎么找到的吗?
师总结:原来你是想 () × () =12, 那么这两个数就都是12的因数, 而且一下子就可以找到几个啊? (2个)
为了不重复、不遗漏, 我们可以从1开始想起, 有了1就有12;然后看看用2再试试有了2就有6, 然后用3试试, 有了3就有4。
师:那为什么不继续往下找呢?
【设计意图:以找“12的所有因数”为例题, 引导学生找一个数的所有因数。这样做, 一是结合学生在自学时的已有知识, 他们会很容易地找出12的所有因数;二是降低了课本上找“36的所有因数”的难度, 有助于学生提高学习的自信心。】
师:你会找一个数的所有因数了吗?还有没有问题?没有问题的话, 让我们试一试下面的题目, 屏幕出示:
请你找出16的因数有____36的因数有_____
(师:4为什么不是一对啊?)
生自己完成在作业纸上
师提问:我们也能像刚才一样, 从最小、最大和个数三个方面来看一个数的因数, 你有什么发现?教师板书出一个数的因数的特点:最小是谁啊? (1) , 最大的因数有吗? (是它本身) , 个数虽然不一样, 但是 (有限) 。
五、课题小结及巩固练习
师:我们今天这节课主要学习了倍数和因数, 还学会了如何找一个数的倍数和因数。下面我们一起来检验一下你今天学得怎么样, 好不好?
1. 小侦探, 巧填数字
(1) 7的因数有。
(2) 从小到大写出5个10的倍数。
(3) 5最小的倍数是, 9最大的因数是。
(4) 在6, 10, 14, 18这四个数中, 是的倍数, 是的因数。
2. 小法官, 明辨是非 (用手势表示)
(1) 因为2×3=6, 所以2是因数, 6是倍数。 ()
(2) 17的最小倍数是34。 ()
(3) 8是8的倍数, 8也是8的因数。 ()
(4) 因为18÷3=6, 所以18是6的倍数。 ()
(5) 所有不是0的自然数都是1的倍数。 ()
3. 师:同学们的表现都不错, 下面我们来做个简单的游戏, 好吗?大家请听好:
请学号是2的倍数的同学起立;请学号是40的因数的同学起立;请学号是1的倍数的同学起立。
4. 头脑风暴
8是 () 的倍数师: () 填的其实是8的因数
8是 () 的因数师: () 填的其实是8的倍数
8是 () 的因数, 也是 () 的倍数。师:你能填上同样的数吗?
25的因数的个数一定比15的多!是这样吗?
【关键词】因数 倍数 教学设计 评价
【中图分类号】G623.5 【文献标识码】A 【文章编号】2095-3089(2016)32-0145-02
引言
数学从古至今一直不断地延展,在人类历史发展和社会生活中发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具,而此文所讲的因数和倍数是数学基础中很小的一部分,但是只有将基础打好才能更进一步地学习其他数学知识。通过对因数和倍数的学习,掌握学习数学的正确、科学的方法,并培养对数学的乐趣,激发潜能,让学生多思考、多自主探索数学的奥秘,锻炼处理问题的能力,为生活增添乐趣。
1.课前思考
对概念的阐述以“活动构建”代替“概念讲解”。在传统数学教材中,知识点是按照数学知识的逻辑系统编排,如果按照传统施教,虽然科学但是枯燥无味,难免让学生对数学产生排斥心理,这就大大降低了学生学习数学的兴趣,对他们后面的学习极为不利。概念本就比较抽象,如果课堂上依旧直接进行理论讲解,学生听不懂还可以多加解释,但是其中花费的时间却比用“活动构建”方式教学所用时间多出一大截,对于理解能力稍差的同学来说,很有可能会越听越乱,使他们渐渐的不愿再听课。学生在学习中应当亲身感受学习过程,将抽象的概念形象化,根据学生的操作能力和丰富的想象力,让他们通过活动的方式来了解因数和倍数的实质以及它们的关系,并将冰冷的概念活化。通过活动构建的方式培养学生对数学的乐趣,激发他们的数学意识。
解决问题时以“互动互学”的方式,而不是“直接结果”。学习过程中,遇到问题是无法避免的。比如说求一个数的所有因数,对于初步接触因数的学生来说,找出几个因数还算易事,但难点就在于要找出所有因数,而且要做到不重复不遗漏。要想培养学生的探索能力和自我思考能力,将答案直接告诉他们的方法不值得采取,因为这就像“直接结果”,不让他们自行思索一番,又如何培养他们学习数学的乐趣呢?所以可以让学生采取互动互学的方式,比如进行生生交流、师生交流,还可以在班级内畅谈自己对因数倍数的看法或与同学分享自己求得答案的过程。这不仅锻炼了学生的表达能力,还能与同学们共进步。
教学目的不是纯粹的“教授知识”,还是“挖掘智慧”。知识是智慧的基础,但知识只有转换为智慧才能显示其真正的价值!将“将因数和倍数”的知识教给学生并不够,还应帮他们将其内涵深入挖掘,最后达到“挖掘智慧”的目的。一个人的潜能是无限的,而一个有知识又有智慧的人能够将自己的潜能挖掘出来,而这样的人方能成为生活的主宰者。这便是关于《因数和倍数》的教学思考。
2.教学内容
《义务教育课程标准实验教科书数学(五年级下册)》第5~6页
3.教学目标
(1)结合整数的乘、除运算法则让学生了解因数和倍数的含义,学习和掌握求一个数的因数和倍数的方法,以及因数倍数各自的特色。
(2)在学习因数和倍数的过程中,了解并掌握因数和倍数的关系与区别,并对以前所学知识进行巩固,提高解决数学问题的思维水平。
(3)增强学生对学习数学的乐趣,激发他们的潜在能力,挖掘智慧,深化思想,提高个人能力。
4.教学过程
4.1谈话导入
4.1.1我们之前已经对自然数有了一个大概的了解,自然数可用来表示物体的多少。但自然数的奥秘并不局限于此,这节课我们要探索的是它的另一个神奇之处:除0以外的自然数之间的联系,以及他们的特征。(显示“因数和倍数”)
4.1.2学习因数和倍数时应当达到以下目标。(显示教学目标,学生了解)
4.1.3接下来就是进入因数和倍数的学习,让我们目标明确地开始探索奥秘。[以学生熟知的自然数为开端,利用教学课件让学生明确本堂课所要学习的主要内容,显示教学目标是为了让学生了解学习本章节的原因并让他们知道在接下来的学习中可能遇到的问题,让他们能够有一个正确的学习目标,形成良好的学习习惯,这才有利于确定一个正确的数学知识点,培养积极向上的良好心态,除此之外,也是为了让学生了解老师采取的教学方法。]
4.2集体探究
4.2.1研究自然数中数与数之间的关系。请同学拿出准备好的材料:12个小正方形。
让学生用这12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。
学生操作完以后,让他们相互交流,然后在班级上分享各自所得,如:找到几种拼法?怎么拼?用的是乘法还是除法表示?
4.2.2将学生的结果板书在黑板上,等学生们发言结束后,打开教学课件显示所有摆法和算式(4×3=12,2×6=12,1×12=12),再让学生反思自己答案。
4.2.3根据学生的答案引入因数和倍数,让他们先看看教课书第12页在进行讲解。
4.2.4结合算式2×6=12进行举例说明。还可以在结合其他题让学生进一步了解因数和倍数。比如让学生写出20的乘法算式:1×20=20,2×10=20,4×5=20……因为4乘5等20,所有20的因数可以是4和5,同理,1,2,10,20都是20的因数。那么谁又是谁的倍数呢?因数和倍数到底又是怎样的关系呢?通过1×20=20这个等式可知,我们不能只说1是因数或者20是倍数。
4.2.5在同学掌握好因数和倍数之后,运用教学课件显示:倍数(或因数)的表达及其之间的关系,表达:谁是谁的倍数(或因数)。关系:倍数和因数不能单独存在,两者相互依存。
4.2.6给同学自己探索的时间,可以让他们进行一次小比赛,看谁能将一个数的因数和倍数完整准确的说出来,让老师或者同学作为评委。[注意:本节课中所说的数是指除0以外自然数。]
4.2.7让学生课后练习,巩固知识。
4.3小组合作
4.3.1分组讨论有关24的所有因数。要求:不重复,不遗漏。
4.3.2结果所要知道的内容:怎样找的?找到多少?还可以如何表示因数和倍数?
4.3.3小组之间相互交流,分享所得所想。
4.3.4总结
[在教学中应让学生先自主学习,让他们自己去求解所需的答案,当他们没有及时发现自己的问题时,应让他们自己去发现自己的问题,并独立寻找解决办法,在发现问题、解决问题的过程中能够培养他们积极主动、独立思考的能力,在必要的时候给予适当的帮助,不仅维持了他们的学习热情,还让他们的能力有所提升,也让他们对因数和倍数有了更好的掌握。]
4.4集体讨论
给定一个数字,让学生找它的因数或倍数,如找2的倍数。要让学生自主探索并寻找解决方法然后集体讨论交流。
5.整理与反思评价
回顾本节课学习的知识点,进行归纳总结,然后进行复习巩固。除此,学生要学会知识迁移,数学丰富多彩,它每一个知识点都相互关联。找一个数的因数的方法也可以“变形”用在寻找一个数的倍数上。
课堂是一个发展思维、拓展知识面、开发智力的平台。学生在学习因数和倍数的过程中不断积累知识与经验,他们需要更多的自主学习空间,并不断提升个人能力。
参考文献:
[1]DOI:10.16728/j.cnki.kxdz.2015.11.072
[2]张国东《因数和倍数的认识》教学设计,《科学大众(科学教育)》2015-11-20
教学内容:人教版小学数学第十册第12---16页内容。教学目标:
1、使学生结合具体情境初步理解因数和倍数的含义,初步理解因数和倍数的关系;
2、使学生依据因数和倍数的含义以及已有乘、除法知识,通过尝试、交流等活动,探索并掌握找一个数的因数和倍数的方法。
3、渗透事物之间相互联系、相互依存的辩证唯物主义的观点,培养学生抽象、概括的能力。教学重点:理解因数和倍数的含义。
教学难点:探索并掌握找一个数的因数和倍数的方法。教学准备:PPT课件。教学过程:
一、导入新课(3分)
师:同学们,你们知道吗?人类最早对数学的研究就是从自然数开始的。看似简单的自然数,里面蕴藏着无穷的知识和奥秘。这节课我们就来研究有关自然数的一些知识。(课件出示:12个小正方形)
师:请同学们看大屏幕,这里有12个完全一样的小正方形,大家可以把它们拼成一个长方形吗? 生:可以。
师:怎样拼成一个长方形呢?谁能用一个乘法算式把你的想法表达出来?
生1:1×12=12 生2:2×6=12 生3:3×4=12(板书:1×12=12 2×6=12 3×4=12)师:还有吗? 生:没有了。
师:我们先来看看第一个算式,(点击课件)根据1×12=12,大家猜猜看,他每排摆几个?摆了几排? 生:每排摆12个,摆一排。
师:这是一种情况,还有别的可能吗? 生:每排摆1个,摆了12排。
师:是这样摆的吗?(点击课件出示摆法)师:根据2×6=12,你能猜出它的摆法吗?
生:每排摆6个,摆了2排。每排摆2个,摆了6排。师:像这样吗?(点击课件出示摆法)
师:我们来看最后一个乘法算式3×4=12,这个算式刚才是哪位同学说的?你能说说你的摆法吗?
师:每排摆4个,摆了3排。也有可能每排摆了3个,摆了4排。(边说边点击课件出示)大家同意吗? 生:同意。
师:同学们可别小看这三个乘法算式,它们不但可以清楚的表示出这几种拼法,而且还蕴含着其他的数学知识呢。我们就以3×4=12这个算式为例,在数学里面,我们就说3是12的因数,4也是12的因数,反过来说12是3的倍数,12也是4的倍数。今天这节课我们就来研究因数和倍数。(板书课题:因数和倍数)
二、加强概念的理解。(5分)
师:还有两个乘法算式呢,大家知道谁是谁的因数,谁是谁的倍数吗? 生:知道。
师:同桌两人相互说说吧。开始 师:谁来说第一个算式?(点击课件)
生:1是12的因数,12是12的因数。12是1的倍数,12是12的倍数。师:同意吗?
生:同意。(点击课件出示)师:2×6=12这道算式谁来说一说?
生:2是12的因数,6是12的因数。12是2的倍数,12是6的倍数。师:说得真好,刚才两位同学表述得非常完整。因数和倍数就像一对好朋友,我们在说的时候一定要说清谁是谁的因数,谁是谁的倍数,缺一不可。(课件出示)
师:通过这三道乘法算式我们找出了12的因数,12的因数有哪些呢?一起来说一说。引导学生一组一组的说。师:12还有其它的因数吗? 生:没有了。师:为了方便,我们在研究因数和倍数时所说的数指的是整数(一般不包括0)(课件出示)
三、探索寻找因数的方法。(10分)
师:这里还有5个数,大家看看哪两个数之间存在因数与倍数的关系?谁来说一说?
(课件出示2,3,5,18,25)生自由发言。
师:我刚才听到好几个数都是18的因数。哪位同学能在这5个数中找出18的因数到底有哪几个? 生1:2,3 生2:18 ……
师:看来我们要找出18的一个或两个因数很容易,(在所有的整数中,18还有其它的因数吗?)怎样才能把18的所有因数都找出来呢?有没有什么好的方法?四人一小组讨论讨论,讨论完后把方法写出来。学生讨论,教师巡视指导。
师:哪一组来说说你采用的是什么方法? 生1:1×18=18 2×9=18 3×6=18 生2:18÷1=18
18÷2=9
18÷3=6 ……
(展示三个小组的做法)师:大家琢磨琢磨这几种看似不同的方法有相同的地方吗?(引导学生发现其实都是运用了乘法口诀,通过一个算式能找出两个因数,也可以说是一对因数)
师:很有道理。我们一起来看看18的因数是怎样一对一对找出来的。首先由1×18=18,我们可以找到… 生:1和18 生:由2×9=18,我们可以找到2和9,由3×6=18,我们可以找到3和6。
板书:
师:找完了吗? 生:找完了。
师:我们把18的因数按照从小到大的顺序完整的说一遍。(学生齐说,老师用手势引导)下面我们把它写下来。
(师板书:18的因数有1,2,3,6,9,18)
师:18的因数还可以像这样表示(点击课件出示集合图)
师:我们刚才找出了18的所有因数,大家认为要想把一个数的因数找完整应该注意些什么? 生:要按照一定的顺序。师:你说得真好。还有需要注意的吗? 生:要一对一对的找。
师:这两位同学总结的方法很不错,大家听清楚了吗?谁能完整的说一说?
生1:有序的、一对一对的找。师:你来说一说。
生2:有序的、一对一对的找。
师:对,按照大家说的这种方法我们就能很快的把一个数的所有因数找出来。那找到什么时候为止呢?请大家看18的最后一对因数是几和几? 生:3和6。
师:为什么不接着往下写了? 生答。
小结:其实找因数就像我们数学中的相遇问题。最开始是1和18,离得很远,接着是2和9,有点近了,再接下来是3和6,更近了。3和6之间的整数只有4和5,都不是18的因数,所以没必要再往下找。
尝试练习:
师:请大家按照这种有序的一对一对的找的方法试着找一找30和36的所有因数。在作业本上写一写。
师:哪位同学来说说30的因数你是怎么找的?(投影展示)学生说说自己的想法。
师:大家同意他的想法吗?和他一样的请举手。
师:既然大家都用了这种方法,那么老师有一个问题想请教同学们,30的最后一组因数是5和6,找到这儿的时候还需要继续找吗?为什么?
生:因为5和6已经挨着了,它们之间已经没有整数了。
师:说得真好,我们按照一定的顺序,一对一对地找出了30所有的因数。36的因数谁来说一说。生汇报,课件演示。
(出示到6和6时,还找吗?)生:不找了。师:因为…
生:因为6和6已经重合了,它们之间更不可能有其它的整数。师:最后一组出现了两个相同的因数,怎么办? 生:我们就可以只写一个。(演示:去掉第二个)
师:36的因数有哪些?请大家有顺序的说一说。(生说,课件演示)
四、观察发现因数的特点。(3分)
师:找一个数的因数大家会了吗? 生:会了。师:下面老师口述两个数,看看哪个同学能够很快地说出它的所有因数。我们来比一比。师:1的因数有… 生:1 师:还有吗? 生:没有。师:7的因数呢? 生:
1、7。
师:找一个数的因数的方法大家掌握得非常好,我们一起来看看所找的这些数的因数,它们有什么共同点?(课件出示)生:所有的数的因数都有1。
(课件出示)一个数最小的因数是(1),师:一个数的最大因数是什么? 生:它本身。
(课件出示:一个数的最大因数是它本身)
师:既然一个数有最大的因数,那么一个数的因数个数是()。
五、找一个数的倍数。(10分)
师:我们学会了找一个数的因数,那么找一个数的倍数大家会吗?试一个怎么样? 生:好。
(课件出示:你能找出多少个2的倍数)
师:同桌相互说着听一听。(师板书:2的倍数有)师:谁来说一说?
生:2,4,6,8,10……(生边说师边板书)师:写得完吗? 生:写不完。师:那怎么办?
(引导学生用省略号表示)
一个数的倍数同样可以用集合图表示(点击课件,出示集合图)师:2的倍数我们是找出来了,谁能告诉我,你是用什么方法找得吗? 生:2×1=2 2×2=4 2×3=6 2×4=8 2×5=10…
师:找2的倍数我们可以2来分别乘1、2、3、4、5…所得的积就是它的倍数了。找其它数的倍数我们能用这种方法吗? 生:能。
师:请大家试着在这条数轴上找出3的倍数。一起说一说。(课件演示)师:说得完吗? 生:说不完。
师:这还有两个数5和7,哪位同学能够很快的说出它们的倍数。(课件出示)
学生汇报。(课件出示)
师:通过上面的例子,你发现一个数的倍数有什么特点吗? 生1:一个数的最小倍数是它本身。生2:一个数的倍数个数是无限的。(课件跟随出示:一个数的最小倍数是它本身。一个数的倍数个数是无限的)
师:今天的新知识即将告一段落,下面的一些题大家看看会做吗?
六、练一练:(3分)
1、投影出示填空题。
① 24的最大因数是(),最小倍数是()② 只有一个因数的数是()
③ 15的因数有()。④ 6的倍数有()(写出5个)
⑤ 一个数的因数个数是(),一个数的倍数个数是()。师:大家说得真棒,我们来看看这几位同学说的对吗?
2、谁说得对?(投影出示)
师:看来凭这几道题要想难倒同学们,还真不容易,不过我还真不想放弃,这还有两道题,大家愿意接受挑战吗? 猜一猜(1分)考考你
师;看来我不想放弃都不行了,同学们太聪明了。
七、小结。(2分)
师:聪明的同学们,谁能说说通过这节课的学习你有什么收获?
八、拓展(3分)
师:既然我们学会了找一个数的因数,那就请同学们把自己编号的所有因数写下来。
生开始写。
师:编号是6的同学请站起来,你真幸运,知道为什么吗?我们一起来看看6的因数。
课件出示。
师:我们如果把最大因数它的本身去掉,从剩下的三个因数中你会发现什么?
生:1+2+3=6
师:这剩下的因数和刚好等于6,也就是说刚好等于这个数的本身。这样的数我们把它叫做完全数,也叫完美数。我们全班同学的编号中大家知道有几个完美数吗?
生:……
【因数和倍数教学案例】推荐阅读:
倍数和因数教学实录11-07
教学设计因数和倍数07-19
因数和倍数的教学设计10-06
《因数与倍数》整理和复习教学设计09-25
因数和倍数题09-19
《公倍数和公因数》提高练习10-20
数学倍数与因数11-01
新人教版因数与倍数的教学设计06-15
倍数与因数复习教案07-16