初一数学数轴教案(通用8篇)
【教学目标】
使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示;向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。【内容简析】
本节课是数轴的第一课时,在学生学了有理数概念的基础上,从标有刻度的温度计来表示温度高低这个事实出发引出数轴画法和用数轴上点表示数的方法,可以使学生借助图形的直观来理解有理数的有关问题,突出知识的产生过程,也为以后学习实数奠定基础。本节的重点是掌握数轴的概念和画法,明确其三要素缺一不可。数轴上的点与有理数的对应关系的理解是难点。教学中要求学生多动手,增强对“形”的感性认识,培养动手、动脑和实际操作能力。【流程设计】
一、情景创设
温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?
数学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。
二、新知探索
1.请学生阅读新课思考:
①零上25℃用正数_____表示。0℃用数____表示;零下10℃用负数_____表示。②数轴要具备哪三个要素?
③原点表示什么数?原点右方表示什么数?原点左方表示什么数? ④表示+2的点在什么位置?表示-3的点在什么位置?
⑤原点向右0.5个单位长度的A点表示什么数?原点向左11个单位长度的B点表示什
2么数?
2.数轴的画法
师生共同总结数轴的画法步骤:
第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O,叫做原点,用这点表示数0;(相当于温度计上的0℃。)
第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来)。相反的方向就是负方向;(相当于温度计0℃以上为正,0℃以下为负。)
第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度。(相当于温度计上1℃占1小格的长度。)
在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,„,从原点向左,每隔一个单位长度取一点,它们依次表示–1,–2,–3,„。
3.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。直线也不一定是水平的。
三、范例共做
例1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里? 分析:原点、正方向、单位长度这数轴的三要素缺一不可。解答:都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致。
例2:把下面各小题的数分别表示在三条数轴上:
(1)2,-1,0,32,+3.5(2)-5,0,+5,15,20;
(3)-1500,-500,0,500,1000。
分析:要在数轴上表示数,首先要正确画出数轴,标明原点、正方向(一般从左到右为正方向)和单位长度这三要素,然后再表示数,第(1)题,数不大,单位长度取1cm代表1,第(2)、(3)题数轴较大,可取1cm分别代表5和500。数轴上原点的位置要根据需要来定,不一定要居中,如第(1)题的原点可居中,(2)的原点可偏左,(3)的原点可偏右,单位长度也应根据需要来确定,但在同一条数轴上,单位长度不能变。表示某个数的点,在图形上一定要用较大的“.”突出来,并且在数轴上写出该点表示的数。这样画出的图形较合理、美观。
例3:借助数轴回答下列问题
(1)有没有最小的正整数?有没有最大的正整数?如果有,把它指出来;
(2)有没有最小的负整数?有没有最大的负整数?如果有,把它标出来。
解答:观察数轴易知:
(1)有最小的正整数,它是1,没有最大的正整数;
(2)没有最小的负整数,有最大的负整数,它是-1. 例4:比较–3,0,2的大小。
分析一:先在数轴上分别找到表示–3、0、2的点,由“右边的数总比左边的数大”得到–3<0<2;
分析二:直接由“正数都大于0;负数都小于0;正数大于一切负数”的规律得出–3<0<2。
四、检测反馈
1.判断下图中所画的数轴是否正确?
(1)
2.下面数轴上的点A、B、C、D、E分别表示什么数?
(2)
3.将-
3、1.5、21、-
6、2.25、1、-
5、1各数用数轴上的点表示出来。224.画一条数轴,并在上面标出下列的点。
±100
±200
±300 提示:1.图(1)是数据标注错误;图(2)的画法是正确的,在以后的学习中会遇到。
五、小结提高
1.数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但反过来并不是数轴上的所有点都表示有理数;
2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确。
六、课后思考
1.一个点从原点开始,按下列条件移动两次后到达终点,说出它是表示什么数的点?(1)向右移动11个单位长度,再向左移动2个单位。2(2)向左移动3个单位长度,再向左移动2个单位长度。
2.数轴上表示3和-3的点离开原点的距离是多少?这两个点的位置有什么不同? 3.数轴上到原点的距离是5的点有几个?它们分别表示什么数?
4.某数轴的单位长度是1cm,若在这个数轴上随意画一条长100cm的线段AB,则线段AB盖住的整数点有()
A.99个或100个
B.100个或101个
C.99个或101个
教学目标: 1. 知道什么是数轴,如何画数轴。
2. 知道如何将有理数在数轴上表示出来,能说出数轴上表示有理数的点所表示的数。知道任一个有理数在数轴上都有唯一的点与之对应。
教学重点: 学习数轴,用数轴上的点表示有理数。教学难点:
利用数轴学习有理数的大小性质。教学过程:
一、引入:
请读出下面温度计所表示的温度:
二、讲授新课:
1.考察温度计,直接给出数轴的定义。2.讲解例1。
提问:在数轴上,已知一点P表示数(-5),如果数轴上的原点不选在原来位置。改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生提出:数轴的三要素缺一不可。3.小结:
如何根据数轴的定义画一条数轴?如何在数轴上画出表示有理数的点? 4.随堂练习:
1.教科书第54页练习第1,2,3题。
2.补充练习:在数轴上能否实际画出表示一亿万分之一的点?这个点存在吗?(答:很难画出;存在。)
四、课外作业 1.
2.补充题:
(1)画一条数轴并画出分别表示±0.5,±0.1,±0.75的各点。(2)画一条数轴并画出分别表示1000,2000,5000的各点。
注:以上两个补充题的目的是,用数轴表示已知数时,要根据已知数适当地选择单位长度和坐标原点的位置。
一、回顾复习旧知
1、读数,指出哪些是正数,哪些是负数?
-62.9 +0.16 -4/5 +7/120 +305 -88
二、新课讲授
1、教学例3。
(1)教师:怎样用数来表示这些学生和大树的相对位置关系呢?
组织学生在小组中议一议,然后汇报。
(2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。
(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(4)教师总结:
我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。
2、观察数轴,比较数的.大小。
引导学生观察数轴。
①从0起往右依次是?从0起往左依次是?你发现什么规律?
②在数轴上分别找到
1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?
师及时小结:
数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。
三、巩固练习
1、完成教材第5页的“做一做”。
学生独立练习,指名汇报。
2、完成教材第6页练习一的第4、5题。
组织学生独立完成,并在小组中相互交流、检查。
四、课堂小结
作为一位兢兢业业的人民教师,常常要写一份优秀的说课稿,说课稿有助于顺利而有效地开展教学活动。说课稿应该怎么写才好呢?以下是小编为大家整理的初中数学《数轴》说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
初中数学《数轴》说课稿1一.教材分析
(说教材)
一.教材内容分析
数与形是数学的两大组成部分,数形结合的思想方法是数学中的一个重要思想方法,而数轴是数形结合的高度统一。数轴是新人教版数学教材七年级上册第一章第二节的内容,是在学生学习了有理数概念的基础上再介绍的。通过数轴的学习可加深学生对有理数概念的理解,并为后面引出相反数、绝对值的概念,学习有理数大小比较、有理数运算法则、平面直角坐标系等打下良好的基础,起到承上启下的作用。
二.学情分析(学生情况分析)
本课的教学对象是刚刚步入中学校门的七年级学生,此阶段学生天真活泼,好奇心强,有较强的模仿能力和求知欲望,而且富有一定的逻辑思维能力。但在新知的学习过程中,还是较容易出现理解局限的问题。
三.教学目标
根据《新课程标准》对学生在知识技能、数学思考、解决问题、情感态度等方面的要求,我确定了本节课教学目标如下:
A、知识技能:
1、理解数轴概念,会画数轴。
2、知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。
B、数学思考:
1、从直观认识到理性认识,从而建立数轴概念。
2、通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
C、解决问题:会利用数轴解决有关问题。
D、情感态度:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性,感受数学与生活的联系。
四.重点、难点(说教学重点、难点)
本节课教学重点我确定为:数轴的概念。
因为:只要数轴概念真正理解了,画数轴、在数轴上表示有理数等也就容易了。
本节课教学难点我确定为:从直观认识到理性认识,从而建立数轴概念。
因为:七年级的学生形象思维占主导地位,抽象思维刚开始萌芽。
教有教法,学有学法,但无定法,贵在得法,下面谈谈本节课的教法与学法。
五.学习方法和教学方法
1、教法:数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重。基于本节课的特点:课堂教学采用了“情境—问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。
根据本节课的教学内容,我所采用的教学手段是:多媒体辅助教学
通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。
2、学法:俗话说“授人以鱼,不如授人以渔”,在教学中我特别重视学法的指导,让学生在“观察—操作—交流—思考—概括—应用”的学习过程中,自主参与、经历数学知识的形成和应用过程。告诉学生,学习数学不是简单模仿、机械操练,而是探究学习、发现学习、研究学习、合作学习。
“凡事预则立,不预则废”,充分的课前准备是成功的一半。
六.教学准备
老师:要充分备课,精心制作多媒体课件,准备教具
学生:要认真预习,准备直尺或三角板
七、教学过程分析
课堂教学是学生获取知识、形成技能、发展能力和思维的主战场。为了突出重点、突破难点、达到目标,我设计了以下几个教学环节:
(一)、复习旧知
通过对已知知识的回顾复习,使学生更易于接受新知识。
(二)、创设情景,引入课题
为了使学生明白数与形的对应关系,初步认识数形结合的美妙之处,我设计了:
观察温度计的活动,目的是为了让学生切身体会数与形的对应关系,为学习数轴概念埋下伏笔。
学生拿出自己准备的温度计分小组讨论观察,共同发现数与形的对应关系。
接下来,我创设了这样一个情境:
在一条东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆。随后我提出问题:“怎样用数简明地表示这些树、电线杆与汽车站的相对位置?”(学生小组讨论后再派代表回答)通过这个活动,让学生们认识到:考虑东西方向的马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。
前面几个活动之后,学生对数形结合的思想方法已有所体会,为此我让学生:
再次观察所画情境图、温度计
并引导学生观察、比较,将其抽象成一条直线。
这样,就把正数、0和负数用一条直线上点表示出来。
(三)、学习概念,解决问题
通过刚才的观察、比较,我引出了新课:
1)学习数轴的概念
我先进行讲解:
一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的点表示数,当然这条直线必须满足以下三点要求:
(1)在直线上任取一个点表示数0,这个点叫做原点。
(2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。
(3)选取适当的长度为单位长度,每隔一个单位长度取一个点。
再画数轴
师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。
设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。
3)在数轴上表示右边各数:
4)指出数轴上A,B,C,D各点分别表示什么数。
设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示。
下一个活动,填空:数轴上表示-2的点在原点的()边,距原点的距()表示3的点在原点的()边,距原点的距离是()。
通过填空,老师引导学生做出课本第12页的归纳
设计意图:通过从特殊到一般的方法归纳出数轴上的点的特征,逐步培养学生的抽象概括(从具体的数到字母表示的数)能力
课堂练习:
1)课本第12页的练习1、2题
2)强化练习:
(1)在数轴上标出到原点的距离小于3的整数。
(2)在数轴上标出-5和+5之间的所有的整数。
设计意图:通过练习,巩固数轴的概念;强化练习是为了培养学生用数轴解决问题的能力。
小结:什么是数轴?如何画数轴?如何在数轴上表示有理数?
1)数轴的三要素:原点、正方向、单位长度。
2)画数轴的步骤:
1.画直线;
2.在直线上取一点作为原点;
3.确定正方向,并用箭头表示;
4.根据需要选取适当单位长度。
作业:课本第17页习题1.2第2题;学生用书同步训练
设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。
八、教学设计说明
这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。
初中数学《数轴》说课稿2一、教材分析:
本节是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的`思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。
二、学习任务分析:
1、要求学生会正确画出数轴初步了解有理数与数轴上的点的对应关系。
2、能将有理数用数轴上的点来表示。
3、通过观察数轴上的点的位置关系初步比较有理数的大小,并能通过数轴上点的移动说出表示点的数
三、目标分析:
1、通过回忆和实例使学生掌握数轴的概念,并理解其三要素。
2、通过动手画数轴和数轴的概念,观察数轴上点的位置关系,了解点与数之间的关系。
3、通过图形与数量的对应关系了解数学研究的一种重要方法-----数形结合。
4、通过实例启发思维调动学生学习数学的兴趣使学生充分体验实践生活离不开数学
四、教法选择:
创设情景、动手操作、模拟演示、启发引导、学习应用、发展能力。针对学生的年龄特点和心理特征,以及他们的认知水平,采用探究式教学方法,教学中注意课堂民主、平等氛围的营造使学生始终处于主动学习的状态,鼓励学生团结协作、大胆猜想、动手操作。同时,教师要给学生思维活动提供具体、直观、感性的支持,所以本节课的设计借助直观演示、动手操作、启发诱导,由感性认识逐步上升到理性认识。
本节课的引入采用先回忆再从实例引入的教学方法,激发学生学习兴趣。
概念的得出采用比较探索式的教学方法,坚持以学生为主体,充分发挥学生的主观能动性。教学中,让学生自已动手画数轴,培养学生探究问题的能力。改变原来的“听数学”为“做数学”。
数轴应用采用分层式的教学方法,根据不同学生的实际,进行不同层次的教学。促进他们的全面发展。特别注重基本理论在实际生活中的应用,体现数学应用于生活的一面。
五、教学重难点的确定和突破:
1、正确画出数轴是本节教学的重点。
首先回忆小学生学过的知识直线上用点表示数量数轴的三角形,再通过实物如:标尺、温度计等,要求同学们通过观察能建立数轴的概念模型通过提问:标尺及温度计上的数据有什么规律?从而引出数轴的方向性及数轴的原点和单位长度,上面的过程可以由学生讨论,教师补充从而概括数轴的概念即三要素。
2、变式;从而也可归纳出数轴商店表示即,数与点的对应关系。
通过例题要求学生动手操作画出数轴并描述点
说明:
(1)可能有不少学生会忘记正方向
(2)原点左边的数的表识会发生标反的错误。
(3)数轴上的正方向,同时也表示由小到大的方向。
(4)单位长度的截取可以是任意长度,不是唯一的。
(5)数轴的方向也不是唯一的,如温度折线图等,方向也可以是向上的。
3、正确画出数轴后,即使点在数轴上的表示,整数的表示学生很容易理解,强调一下,分数和小数的表示是这一节课的难点,首先通过例题:
通过在数轴上描点:4,-2,-4,5,1/3,0
先对数进行分类,正数,零,负数,负数在0(既原点)的左边,正数在原点的右边再按整数和分数描点,通过练习巩固能说出数轴上的点表示什么数?
P23练习中第3题为下节课的内容做下了铺垫,即数的大小比较,这里要求学生能在新排列一下,使学生能了解数轴哂纳感,负数、0、正数,之间的关系。
4、提高:下列说法正确的是:
(1)在+3和+4之间没有正数
(2)在0和—1之间没有负数
(3)在+1和+2之间有无穷个正分数
(4)在0、1、和0、2之间没有正分数
这题通过数轴的直观描述进一步说明数轴上的点与有理数之间的关系,使学生能从感性认识上升到理性认识,进一步提高学生的逻辑思维能力和提高分析问题的能力。
初中数学《数轴》说课稿3一:教材分析:
本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。
二:教学目标:
根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:
1.使学生理解数轴的三要素,会画数轴。
2.能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示
3.向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。
三:教学重难点确定:
正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重点,建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点。
四:学情分析:
⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。
⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。
⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。
五:教学策略:
由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。
为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计了七个教学环节:
(一)、温故知新,激发情趣
(二)、得出定义,揭示内涵
(三)、手脑并用,深入理解
(四)、启发诱导,初步运用
(五)、反馈矫正,注重参与
(六)、归纳小结,强化思想
(七)、布置作业,引导预习
六:教学程序设计:
(一)、温故知新,激发情趣:
首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:
(1)零上5°C用5表示。
(2)零下15°C用-15表示。
(3)0°C用0表示。
然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?答案是肯定的,从而引出课题:数轴。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。
(二)、得出定义,揭示内涵:
教师设问:到底什么是数轴?如何画数轴呢?
(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。)
(2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。)
(3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)
由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。
画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”(通过教师的亲切的语言启发学生,以培养师生间的默契)
通过讨论由师生共同得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程。
(三)、手脑并用,深入理解:
1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?
A、B、C、D、E、F、A、B、C三个图形从数轴的三要素出发,D和F是学生可能出现的错误,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生。
2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)
学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可。
我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。
(四)、启发诱导,初步运用:
有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。
安排课本23页的例1,利用黑板上的例题图形让学生来操作,教师提出要求:
1、要把点标在线上
2、要把数标在点的上方
通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。
当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。
(五)、反馈矫正,注重参与:
为巩固本节的教学重点让学生独立完成:
1、课本23页练习122、课本23页3题的(给全体学生以示范性让一个同学板书)
为向学生进一步渗透数形结合的思想让学生讨论:
3、数轴上的点P与表示有理数3的点A距离是2,(1)试确定点P表示的有理数;
(2)将A向右移动2个单位到B点,点B表示的有理数是多少?
(3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少?
先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。
(六)、归纳小结,强化思想:
根据学生的特点,师生共同小结:
1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?
2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?
让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。
(七)、布置作业,引导预习:
为面向全体学生,安排如下:
1、全体学生必做课本25页1、2、32、最后布置一个思考题:
与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如何?
(来引导学生养成预习的学习习惯)
七:板书设计:
(略)
总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。
以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢
初中数学《数轴》说课稿4尊敬的各位老师们:
你们好!
今天我说课的题目是人教版数学七年级上册第一章第2节《数轴》。下面,我将从背景分析、教学目标设计、、课堂结构和教学媒体设计、教学过程设计及教学评价设计等几个方面对本课的设计进行说明。
一.背景分析
1.教材的地位及作用
“数轴”是人教版七年级数学上册第一章第二节“有理数” 的重点内容之一,是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。
2.教学重点、难点的分析
教学的重点:1)正确理解数轴的概念;2)正确掌握数轴的画法和用数轴上的点表示有理数。
教学的难点:正确理解有理数与数轴上点的对应关系,体会数形结合的数学思想。
3.教材的处理
1)通过观察温度计及师生互动表示课本第10页中的问题,使学生明白数与形的对应,初步认识数形结合的美妙之处。
2)通过讲解数轴的概念,概括出数轴三要素,指导学生正确地画出数轴。
3)通过练习,使学生准确地掌握数轴的概念,并会用数轴表示有理数,进一步体会数形结合。
4)通过课本第11页的归纳,使学生深化对数轴概念的理解。
二、教学目标设计
1.知识技能
1)掌握数轴的概念,并理解其三要素,能正确地画出数轴。2)会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。理解任何有理数在数轴上都有唯一的点与之对应
2.数学思考
1)通过观察与思考,建立数轴的概念。
2)通过对数轴的学习,初步体会对应的思想、数形结合的思想。
3.解决问题
会利用数轴解决有关问题。
4.情感态度
通过对数轴的学习,向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。
三.课堂结构和教学媒体设计
1.教学方法
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现获取知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重要。基于本节课的特点:课堂教学采用了“情境—问题 —观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。
有方法就要有手段进行依托,我所采用的教学手段是:多媒体辅助教学通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。
2.学法指导
现代新教育理念认为,学习数学不应只是单调刻板的简单模仿、机械背诵与操练,而应该采用设置现实的问题情景,有意义的,富有挑战性的学习内容来引起学习者的兴趣。为达到提升学生的学习兴趣,我们应强调探究学习、发现学习、研究学习、合作学习才能改变学生原来的那种“学而无思,思而无疑,有疑不问”的旧学习方式。
要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。
学生的工具:直尺或三角板
四.教学过程设计
活动1创设情境引入新课
1)观察温度计,并填空:
℃ ℃ ℃
师生行为:老师演示课件,学生观察并举手发言。
设计意图:通过让学生观察温度计并填空,为学习数轴概念做好铺垫。
2)课本第10页问题:在一条东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。
师生行为:老师发问:“请同学们思考:怎样用数简明地表示这些树、电线杆与汽车站的相对位置(方向、距离)?”学生分四人小组讨论,并画出图形。老师巡堂查看学生完成的情况,并请最先做好的两个小组派代表到黑板演示。
设计意图:通过学生的活动,让学生认识到:考虑东西方向马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。
3)再次观察课本图1.2-1、温度计,找出它们之间的共同之处
师生行为:老师引导学生观察、比较。学生组内讨论,并派代表发表意见,老师及时给予肯定和评议。
设计意图:通过比较,学生容易发现正数、0和负数都可以用一条直线上点表示出来。
活动2学习数轴的概念
一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的点表示数。这条直线叫做数轴。
数轴满足以下要求:1)在直线上任取一个点表示数0,这个点叫做原点。2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。3)选取适当的长度为单位长度,直线上每隔一个单位长度取一个点。
师生行为:老师讲解数轴的概念,说明画数轴说要满足的条件,并提醒学生数轴的三要素;学生观察、理解。
设计意图:初步认识数轴的概念及其所需要的条件。
活动3数轴概念的应用
1)讨论下列数轴画得对错?并思考你认为画数轴最重要的三个因素是什么?
① 师生行为:学生组内讨论交流,派代表发言,老师进行总结,并概括数轴的三要素。
设计意图:通过学生讨论,交流和反思,使学生认识数轴的三要素。
2)画数轴
画数轴的步骤:1.画直线;2.在直线上取一点作为原点;3.确定正方向,并用箭头表示4.根据需要选取适当单位长度。
师生行为:师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。
设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。
3)在数轴上表示右边各数:0.5 +2-0.3
4)指出数轴上A,B,C,D各点分别表示什么数。
解:点A表示-2;点B表示2;点C表示0;点D表示-1。
师生行为:观看课件的题目,要求学生在自己所画的数轴上完成,再由老师演示答案。
设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示。
活动4数轴概念的深化
填空:数轴上表示-2的点在原点的 边,距原点的距离是,表示3的点在原点的 边,距原点的距离是。
归纳:一般地,设a是一个正数,则数轴上表示数a的点在原点的 右 边,与原点的距离是 a 个单位长度;表示数-a的点在原点的 左 边,与原点的距离是 a 个单位长度。
师生行为:通过填空,老师引导学生做出课本第12页的归纳。
设计意图:通过从特殊到一般的方法归纳出数轴上的点的特征,逐步培养学生的抽象概括(从具体的数到字母表示的数)能力
活动5巩固数轴的概念
课堂练习:
1)课本第12页的练习1、2题
2)强化练习(1)在数轴上标出到原点的距离小于3的整数。(2)在数轴上标出-5和+5之间的所有的整数。
师生行为:学生练习,老师巡堂、指导。
设计意图:通过练习,巩固数轴的概念;强化练习是为了培养学生用数轴解决问题的能力。
作业:课本第17页习题1.2第2题;学生用书同步训练。
设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。
五、教学评价设计
这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。
总之,在这节课上,我始终以学生为主体创设情景,激发学生的学习兴趣;、让学生主体参与,探索新知识,充分体现了以学生为主体的新理念;联系实际,数学源于生活,服务于生活,让学生轻松快乐的学习数学,才是新课程改革的最终价值取向。我相信,有了快乐,数学课堂将焕发出生命的光彩。
一、阅读与思考
数学是研究数和形的学科,在数学里数和形是有密切联系的。我们常用代数的方法来处理几何问题;反过来,也借助于几何图形来处理代数问题,寻找解题思路,这种数与形之间的相互作用叫数形结合,是一种重要的数学思想。
运用数形结合思想解题的关键是建立数与形之间的联系,现阶段数轴是数形结合的有力工具,主要体现在以下几个方面:
1、利用数轴能形象地表示有理数;
2、利用数轴能直观地解释相反数;
3、利用数轴比较有理数的大小;
4、利用数轴解决与绝对值相关的问题。
二、知识点反馈
1、利用数轴能形象地表示有理数;
例1:已知有理数在数轴上原点的右方,有理数在原点的左方,那么()
A.
B.
C.
D.
拓广训练:
1、如图为数轴上的两点表示的有理数,在中,负数的个数有()
(“祖冲之杯”邀请赛试题)
A.1
B.2
C.3
D.43、把满足中的整数表示在数轴上,并用不等号连接。
2、利用数轴能直观地解释相反数;
例2:如果数轴上点A到原点的距离为3,点B到原点的距离为5,那么A、B两点的距离为。
拓广训练:
1、在数轴上表示数的点到原点的距离为3,则
2、已知数轴上有A、B两点,A、B之间的距离为1,点A与原点O的距离为3,那么所有满足条件的点B与原点O的距离之和等于
。(北京市“迎春杯”竞赛题)
3、利用数轴比较有理数的大小;
例3:已知且,那么有理数的大小关系是
。(用“”号连接)(北京市“迎春杯”竞赛题)
拓广训练:
1、若且,比较的大小,并用“”号连接。
例4:已知比较与4的大小
拓广训练:
1、已知,试讨论与3的大小
2、已知两数,如果比大,试判断与的大小
4、利用数轴解决与绝对值相关的问题。
例5:
有理数在数轴上的位置如图所示,式子化简结果为()
A.
B.
C.
D.
拓广训练:
1、有理数在数轴上的位置如图所示,则化简的结果为。
2、已知,在数轴上给出关于的四种情况如图所示,则成立的是。
①
②
③
④
3、已知有理数在数轴上的对应的位置如下图:则化简后的结果是()
(湖北省初中数学竞赛选拨赛试题)
A.
B.
C.
D.
三、培优训练
1、已知是有理数,且,那以的值是()
A.
B.
C.或
D.或
0
A
B
C2、(07乐山)如图,数轴上一动点向左移动2个单位长度到达点,再向右移动5个单位长度到达点.若点表示的数为1,则点表示的数为()
A.
B.
C.
D.
3、如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是整数且,那么数轴的原点应是()
A.A点
B.B点
C.C点
D.D点
4、数所对应的点A,B,C,D在数轴上的位置如图所示,那么与的大小关系是()
A.
B.
C.
D.不确定的5、不相等的有理数在数轴上对应点分别为A,B,C,若,那么点B()
A.在A、C点右边
B.在A、C点左边
C.在A、C点之间
D.以上均有可能
6、设,则下面四个结论中正确的是()(全国初中数学联赛题)
A.没有最小值
B.只一个使取最小值
C.有限个(不止一个)使取最小值
D.有无穷多个使取最小值
7、在数轴上,点A,B分别表示和,则线段AB的中点所表示的数是。
8、若,则使成立的的取值范围是。
9、是有理数,则的最小值是。
10、已知为有理数,在数轴上的位置如图所示:
且求的值。
11、(南京市中考题)(1)阅读下面材料:
点A、B在数轴上分别表示实数,A、B两点这间的距离表示为,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边;
②如图3,点A、B都在原点的左边;
③如图4,点A、B在原点的两边。
综上,数轴上A、B两点之间的距离。
(2)回答下列问题:
①数轴上表示2和5两点之间的距离是,数轴上表示-2和-5的两点之间的距离是,数轴上表示1和-3的两点之间的距离是;
②数轴上表示和-1的两点A和B之间的距离是,如果,那么为;
③当代数式取最小值时,相应的的取值范围是;
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。
情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:掌握有理数的两种分类方法
教学难点:给定的数字将被填入它所属的集合中
教学方法:问题导向法
学习方法:自主探究法
一、形势归纳
小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?
1.有以下数字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?
(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?
称整数和分数为有理数。(指点题,板书)
二、自学指导
学生自学课本,根据课本寻找自学的机会
提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.___________、____、_______统称为整数,
2._______和_________统称为分数
3.____ ______统称为有理数,
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数: 、分数:;正整数:、负整数: 、正分数: 、负分数:.
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数.
(2)0.3不是有理数.
(3)0不是有理数.
(4)一个有理数不是正数就是负数.
(5)一个有理数不是整数就是分数
3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
杨桂花:1.2.1有理数教学设计
正数集合:{ …}负数集合:{ …}
正整数集合:{ …}负分数集合:{ …}
4.下列说法正确的是( )
A.0是最小的正整数
B.0是最小的有理数
C.0既不是整数也不是分数
D. 0既不是正数也不是负数
5、下列说法正确的有( )
(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数
五、总结与反思:通过本节课的学习,你有什么收获?
1、进一步理解平均数、中位数和众数等统计量的统计意义。
2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。
3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。
4、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。
一、知识点回顾
1、数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4的比例确定。已知小明的期考80分,作业90分,课堂参与85分,则他的总评成绩为________。
2、样本1、2、3、0、1的平均数与中位数之和等于___.
3、一组数据5,-2,3,x,3,-2,若每个数据都是这组数据的众数,则这组数据的平均数是 .
4、数据1,6,3,9,8的极差是
5、已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是 。
二、专题练习1、方程思想:
例:某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是_____________.
点拨:本题可以用统计学知识和方程组相结合来解决。
同类题连接:一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,设原来参加春游的学生x人。可列方程:
2、分类讨论法:
例:汶川大地震牵动每个人的心,一方有难,八方支援,5位衢州籍在外打工人员也捐款献爱心。已知5人平均捐款560元(每人捐款数额均为百元的整数倍),捐款数额最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款数额的中位数,那么其余两人的捐款数额分别是___________;
点拨:做题过程中要注意满足的条件。
同类题连接:数据 -1 , 3 , 0 , x 的极差是 5 ,则 x =_____.
3、平均数、中位数、众数在实际问题中的应用
例:某班50人右眼视力检查结果如下表所示:
视力 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5
人数 2 2 2 3 3 4 5 6 7 11 5
求该班学生右眼视力的平均数、众数与中位数.发表一下自己的看法。
4、方差在实际问题中的应用
例:甲、乙两名射击运动员在相同条件下各射靶5次,各次命中的环数如下:
甲: 5 8 8 9 10
乙: 9 6 10 5 10
(1)分别计算每人的平均成绩;
(2)求出每组数据的方差;
(3)谁的射击成绩比较稳定?
三、知识点回顾
1、平均数:
练习:在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人?
2、中位数和众数
练习:○1.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是 .
○2.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )
A.24、25 B.23、24 C.25、25 D.23、25
○3.在一次环保知识竞赛中,某班50名学生成绩如下表所示:
得分 50 60 70 80 90 100 110 120
人数 2 3 6 14 15 5 4 1
分别求出这些学生成绩的众数、中位数和平均数.
3.极差和方差
练习:○1.一组数据X 、X …X 的极差是8,则另一组数据2X +1、2X +1…,2X +1的极差是( )
A. 8 B.16 C.9 D.17
○2.如果样本方差 ,
那么这个样本的平均数为 .样本容量为 .
四、自主探究
1、已知:1、2、3、4、5、这五个数的平均数是3,方差是2.
则:101、102、103、104、105、的平均数是 ,方差是 。
2、4、6、8、10、的平均数是 ,方差是 。
你会发现什么规律?
2、应用上面的规律填空:
若n个数据x1x2……xn 的平均数为m,方差为w。
(1)n个新数据x1+100,x2+100, …… xn+100的平均数是 ,方差为 。
(2)n个新数据5x1,5x2, ……5xn的平均数 ,方差为 。
1、教学内容:整式的有关概念,即能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等.
2、内容分析:本节课要学的内容整式的有关概念指的是理解并掌握整式的有关概念,能够对一些整式进行分析,其核心是整式的有关概念,理解它关键就是要能从具体情景中抽象出数量关系和变化规律,使学生经历对具体问题的探索过程,培养符号感.。学生已经学过有理数的运算,本节课的内容整式的有关概念就是在此基础上的发展。由于它还与根式的运算有直接的联系,所以在本学科有重要的地位,并有不可忽视的作用,是本学科的核心内容。教学的重点是单项式的系数、次数,多项式的项数、次数等概念.解决重点的关键是通过对问题的解决使学生对单项式有个初步的理解,并归纳总结出单项式的次数和系数等概念.
二、目标及其解析
1、目标定位:理解并掌握整式的有关概念,能够对一些整式进行分析;
2、目标解析:理解并掌握整式的有关概念,就是指能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等.
三、问题诊断与分析
在本节课的教学中,学生可能遇到的问题是多项式的项数、次数等概念难以理解,产生这一问题的原因是单项式的项数、次数的影响。要解决这一问题,就要先分清单项式与多项式的区别,其中关键是能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等.
四、教学支持条件分析
五、教学过程设计:
(一).创设问题情境,激发学生兴趣,引出本节内容
问题1:填空,观察所填式子的特点:
(1)边长为x的长方形的周长是__________;
(2)一辆汽车的速度是v千米/小时,行驶t小时所走的路程是_______千米;
(3)若正方体的的边长是a,则它的表面积是_______,体积是________;
(4)设n是一个数,则它的相反数是________.
设计意图:通过此问题让学生知道可以用字母表示数,从实际问题中列出式子,体会数学来源于生活,从而体会整式的实际意义。
师生活动:
1、学生自己解决上述问题,然后观察所填式子,归纳其特点,进而初步理解单项式的概念.所填式子是4x、vt、6a2、a3、-n,特点是都是数字或字母的乘积.
2.、引导学生在观察的基础上归纳单项式的定义:
单项式:由数字或字母乘积组成的式子是单项式.
分析式子4x、vt、6a2、a3、-n得出:
单项式中的数字因数叫作单项式的系数(4x、vt、6a2、a3、-n的系数分别是4、1、6、1、-1);单项式中所有字母的指数和是这个单项式的次数(4x、vt、6a2、a3、-n的次数分别是1、2、2、3、1).
例1: 用单项式填空,并指出它们的系数和次数:
(1)每包书有12册,n包书有___________册;
(2)底边长为a,高为h的三角形的面积是_________;
(3)一个长方体的长、宽都是a,高是h,它的体积是________;
(4)一台电视机原价是a元,现按原价的9折出售,那么这台电视机现在的售价为______元;
(5)一个长方形的长是0.9,宽是a,这个长方形的面积是_________.
解:(1)12n,它的系数为12,次数是1;
(2) ,它的系数是 ,次数是2;
(3) ,它的系数是1,次数是3;
(4)0.9a,它的系数是0.9,次数是1;
(5)0.9a,它的系数是0.9,次数是1.
问题2:根据对单项式的理解,解决下列问题. 小明房间的窗户如图(1)所示,其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同).
图(1)装饰物所占的面积是______.
(2)某校学生总数为x,其中男生人数占总数的 ,男生人数为 ;
(3)一个长方体的底面是边长为a的正方形,高是h,体积是 .
设计意图:通过上面单项式的了解让学生再一次在实际问题中列出式子,对比看是不是与单项式相似,加深对概念的理解。
师生活动:
1、学生独立思考,分析第(1)个问题中装饰物是由两个四分之一圆和一个半圆组成,它们的半径相同,由图中的已知条件可知半径为 ,所以装饰物所占的面积恰好是半径为 的一个圆的面积即 ;(2)中男生人数为 x;(3)中这个长方体的体积是a2h.
2、引导学生在解决问题后,分析各个单项式的系数和次数,并进行交流,在交流中纠正一些不正确的想法.
(二)问题引申、探索多项式的有关概念
问题3:
填空,然后分析所填式子的特点:
1、温度由t°C下降5°C后是________°C;
2、买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,买3个篮球、5个排球、2个足球共需要________元;
3、如图(2),三角尺的面积是________;
图(2) 图(3)
如图(3)是一所住宅的建筑面积的平面图,这所住宅的建筑面积是_______平方米.
设计意图:通过学生自己列式体会式子形成的过程,使之与单项式产生对比,加深对多项式的理解。
师生活动:
1、学生自己解决上述问题,然后观察所填式子,归纳其特点,进而初步理解多项式的概念.所填式子是t-5、3x+5y+2z、、,特点是都可以看做是单项式的和组成的式子.
2、引导学生在观察的基础上归纳多项式的定义及相关概念.
3、多项式:几个单项式的和叫作多项式.
在多项式中每一个单项式叫作多项式的项,其中不字母的项叫作常数项,多项式里次数最高的项的次数叫作这个多项式的次数.
单项式和多项式统称为整式.
让学生分析上述多项式中的项、次数等.
t-5的项是t和-5,次数是1;3x+5y+2z的项是3x、5y、2z,次数是1次; 的项是 和 ,次数是2; 项是x2、2x、38,次数是2.
同时让学生辨别多项式是单项式的和,因此多项式的项包含它前面的符号比如多项式3x-4y的第二项是-4y,而不是4y.
例2: 用多项式填空,并指出它们的项和次数:
(1)温度由t°C下降5°C后是____________;
(2)甲数x的 与乙数y的 的差可以表示为____________;
(3)如下图,圆环的面积为____________.
解:(1)t-5,它的项是5和-5,次数是1;
(2) ,它的项是 ,次数是1;
(3) ,它的项是 ,次数是2.
实际应用:
【初一数学数轴教案】推荐阅读:
初一数学教案新人教版10-08
初一数学集体备课06-11
数学的初一作文07-27
初一下册数学证明题05-24
初一新生如何学好数学!06-09
数学小论文初一范文06-14
初一数学上册复习重点06-17
初一数学下册要点总结10-07
初一数学上册解方程10-11
初一下数学论文10-20