平行线性质和判定复习

2024-08-09 版权声明 我要投稿

平行线性质和判定复习

平行线性质和判定复习 篇1

沈越

前几天听了马艳华老师的展示课,马对本节课的每个教学环节关注细微,总体感觉,学生学起来轻松,教师听起来顺畅,就我个人而言,收获颇多,受益匪浅,一节课的展示、交流,体现教师对教材的解读深度,饱含了处理教学问题的经验丰富,彰显教师干练的教学风格,本人将这节课听后感觉简单地给大家梳理了一下,与大家共同交流、探讨:

本节课是在学生已经学习了平行线的性质和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。在这节课的学习中,马老师先组织学生利用手中的量角器对“两直线平行,同位角相等”这一公理进行验证,再通过资源课件的演示对学生进行讲解,使学生加深对这一知识点的理解。在这一公理的基础上经过简单的推理,得到平行线的另两个性质。

我们这次公开课的主题是高效课的实践与研究。新课程的理念要求培养学生自主学习,学生是主体,教师起的是主导作用。为了让学生真正成为课堂的主人,这节课马老师选用下面教学方法:

1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。

2、新技术教学法:在教学过程中充分利用多媒体教学技术,给学生以直观的感受,加深学生的印象。

3、鼓励和表扬:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。

在学法指导上,通过教师的引导,学生小组讨论,分层展示,总结出平行线的性质和判定的综合应用,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。

(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,应用角度关系怎样找线的位置关系。画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。

(2)讲解平行线的性质一。

加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。

(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。

这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。

(4)总结平行线的性质

性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.(5)平行线的性质和平行线的判定区别:

要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”

3、知识运用

(1)解决引入时提出的问题

(2)利用所学的知识讲解例4和例5(3)把一条直线平行移动到另一个位置,这两条直线一定平行。通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。

平行线性质和判定复习 篇2

教学内容

人教版《义务教育课程标准实验教科书·数学》八年级下册第十九章“19.1.2平行四边形的判定”.

教学目标

(1)知识与技能.

探索平行四边形的判定条件,掌握并应用判定方法对一些平行四边形的判定进行说理.

(2)过程与方法.

经历平行四边行判定条件的探索过程,在有关活动中发展学生的合情推理意识,使学生逐步掌握说理的基本方法.

(3)情感、态度与价值观.

通过平行四边形判定条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.

教学重点

探索平行四边形的判定方法.

教学难点

平行四边形判定方法的理解和应用.

设计理念

根据新课程的目标,结合新课程提出的初中数学“问题探究”教学模式和要求,课堂教学中彻底改变教学过于注重知识传授的倾向,强调形成积极的学习态度,关注学生的兴趣和经验,让学生主动参与学习活动,并引导学生在课堂教学活动中感悟知识的生成、发展与变化过程,真正让数学教学成为数学活动的教学,为学生敢创新、能创新提供充足的时间.

教学过程

1.引发思考,提出问题

(此环节可分为三步.)

第一步:“忆”——忆平行四边形的性质.

从边看:两组对边分别平行;两组对边分别相等.

从角看:两组对角分别相等,四组邻角互补.

从对角线看:对角线互相平分.

第二步:“说”一—说平行四边形性质的逆命题.

(1)两组对边分别相等的四边形是平行四边形;

(2)两组对角分别相等的四边形是平形四边形;

(3)对角线互相平分的四边形是平行四边形.

第三步:“猜”——这些逆命题是否成为平行四边形的判定方法.

[设计说明]本节课的设计思路是以学生熟悉的平行四边形的性质引入,通过复习提问可以为本节课的顺利进行做好铺垫,也比较自然地引出了本节课题,培养学生的正向思维和逆向思维,为平行四边形判定方法的进一步探索做好铺垫.由于是首次探索四边形是平行四边形的条件,其说理依据只能是平行四边形的概念,对于下面几条的探索就可以利用第一个条件.“温故知新”是传统的教学手段,复习性质是为了和判定方法的对比,分清区别和联系,为应用作准备.自然、合理,符合学生的认知规律.

2.理论证明,得出判定

(此环节分成四步.)

第一步:“证”——引导学生运用学过的知识从理论上证明猜想.

学生结合图形,写出已知和求证,写出并讲解其证明过程.

第二步:“得”——得到平行四边形的两个判定定理.

判定定理一:两组对边分别相等的四边形是平行四边形.

判定定理二:两组对角分别相等的四边形是平行四边形.

判定定理三:对角线互相平分的四边形是平行四边形.

第三步:“练”——利用三道练习题进一步明晰判定.

快速反应:(1)用两根长为40 cm的木条和两根长为30 cm的木条作为四边形的四条边,能否拼成一个平行四边形?

(2)在图1中,AC=BD=15,AB=CD=EF=16,CE=DF=9,图中有哪些互相平行的线段?

(3)小明的爸爸在钉制平行四边形框架时采用了下面两种方法.

方法一:将两根木条AC、BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形.

方法二:将两根同样长的木条AB、CD平行放置,再用木条AD、BC加固,得到的四边形ABCD就是平行四边形.

第四步:“得”——得到平行四边形的判定定理四.

判定定理四:一组对边平行且相等的四边形是平行四边形.

[设计说明]本环节为这节课的重点,考虑到学生认知上的困难,设计了“观察—猜想—验证—说理—抽象”这一过程,为学生提供充分从事数学活动和交流的机会,使学生经历从实践活动中抽象出数学概念的过程,并将从实践中探索得到的结论再应用到实践中去.

3.判定总结,灵活应用

做一做:如图2,AC∥ED,点B在AC上,且AB=ED=BC.找出图中的平行四边形.

议一议:一组对边平行,另一组对边相等的四边形一定是平行四边形吗?

练一练:有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?

比一比:如图3,四个全等三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.

[设计说明]让学生通过己有的生活经验和数学知识,把探索出的平行四边形的判别条件逐步应用于问题的解决中去,把知识形成过程变为知识发生、发展的创造过程,实现要领理解和结论掌握的感性到理性的自然深化;多个练习是培养学生多层次、多角度思维能力的一种较好形式,鼓励学生自主探索、合作交流,可以使学生品尝成功的喜悦;在练习教学中应引导学生独立思考,自主探究,并通过合作交流,完善说理,学会有条理地表达.同时及时巩固了新学的判定方法.

4.小结本课,布置作业

教师给出方向,让学生回顾本节知识技能和思想方法.

思想方法总结:化归、探究法.

布置作业,巩固新知.

略.

[设计说明]通过提问的方式,引导学生小结本节重要的知识和思想方法,养成“学习—总结—学习”的良好学习习惯,发挥自我评价的作用;布置作业对本节的认知技能进行检测和反馈.

教学反思

平行线的判定和性质练习题 篇3

一、知识点:

二、基础训练:

1:①如图,找出图中所有的同位角;

找出图中所有的内错角;

找出图中所有的同旁内角。

②∠BAC和∠是和被所截的内错角;

∠ACD和∠是和被所截的同旁内角。

2.如图,给出下面的推理,其中正确的是

①∠B=∠BEF,AB∥EF②∠B=∠CDE.AB∥CD

③∠B+∠BEF=180°,AB∥EF④AB∥CD,CD∥EF,AB∥EF

A.①②③B.①②④C.①③④D.②③④xKb1.Com

3.如图AB∥DE,∠B=150°,∠D=140°,则∠C的度数为()

A.60°B.75°C.70°D.50°

第2题第3题第4题第5题

4.如图,若∠1与∠2互补,∠2与∠3互补,则()

A.3∥4B.2∥5C.1∥3D.1∥2

5.如果线段AB是线段CD经过平移得到的,如图所示,那么线段AC与BD的关系为()

A.相交B.平行C.平行且相等D.相等

三、例题讲解

1、如图,从下列三个条件中:(1)AD∥CB(2)AB∥CD(3)∠A=∠C,

任选两个作为条件,另一个作为结论,编一道数学题,并说明理由。

已知:

结论:

理由:

2、如图,AD∥BC,∠A=∠C,BE、DF分别平分∠ABC和∠CDA,试说明BE∥DF的理由?

3、两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积。

三角形

一、知识点:

1、三角形三边之间的关系:

三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。

若三角形的三边分别为a、b、c,则

2、三角形中的主要线段:

三角形的高、角平分线、中线。

注意:①三角形的高、角平分线、中线都是线段。②高、角平分线、中线的应用。

3、三角形的内角和:

三角形的3个内角的和等于180°;直角三角形的两个锐角互余;

三角形的一个外角等于与它不相邻的两个内角的和;

三角形的一个外角大于与它不相邻的任意一个内角。

4、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。

二、例题:

例1:填空:

①在⊿ABC中,三边长分别为4、7、x,则x的取值范围是;

②已知等腰三角形的`一条边等于4,另一条边等于7,那么这个三角形的周长是;

③已知a,b,c是一个三角形的三条边长,则化简|a+b-c|-|b-a-c|=;

④如图,在⊿ABC中,IB、IC分别平分∠ABC、∠ACB,

若∠ABC=50°,∠ACB=60°,则∠BIC=°;

若∠A=70°,则∠BIC=°;

若∠A=n°,则∠BIC=°;

所以,∠A和∠BIC的关系是。

⑤已知多边形的每一个内角都等于144°,则多边形的内角和等于°。

例1:如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,

∠DAE=18°,求∠C的度数.

例2:如图,AE是△ABC的外角平分线,∠B=∠C,试说明AE∥BC的理由。

例3:如图,已知在△ABC中,BD平分∠ABC,CD平分△ABC的外角∠ACE,BD、CD相交于D,试说明∠A=2∠D的理由.

三、作业:

1、如图,在△ABC中,AD是高,AE是角平分线,∠B=36,∠C=60。求∠CAD和∠AEC的度数。

2、如图,OB、OC是△ABC的外角平分线,若∠A=50°,求∠BOC的度数。

3、如图,把△ABC纸片沿DE折叠,当点A落在BCDE内部时,请找出∠A和∠1、∠2的关系,并说明理由?

4、已知一个多边形,除了一个内角外,其余各内角和是2400°,求这个内角的度数。

幂的运算

【知识梳理】

幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m、n为正整数);

②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n为正整数,m>n);

③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n为正整数);

④积的乘方法则:积的乘方,把积中各个因式分别乘方,再把所得的幂相乘

即:(ab)n=anbn底数不变,指数相乘

⑤零指数:(a≠0);

⑥负整数指数:(a≠0,n为正整数);

【考点例题】

1.计算:___________.

2.=

3.一张薄的金箔的厚度为0.000000091m,用科学记数法可表示为______________m.

4.若,则=.

5.下列计算中,不正确的是().

A、B、(-2x2y)3=-6x6y3

C、3ab2(-2a)=-6a2b2D、(-5xy)2÷5x2y=5y

6.计算

(1)(2);

(3)(-3)0-()-1+

7.若x=2m+1,y=3+8m,则用x的代数式表示y为.

8.已知a=355,b=444,c=533,则有()

A.a

第八章《幂的运算》水平测试

三、用心解答(共60分)

1.(本题16分)计算:

(1)(2)

(3)(4)

2.(本题10分)用简便方法计算:

(1)(2)

3.)若,解关于的方程.

4.已知,求的值.

5.已知2x+5y-3=0,求的值.

6、与的大小关系是

7、已知a=2-555,b=3-444,c=6-222,请用“>”把它们按从小到大的顺序连接起来

8、若a=8131,b=2741,c=961,则a、b、c的大小关系为.

9、计算(1)(2)(3)

第九章《整式乘法与因式分解》

一、本章概念

1、单项式乘单项式:单项式与多项式相乘:多项式乘多项式:

2、乘法公式:

①完全平方公式:、

②平方差公式:

3、因式分解:

二、基础练习

1、计算:=________;(2x+5)(x-5)=_______.(3x-2)2=_______________;

(—a+2b)(a+2b)=______________.=_____________.

2、填空、⑴;⑵

3、多项式的公因式是___________;

分解因式=.

4、分解因式:⑴ ;⑵=.

5、若a—b=2,3a+2b=3,则3a(a—b)+2b(a—b)=.

6、下列四个等式从左至右的变形中,是因式分解的是: ( )

A.;B.;

C.;D..

7、下列多项式,在有理数范围内不能用平方差公式分解的是:( )

A.B.C.D.1

8、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的

代数恒等式是: ( )

A.B.

C.D.

9、如果多项式能分解为一个二项式的平方的形式,那么m的值为()

A.4B.8C.—8D.±8

10、利用乘法公式计算:

(1)(2)(x+y)(x2+y2)(x-y)

(3).(a-2b+3)(a+2b-3)(4).(m-n-3)2

11、分解因式:

(1)-5a2+25a;(2)25x2-16y2(3)x2+4xy+4y2;

(4)16a4-8a2+1(5)(6)x2-2x-8

三、应用

1、试说明不论x、y取什么有理数,多项式x2+y2-2x+2y+3的值总是正数.

2、已知a2-2a+b2+4b+5=0,求(a+b)的值。

3、求:(1)的值;(2)的值。

第十章二元一次方程

【复习内容】二元一次方程组

【知识梳理】

二元一次方程(组)

1.二元一次方程:2.二元一次方程组:3.二元一次方程组的解:4.二元一次方程组的解法.

基础练习

1.写出其中一个解是的一个二元一次方程是.

2.已知是方程组的解,则=.

3.已知,请用含的代数式表示,则

4.方程x+2y=5的正整数解有

A.一组B.二组C.三组D.四组

5.方程组的解满足方程x+y-a=0,那么a的值是

A.5B.-5C.3D.-3

6.足球比赛的计分规则为胜一场得3分,平一场得1人,负一场得0分,一个队打14场,负5场,共得19分,那么这个队胜了

A.3场B.4场C.5场D.6场

7.如果.则x+y的值是___________.

8.解方程组(1)(2)

(3)(4)解方程组

9.己知y=x2+px+q,当x=1时,y=3:当x=-3时,y=7.求当x=-5时y的值.

10.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种无盖

的长方体纸盒.(长方形的宽与正方形的边长相等)

(1)现有正方形纸板50张,长方形纸板l00张,若要做竖式纸盒x个,横式纸盒y个.

①根据题意,完成以下表格:

②若纸板全部用完,求x、y的值;

(2)若有正方形纸板80张,长方形纸板n张,做成上述两种纸盒,纸板恰好全部用完.已知162

2列方程解应用题

1:某市公园的门票价格如下表所示:

购票人数1~50人51~100人100人以上

票价10元/人8元/人5元/人

某校初一年级甲乙两个班共100多人,去该公园举行联欢活动,其中甲班有50多人乙班不足50人,如果以班为单位买门票,一共要付920元;如果两个班一起买票,一共要付515元。甲、乙两班分别有多少人?

2:某校初一年级200名学生参加期中考试,数学成绩情况如下表,问这次考试中及格和不及格的人数各是多少人?

平均分

及格学生87

不及格学生43

初一年级76

第11章一元一次不等式(组)

一、选择题

1.已知a>b,c为任意实数,则下列不等式中总是成立的是()

A.a+cb-cC.acbc

2.下列说法中,错误的是()

A.不等式的正整数解中有一个B.是不等式的一个解

C.不等式的解集是D.不等式的整数解有无数个

3.已知点M(1-2m,m-1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()

4.若关于x的一元一次不等式组无解,则a的取值范围是()

A.a≥1B.a>1C.a≤-1D.a<-1

5.不等式组的解集在数轴上表示为().

6.如图,数轴上表示的是下列哪个不等式组的解集()

A.B.C.D.

7.若不等式的解集为2

A.-2,3B.2,-3C.3,-2D.-3,2

8.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有()

A.29人B.30人C.31人D.32人

二、填空题

9.不等式x-1≤10的解集是

10.不等式2x+9≥3(x+2)的正整数解是_________________.

11.若关于、的二元一次方程组的解满足﹥1,则的取值范围是.

12.若不等式组的解集是x>3,则m的取值范围是______.

三、解答题

13,解不等式2(x-1)-3<1,并把它的解在数轴上表示出来.

xKb1.Com

14.解不等式组.

15.求不等式组的整数解.

16.(1)解不等式:5(x–2)+8<6(x–1)+7

(2)若(1)中的不等式的最小整数解是方程2x–ax=3的解,求a的值.

17.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.

18.某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分。

(1)小明考了68分,那么小明答对了多少道题?

(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?

19.某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票。某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?

第十二章《证明》

一、课上热身

1.命题“垂直于同一条直线的两条直线互相平行”的题设是().

(A)垂直(B)两条直线(C)同一条直线(D)两条直线垂直于同一条直线

2.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的例子是()

(A)∠1=50°,∠2=40°(B)∠1=50°,∠2=50°(C)∠1=∠2=45°(D)∠1=40°,∠2=40°

3、如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)

∠B=∠5;能判定AB∥CD的条件个数有()

A.1B.2C.3D.4

4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()

A、45°B、60°C、75°D、85°

5.“同位角相等”的逆命题是______________________。

6.填空使之成为一个完整的命题。若a⊥b,b∥c,则.

7.若a∥b,b∥c,则.理由是______________________。

8.在△ABC中,∠A=60°,∠B=2∠C,则∠B=______°

9.如图,直线1∥2,AB⊥1,垂足为O,BC与2相交于点E,若∠1=43°,则∠2=__

100.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠EFG=55°,则∠1=_______°.

三、例题讲解

3、如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.

(1)求∠BAE的度数;

(2)求∠DAE的度数;

平行线性质和判定复习 篇4

1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;

(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状

2.如图,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D. 求证:四边形ABCD是平行四边形.

3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;

(2)若AC与BD交于点O,求证:AO=CO.

4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.

5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明. 6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点. 求证:四边形MFNE是平行四边形.

7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.

8.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?

9.如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.

10.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.

11.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上. 求证:EF和GH互相平分. 12.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.

13.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;

(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)

14.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.

(1)求证:AF=CE;

(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.

15.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.

16.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.

(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD. 17.如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;

(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?

18.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;

(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.

19.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.

20.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;

(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;

平行线及其判定与性质练习题 篇5

1、基础知识

(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:。

(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.

(5)两条直线平行的条件(除平行线定义和平行公理推论外):

①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.

②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______. ③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:

2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)

3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(______,______)

4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.

5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)

6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.

(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:

证明:∵CD⊥DA,DA⊥AB,()∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,()从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)

7、已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC. 证明∵∠ABC=∠ADC,11ABCADC.2∴2()又∵BF、DE分别平分∠ABC与∠ADC,∴111ABC,2ADC.22()∵∠______=∠______.()∵∠1=∠3,()∴∠2=______.()∴______∥______.()

8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由.(1)问题的结论:a______c.

(2)证明思路分析:欲证a______c,只要证______∥______.(3)证明过程:

证明:∵∠1=∠2,()∴a∥______,(_________,_________)① ∵∠3+∠4=180°

∴c∥______,(_________,_________)② 由①、②,因为a∥______,c∥______,∴a______c.(_________,_________)

9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是()(A)1(B)2(C)3(D)4

10、下列说法中,正确的是().(A)不相交的两条直线是平行线.

(B)过一点有且只有一条直线与已知直线平行.

(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.

(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.

11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD= 度.

图6

12、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___ 对平行线。

13、下列说法正确的是()(A)有且只有一条直线与已知直线垂直

(B)经过一点有且只有一条直线与已经直线垂直(C)连结两点的线段叫做这两点间的距离

(D)过点A作直线l的垂线段,则这条垂线段叫做点A到直线l的距离

14、同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥b B.b⊥d C.a⊥d D.b∥c

平行线的性质 1.基础知识

(1)平行线具有如下性质

①性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______. ②性质2:两条平行线______,______相等.这个性质可简述为____________,______. ③性质3:____________,同旁内角______.这个性质可简述为____________,______.

(2)同时______两条平行线,并且夹在这两条平行线间的____________叫做这两条平行线的距离. 2.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______,理由是_____________________________________.(2)如果AB∥DC,那么∠3=______,理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______,理由是_______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______,理由是________________________.3.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,()∴∠2=______.(___________________)(2)∵DE∥AB,()∴∠3=______.(___________________)(3)∵DE∥AB(),∴∠1+______=180°.(____________________)4.已知:如图,∠1=∠2,∠3=110°,求∠4. 解题思路分析:欲求∠4,需先证明______//______.解:∵∠1=∠2,()∴______//______.(__________________)∴∠4=_____=_____°.(__________________)5.已知:如图,∠1+∠2=180°,求证:∠3=∠4. 证明思路分析:欲证∠3=∠4,只要证______//______.证明:∵∠1+∠2=180°,()∴______//______.(_________________)∴∠3=∠4.(_________,_________)6.已知:如图,∠A=∠C,求证:∠B=∠D.

证明思路分析:欲证∠B=∠D,只要证______//______.证明:∵∠A=∠C,()∴______//______.(_________,_________)∴∠B=∠D.(_________,_________)7.已知:如图,AB∥CD,∠1=∠B,求证:CD是∠BCE的平分线.

证明思路分析:欲证CD是∠BCE的平分线,只要证______//______.证明:∵AB∥CD,()∴∠2=______.(_________,_________)但∠1=∠B,()∴______=______.(等量代换)即CD是____ ________.8.已知:如图,AB∥CD,∠B=35°,∠1=75°,求∠A的度数. 解题思路分析:欲求∠A,只要求∠ACD的大小. 解:∵CD∥AB,∠B=35°,()∴∠2=∠______=______°(_________,_________)而∠1=75°,∴∠ACD=∠1+∠2=______。∵CD∥AB,()∴∠A+______=180°.(_________,_________)∴∠A=______=______.9.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数. 分析:可利用∠DCE作为中间量过渡. 解:∵AB∥CD,∠B=50°,()∴∠DCE=∠______=______°(_________,_________)又∵AD∥BC,()∴∠D=∠______=______°(_________,_________)想一想:如果以∠A作为中间量,如何求解? 解法2:∵AD∥BC,∠B=50°,()∴∠A+∠B=______.(_________,_________)即∠A=______-______=______°-______°=______.∵DC∥AB,()∴∠D+∠A=______.(_________,_________)即∠D=______-______=______°-______°=______.10.已知:如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数. 解:过P点作PM∥AB交AC于点M. ∵AB∥CD,()∴∠BAC+∠______=180°()∵PM∥AB,∴∠1=∠______,()且PM∥______。(平行于同一直线的两直线也互相平行)∴∠3=∠______。(两直线平行,内错角相等)∵AP平分∠BAC,CP平分∠ACD,()111______,4______22()11BACACD9022()14∴∠APC=∠2+∠3=∠1+∠4=90°()总结:两直线平行时,同旁内角的角平分线______。

11.已知:如图,已知DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.

12.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.

(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.

13.已知:如图,AB∥CD,试猜想∠A+∠AEC+∠C=?为什么?说明理由.

14.如下图,AB∥DE,那么∠BCD=().(A)∠2-∠1(B)∠1+∠2(C)180°+∠1-∠2(D)180°+∠2-2∠1 15.如图直线l1∥l2,AB⊥CD,∠1=34°,那么∠2的度数是______.

(15题)(16题)

16.如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=______度.

17.王强从A处沿北偏东60°的方向到达B处,又从B处沿南偏西25°的方向到达C处,则王强两次行进路线的夹角为______度.

18.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.

19.如图,AB∥CD,FG⊥CD于N,∠EMB=,则∠EFG等于().(A)180°-(B)90°+(C)180°+(D)270°-

20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.

21.以下五个条件中,能得到互相垂直关系的有(). ①对顶角的平分线 ②邻补角的平分线 ③平行线截得的一组同位角的平分线 ④平行线截得的一组内错角的平分线 ⑤平行线截得的一组同旁内角的平分线(A)1个(B)2个(C)3个(4)4个

22.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有().(A)6个(B)5个

(C)4个(D)3个

23.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有().

(1)∠C′EF=32°(2)∠AEC=148°

(3)∠BGE=64°(4)∠BFD=116°(A)1个(B)2个(C)3个(D)4个

24.如图,AB∥CD,BC∥ED,则∠B+∠D=______.

25.如图,DC∥EF∥AB,EH∥DB,则图中与∠AHE相等的角有__________________.26.如图,BA⊥FC于A点,过A点作DE∥BC,若∠EAF=125°,则∠B=______.(24题)

(25题)

(26题)27.已知:如图,AC∥BD,折线AMB夹在两条平行线间.

图1 图2(1)判断∠M,∠A,∠B的关系;

(2)请你尝试改变问题中的某些条件,探索相应的结论。建议:①折线中折线段数量增加到n条(n=3,4……)②可如图1,图2,或M点在平行线外侧.

28.已知:如图,∠B=∠C,AE∥BC,求证:AE平分∠CAD. 证明:

26.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.

27.已知:如图,∠FED=∠AHD,∠HAQ=15°,∠ACB=70°,∠CAQ=55.求证:BD∥GE∥AH.

28.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.

29.已知:如图,CD⊥AB于D,DE∥BC,∠1=∠2.求证:FG⊥AB.

30.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.判断BE与DE的位置关系并说明理由.

平行线性质和判定复习 篇6

在同一平面内,不相交的两条直线叫做平行线.

角是平面几何图形中最活跃的元素,前面我们已学习过特殊角、数量关系角等角的知识.当两条直线相交或分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,进一步丰富了角的知识,它们在角的计算与证明中有广泛的应用.

与平行线相关的问题一般都是平行线的判定与性质的综合运用,主要体现在如下两个方面:

1. 由角定角

已知角的关系→(判定)两直线平行→(性质)确定其他角的关系.

2.由线定线

已知两直线平行→(性质)角的关系行→(判定)确定其他两直线平行.

例题

【例1】如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有个.(安徽省中考题)

思路点拨充分运用对顶角、平行线性质等与角相关的知识,借助互余的概念判断.注:平面几何的研究除了运用计算方法外,更多的要依靠时图形的观察(直觉能力),运用演绎推理的方法去完成,往往需要通过观察、实验操作进而猜想蛄论(性质),或由预设结论去猜想条件,再运用演绎推理方法加以证明.

在学习完相交线、平行线内容后,平面几何的学习就由实验几何阶段进入论证几何阶段,顺利跨越推理论证阶段,需注意以下几点:

(1)过好语言关;

(2)学会识图;

(3)善于分析.

【例2】如图,平行直线AB、CD与相交直线EF、GH相交,图中的同旁内角共有().

A.4对B.8对C.12对D.16对

(“希望杯”邀请赛试题)

思路点拨每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解人手.

【例3】如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°

求征:AB∥EF.

思路点拨解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角”或作出与AB或CD平行的直线.

【例4】如图,在ΔABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠

ACB的平分线.求证:∠EDF=∠BDF.

(天津市竞赛题)

思路点拨综合运用角平分线、垂直的定义、平行线的判定与性质等知识,因图形复杂,故需恰当分解图形.【例5】探究:

(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?

(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;

(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;

(4)若将E点移至图c所示位置,情况又如何?

(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?

思路点拨已知AB∥CD,连结AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.

注: 分析主要从以下两个方面进行:

(1)由因导果(综合法),即从已知条件出发推出相应结论.(2)执果溯因(分析法),即要得到结论需具备什么条件.

解题时,我们既要抓住条件,又要盯住目标,努力促使已知与来知的转化与沟通.探索性问题一般具有以下特点:

(1)给出了条件,但没有明确的结论;(2)给出了结论,但没有给出或没有全部给出应具备的条件,(3)先提出特殊情况进行研究,再要求归纳、猜测和确定一般结论;(4)先对某一给定条件和结论的问题进行研究,再探讨改变条件时其结论相应发生的变化,或改变结论时其条件相应发生的变化;(5)解题方法需要独立创新.

“解题千万道,解后抛九霄”是难以达到提高解题能力,发展思维的目的的.善于作解题后小结,回顾解题过程,总结解题经验和体会,再进而作一题多解,一题多问,一题多变的思考,挖掘题目的深度和广度,扩大题目的辐射面,这对解题能力的提高是十分有益的.

学力训练

1.如图,已知AE∥CD,EF交AB于M,MN⊥EF于M,NN交CD于N,若∠BME=110°,则∠MND=.

(湖北成宁市中者题)2.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2一∠3=90°,∠4=115°,那么∠3=.

3.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α.(内蒙古中考题)

4.已知两个角的两边分别平行,其中一个角为40°,那么另一角是度. 5.如图,下列条件中,不能判断直线l1∥l2的是().

A.∠l=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°

(南通市中考题)6..已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,符合条件l的条数为().

A.1B.2C.3D.4(安徽省中考题)

7.如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是().A.(1)、(3)B.(2)、(4)C.(1)、(3)、(4)D.(1)、(2)、(3)、(4)

(江苏盐城市中考题)

8.如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有().A.6个D.5个C.4个D.3个(湖北省荆门市中考题)

9.如图,已知∠l+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并对结论进行证明.

10.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE. 11.在同—平面内有2002条直线a1,a2,„,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,„,那么a1与a2002的位置关系是.

12.若平面上4条直线两两相交且无三线共点,则共有同旁内角对.(江苏省竞赛题)

13.如图,已知l1//l2,AB⊥l1,∠ABC=130°,则∠α.

14.如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP= 50°,则∠GHM的大小是.

(“希望杯”邀请赛试题)

15.如图,D、G是ΔABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有().

A,4对B.5对C .6对D.7对

(“数学新蕾”竞赛题)

16.如图,若AB∥CD,则().

A.∠1=∠2+∠3B.∠1=∠3一∠

2C.∠1+∠2+∠3=180°∠l一∠2十∠3=180°

17.如图,AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于().A.180°B.270°C. 360°D.450°

18.如图,AB∥EF,∠C=90°,则α、β和γ的关系是().

A. β=α+γB.α+β+γ=180°

C.α+β-γ=180° D.β+γ-α=180°

19.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.

20.如图,已知AB∥CD,α=∠A+∠E,β=∠B+∠C+∠D,证明:β=2α. 21.平面上有7条不同的直线,如果其中任何三条直线都不共点.

(1)请画出满足上述条件的一个图形,并数出图形中各直线之间的交点个数;(2)请再画出各直线之间的交点个数不同的图形(至少两个);

(3)你能否画出各直线之间的交点个数为n的图形,其中n分别为6,2l,15?(4)请尽可能多地画出各直线之间的交点个数不同的图形,从中你能发现什么规律? 22.如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.

(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;

若不变,求出这个比值.

上一篇:八年级上册文言文下一篇:数学课堂,呼唤有效的自主探索 文档