写文章英文

2025-02-24 版权声明 我要投稿

写文章英文(通用8篇)

写文章英文 篇1

1. 要写好科研论文,必须先养成读英文文章的习惯,争取每天30-60分钟。刚开始可以选择以读英文报纸、英文新闻为主,逐渐转为读专业杂志。我会在近期专门写一篇博客文章介绍一套行之有效的增强读专业杂志能力的办法。

2. 写科研论文,最重要的是逻辑。逻辑的形成来自对实验数据的总体分析。必须先讨论出一套清晰的思路,然后按照思路来做图(Figures),最后才能执笔。

3. 具体写作时,先按照思路(即Figures)写一个以subheading为主的框架,然后开始具体写作。第一稿,切忌追求每一句话的完美,更不要追求词语的华丽,而主要留心逻辑(logic flow),注意前后句的逻辑关系、相邻两段的逻辑关系。写作时,全力以赴,尽可能不受外界事情干扰(关闭手机、座机),争取在最短时间内拿出第一稿。还要注意:一句话不可太长。

4. 学会照葫芦画瓢。没有人天生会写优秀的科研论文,都是从别人那里学来的。学习别人的文章要注意专业领域的不同,有些领域(包括我所在的结构生物学)有它内在的写作规律。科研文章里的一些话是定式,比如 “To investigate the mechanism of …, we performed …”, “These results support the former, but not the latter, hypothesis …”, “Despite recent progress, how … remains to be

elucidated …” 等等。用两次以后,就逐渐学会灵活运用了。在向别人学习时,切忌抄袭。在美国一些机构,连续7个英文单词在一起和别人的完全一样,原则上就被认为抄袭(plagiarism)。

5. 第一稿写完后,给自己不要超过一天的休息时间,开始修改第二稿。修改时,还是以逻辑为主,但对每一句话都要推敲一下,对abstract和正文中的关键语句要字斟句酌。学会用“Thesaurus”(同义词替换)以避免过多重复。第二稿的修改极为关键,再往后就不会大改了。

写文章英文 篇2

一.要有“一叶知秋”的眼力

古人云:“一叶落而知天下秋。”这说的其实也就是以小能见大、见微可知著。高明的作者常常由一物之微, 而触动人世的大题, 犹似潺潺山溪, 蜿蜒注入大海。如《石钟山记》里苏轼由对山名来由的考察告诉了人们凡事不可臆断的道理;《游褒禅山记》则借深入华山洞游览的体会, 阐明了学习立业必须坚持不懈、知难而愈进的道理。

由此我们可以得出, 所谓以小见大, 就是通过细小的、人们熟悉的事物来阐明抽象的、深刻的道理:在叙事写景中透露人生哲理;透过平凡的现象品味出不平凡的真谛;从日常生活片段、小故事中提炼非凡的意义;从细小的场景中揭示某些本质。

总之, 并非一定是惊天动地的大事才能写出大道理来, 取材越小, 所阐述的道理越能撼动人心。山村夜宿, 卧听山谷中一声声清细的岩滴, 我们可以想见宇宙的深沉;街头伫立, 从一个镜头中, 我们可以窥见时代的风云;静夜独坐, 回忆白天发生的一件小事, 我们可以咀嚼出人生的甘苦……

二.要有“刻骨铭心”的感悟

一些同学的文章, 能从生活中选取新鲜的材料, 叙写也比较生动, 但却没有真挚情感的涌动, 不能给人带来心灵的震撼, 没有理性之光的闪烁, 不能给人以人生的启迪。究其原因, 是没有用心感受和体味生活, 不能解读生活中所蕴含的丰富情感, 不能捕捉生活所折射的深邃哲理。“一花一世界, 一树一菩提。”纵览世界, 洞察人情, 用心感受, 用心体味, 方能感受到人间真情的可贵、真理的永恒, 方能写出动人的华章。

(1) 悟情。

平凡的生活表象, 饱含着丰富的情感特质。感受之, 解读之, 便会使文章具有震撼人心的艺术魅力。如满分作文《我想握住你的手》:叙写“你握住我的手去唱歌”“你握住我的手去放风筝”两个温馨的生活细节, 由此感悟父爱的温暖、真情的可贵。“可是那一次, 当我应该握住你的手, 我却没有”, 深深的遗憾里隐藏着美丽的感恩情怀, 思想内容深刻感人。

(2) 悟理。

用心感受, 联想人生, 便会体味和解读出生活所折射的丰富内涵和深邃哲理, 显现出高远的志趣。如题为《飘落心灵的秋叶》的作文, 写作者怀着失落、彷徨之情来到公园, 面对一片火红的秋叶, 对生活进行深入的思考, 作者突然发觉那枯叶的疤痕处竟顽强地生长出一小片梧桐叶, 树犹如此, 何况人呢?这一感悟拂去了作者心灵上昏暗的阴影, 给他带来了生活的勇气和信心。深刻的感悟给景色注入了奔腾的情感, 深刻的思想。

三.要有“独出心裁”的见解

一篇文章所表现出来的思想观点想让读者有所启迪, 这就要求作者对事理有独到的见解、主张与情感倾向, 观点要能够引起读者的联想, 启发读者对原来的思考空白有所弥补, 有所领悟, 甚至产生作进一步深入探讨的欲望, 人云亦云自然不会对人有所触动。如《请珍视我们的选择》一文写到:“我常常为知识分子的脆弱而惋惜。像汨罗江畔屈原伟岸的身影……我不知道他为什么会仅仅为一个不明智的君主而在生与死间作出这样一种轻率而又惊心动魄的选择……”对屈原的投江作出了深刻的反思, 重新审视早有定论的历史人物, 发人深省。

四.要有“追本溯源”的过程

文章英文摘要 篇3

Over the past 30 years since the beginning of reforms and opening up, remarkable achievements have been made in the field of opera and musical production in China. However, there do remain some issues that can only be handled by furthering reform policies.

First of all, great productions should always be targeted at the market of a country like China with its particular situation and conditions, and should be conducted very, very cautiously so as to create small- and medium-sized operas and musicals with less investment but higher artistic quality while in the meantime keeping on searching for various market-oriented producing modes.

Secondly, in the present age of multiple opera concepts and styles, the mainstream productions should be as such: the script writing with a complex and vivid plot; the music composition with focus on tonality and with cantabile melody and voice as the main means of expression which can be actively assisted by the dramatic expression of the orchestra, making the main part of the singing easily acceptable to the audience;and the majority of singers with their eyes on the market and the audience, taking the theatric nature and appeal of an opera as the major starting point from where the artists should be able to draw the audience to the theatre by creating exquisite plays that can be enjoyed by every single spectator.

Thirdly, the popularity, entertaining nature and urban culture of a musical should be studied with great attention, while investigation should also be undertaken to find out the real interest of ordinary people and the regularities of musical production and marketing. We should also learn from the mature experience of Western musical productions and make the best use of our traditional culture as well, trying our best to integrate all relevant elements such as scripts, music and other artistic means so as to create something that would ″look beautiful, sound great and be enjoyed by all″.

Fourthly, composers and playwrights should have the sense of high morality and quality and should be free from any unhealthy ways of creation such as rashness, superficiality, extravagance and exaggeration, and should fight against such mean behaviours as acting blindly or eagerly for quick success, ignoring the reality, fabricating totally groundlessly, keeping no promises or failing to perform one's duty.

Fifthly, more opera and musical producers, managers and business professionals should be trained, as they are the must when Chinese operas and musicals are going to be marketized or to be enjoyed by the audience. Luckily, such metropolises as Shanghai and Beijing have already seen talents of this kind who have had enough experience and lessons as well from their past careers in organising commercial performances of operas and musicals, and who will surely encourage more successors to follow suit.

I believe that both operas and musicals should have great market and great audience in China. As long as playwrights and composers observe the artistic and market rules, work hard to improve their own ability and creativity, and search for more ways of development in the face of the opportunities and challenges, it is then for sure that opera and musical production in China will definitely be anticipating a brighter future in this new century!

The Future Belongs to the Children:Written on the

Occasion of the 25th Anniversary of the Establishment

of the Children and Young Women's Choir of China

National Symphony Orchestra

December 21st, 2008. It was the coldest day in Beijing since the winter came. However, the Forbidden City Concert Hall still saw so many people coming to the concert in celebration of the 25th anniversary of the world famous Children and Young Women's Choir of the China National Symphony Orchestra.

A big audience filled the concert hall. They came to share the happiness of the children and the entire concert show was so impressive that, to a spectator like me who has enjoyed their shows for several times, each image of their wonderful performance would remain in my mind, so unforgettable and so striking.

The choir was founded in 1983 by Prof. Yang Hongnian, music educator at the Central Conservatory of Music. He and his family have devoted so much to the development of the choir. The past 25 years saw its growth from the birth to today's fruitful achievements, with both joys and tears, but always persistent in pursuing their dream.

Shortly before the concert started, Li Lanqing, former Chinese Vice-Premier, sent his message for the choir: ″Developing the choral art to raise the general quality of the youth and enrich the cultural life of the society.″ This is not only an encouragement, but also a real portrait of the choir itself. Yang's wife, Prof. Tang Chongqing, the choir's artistic director, also a musician, unveiled some untold stories about the choir to the audience at the concert hall. Over the past 25 years, the choir has brought music and love to almost every corner of the world. As early as in 1987, the choir participated in the 3rd International Children's Choir Festival in Washington D.C. where they received the Diploma of Highest Appreciation with signature of the former US President Ronald Reagan. This marks the beginning of their world tours of singing as little ambassadors of peace, friendship and love. The choir has given nearly 600 shows for the past twenty years in such countries as Hungary, Austria, Japan, Singapore, Monaco, Italy, Sweden, Russia, Germany, Korea and Canada, as well as the region of Taiwan where they were praised as ″the common pride of the Chinese people on both sides of the Taiwan Strait″. The choir has so far won eight prizes at international contests, including four great prizes at the 44th International Polyphonic Contest ″Guido d'Arezzo″ in Italy in 1996, the only Special Prize at the Moscow Young Talents Music Festival in honouring the 200th Birthday of Alexander Pushkin and the First Prize ″Golden Tuning Fork″ at the First International Chorus TV Contest in Russia in 1999. Moreover, they visited Monaco and Moscow together with the Chinese delegation for bidding for the 2008 Summer Olympic Games, and in particular, 66 members of the choir sang the Olympic Hymn a cappella at the Opening Ceremony of the 29th Summer Olympiad in Beijing on August 8, 2008, winning great attention from all over the world.

Apart from international chorus festival and concert shows, the choir has also attended numerous charity performances for the Project Hope, the SOS Orphans' Village and foreign elderly houses as well as reform centres. These regularly held charity concerts fulfilled the very objective of the choir for ″love and contribution″. The young singers of the group enjoy not only the joy of the music, but also the charms of the music. One member said that ″the choir helps me feel the happiness and sentiment that can never be described in words, and makes me touched in the cleanest and also the most sensitive heart, and this state of being touched helps me understand that I can have something that I believe in, something from the bottom of my heart rather than a particular person or deity or any doctrine or argument.″ The choir is thus filled with love and care just as the teachers love the children and vice versus.

英文励志文章 篇4

One windy spring day, I observed young people having fun using the wind to fly their kites。 Multicolored creations of varying shapes and sizes filled the skies like beautiful birds darting and dancing。 As the strong winds gusted against the kites, a string kept them in check。

Instead of blowing away with the wind, they arose against it to achieve great heights。 They shook and pulled, but the restraining string and the cumbersome tail kept them in tow, facing upward and against the wind。 As the kites struggled and trembled against the string, they seemed to say, “Let me go! Let me go! I want to be free!” They soared beautifully even as they fought the restriction of the string。 Finally, one of the kites succeeded in breaking loose。 “Free at last,” it seemed to say。 “Free to fly with the wind。”

Yet freedom from restraint simply put it at the mercy of an unsympathetic breeze。 It fluttered ungracefully to the ground and landed in a tangled mass of weeds and string against a dead bush。 “Free at last” free to lie powerless in the dirt, to be blown helplessly along the ground, and to lodge lifeless against the first obstruction。

How much like kites we sometimes are。 The Heaven gives us adversity and restrictions, rules to follow from which we can grow and gain strength。 Restraint is a necessary counterpart to the winds of opposition。 Some of us tug at the rules so hard that we never soar to reach the heights we might have obtained。 We keep part of the mandment and never rise high enough to get our tails off the ground。

Let us each rise to the great heights, recognizing that some of the restraints that we may chafe under are actually the steadying force that helps us ascend and achieve。

什么是你攀升的方向标

在一个有风的春日,我看到一群年轻人正在迎风放风筝玩乐,各种颜色、各种形状和大小的风筝就好像美丽的鸟儿在空中飞舞。当强风把风筝吹起,牵引线就能够控制它们。

风筝迎风飘向更高的地方,而不是随风而去。它们摇摆着、拉扯着,但牵引线以及笨重的尾巴使它们处于控制之中,并且迎风而上。它们挣扎着、抖动着想要挣脱线的束缚,仿佛在说:“放开我!放开我!我想要自由!”即使与牵引线奋争着,它们依然在美丽地飞翔。最后,一只风筝成功挣脱了。“最后自由了,”它好像在说,“最后能够随风自由飞翔了!”

然而,脱离束缚的自由使它完全处于无情微风的摆布下。它毫无风度地震颤着向地面坠落,落在一堆乱草之中,线缠绕在一颗死灌木上。“最后自由”使它自由到无力地躺在尘土中,无助地任风沿着地面将其吹走,碰到第一个障碍物便毫无生命地滞留在那里了。

有时我们真像这风筝啊!上苍赋予我们困境和约束,赋予我们成长和增强实力所要遵从的规则。约束是逆风的必要匹配物。我们中有些人是如此强硬地抵制规则,以至我们从来无法飞到本来能够到达的高度。我们只遵从部分戒律,因此永远不会飞得足够高,使尾巴远离地面。

关于中国文化的英文文章 篇5

Lucky number is part of our culture

To my way of thinking, the so-called lucky number represents the characteristics of our culture.We Chinese have a tradition: whenever we have important things to do, we always select the day we think lucky.Such as: the “10.10.10” day(October 10, 2010), we regard it as the prefect day.For in our culture, “10” as a very lucky number means everything is perfect.This tradition is gradually formed in history.As we all know, china have a very long history.The nature is very sacred then, and our ancestors try their best in order to gain its help, hoping everything run smooth.So when they were to do things, they usually choose something which indicates good fortune.As the time passes, this habit slowly becomes a tradition, and gradually expands every aspect of life.For example, Chinese people like wear the red clothes, because in our eyes the red indicates positive, smooth, prosperous.Among this, the lucky number is the especial example.Now the number seems to appear everywhere in our daily life.Such as: our telephone number, various bank card number, ID number, VIP card number, house number and so on.The number four looked as unlucky, for its pronunciation sound as the word “death” in Chinese.So is the number seven.However, six, nine, ten are lucky numbers.Affected by this culture, most of us prefer to use the so-called lucky numbers.Therefore there are lots of couples choose the” 8.8.8” “9.9.9” ”10.10.10”day when they marry.All in all, the lucky number is part of our culture.All things we can do are holding a respect and accept of attitude to it.

机械专业英语文章 中英文对照 篇6

Materials may be grouped in several ways.Scientists often classify materials by their state: solid, liquid, or gas.They also separate them into organic(once living)and inorganic(never living)materials.材料可以按多种方法分类。科学家常根据状态将材料分为:固体、液体或气体。他们也把材料分为有机材料(曾经有生命的)和无机材料(从未有生命的)。

For industrial purposes, materials are divided into engineering materials or nonengineering materials.Engineering materials are those used in manufacture and become parts of products.就工业效用而言,材料被分为工程材料和非工程材料。那些用于加工制造并成为产品组成部分的就是工程材料。

Nonengineering materials are the chemicals, fuels, lubricants, and other materials used in the manufacturing process, which do not become part of the product.非工程材料则是化学品、燃料、润滑剂以及其它用于加工制造过程但不成为产品组成部分的材料。

Engineering materials may be further subdivided into: ①Metal ②Ceramics ③Composite ④Polymers, etc.工程材料还能进一步细分为:①金属材料②陶瓷材料③复合材料 ④聚合材料,等等。

Metals and Metal Alloys 金属和金属合金

Metals are elements that generally have good electrical and thermal conductivity.Many metals have high strength, high stiffness, and have good ductility.金属就是通常具有良好导电性和导热性的元素。许多金属具有高强度、高硬度以及良好的延展性。

Some metals, such as iron, cobalt and nickel, are magnetic.At low temperatures, some

metals

and

intermetallic

compounds

become superconductors.某些金属能被磁化,例如铁、钴和镍。在极低的温度下,某些金属和金属化合物能转变成超导体。

What is the difference between an alloy and a pure metal? Pure metals are elements which come from a particular area of the periodic table.Examples of pure metals include copper in electrical wires and aluminum in cooking foil and beverage cans.合金与纯金属的区别是什么?纯金属是在元素周期表中占据特定位置的元素。

例如电线中的铜和制造烹饪箔及饮料罐的铝。

Alloys contain more than one metallic element.Their properties can be changed by changing the elements present in the alloy.Examples of metal alloys include stainless steel which is an alloy of iron, nickel, and chromium;and gold jewelry which usually contains an alloy of gold and nickel.合金包含不止一种金属元素。合金的性质能通过改变其中存在的元素而改变。金属合金的例子有:不锈钢是一种铁、镍、铬的合金,以及金饰品通常含有金镍合金。

Why are metals and alloys used? Many metals and alloys have high densities and are used in applications which require a high mass-to-volume ratio.为什么要使用金属和合金?许多金属和合金具有高密度,因此被用在需要较高质量体积比的场合。

Some metal alloys, such as those based on aluminum, have low densities and are used in aerospace applications for fuel economy.Many alloys also have high fracture toughness, which means they can withstand impact and are durable.某些金属合金,例如铝基合金,其密度低,可用于航空航天以节约燃料。许多合金还具有高断裂韧性,这意味着它们能经得起冲击并且是耐用的

What are some important properties of metals?

Density is defined as a material’s mass divided by its volume.Most metals have relatively high densities, especially compared to polymers.金属有哪些重要特性?

密度定义为材料的质量与其体积之比。大多数金属密度相对较高,尤其是和聚合物相比较而言。

Materials with high densities often contain atoms with high atomic numbers, such as gold or lead.However, some metals such as aluminum or magnesium have low densities, and are used in applications that require other metallic properties but also require low weight.高密度材料通常由较大原子序数原子构成,例如金和铅。然而,诸如铝和镁之类的一些金属则具有低密度,并被用于既需要金属特性又要求重量轻的场合。

Fracture toughness can be described as a material’s ability to avoid fracture, especially when a flaw is introduced.Metals can generally contain nicks and dents without weakening very much, and are impact resistant.A football player counts on this when he trusts that his facemask won’t shatter.断裂韧性可以描述为材料防止断裂特别是出现缺陷时不断裂的能力。金属一般能在有缺口和凹痕的情况下不显著削弱,并且能抵抗冲击。橄榄球运动员据此相信他的面罩不会裂成碎片。

Plastic deformation is the ability of bend or deform before breaking.As engineers, we usually design materials so that they don’t deform under normal conditions.You don’t want your car to lean to the east after a strong west wind.塑性变形就是在断裂前弯曲或变形的能力。作为工程师,设计时通常要使材料在正常条件下不变形。没有人愿意一阵强烈的西风过后自己的汽车向东倾斜。

However, sometimes we can take advantage of plastic deformation.The crumple zones in a car absorb energy by undergoing plastic deformation before they break.然而,有时我们也能利用塑性变形。汽车上压皱的区域在它们断裂前通过经历塑性变形来吸收能量。

The atomic bonding of metals also affects their properties.In metals, the outer valence electrons are shared among all atoms, and are free to travel everywhere.Since electrons conduct heat and electricity, metals make good cooking pans and electrical wires.金属的原子连结对它们的特性也有影响。在金属内部,原子的外层阶电子由所有原子共享并能到处自由移动。由于电子能导热和导电,所以用金属可以制造好的烹饪锅和电线。

It is impossible to see through metals, since these valence electrons absorb any photons of light which reach the metal.No photons pass through.因为这些阶电子吸收到达金属的光子,所以透过金属不可能看得见。没有光子

能通过金属。

Alloys are compounds consisting of more than one metal.Adding other metals can affect the density, strength, fracture toughness, plastic deformation, electrical conductivity and environmental degradation.合金是由一种以上金属组成的混合物。加一些其它金属能影响密度、强度、断裂韧性、塑性变形、导电性以及环境侵蚀。

For example, adding a small amount of iron to aluminum will make it stronger.Also, adding some chromium to steel will slow the rusting process, but will make it more brittle.例如,往铝里加少量铁可使其更强。同样,在钢里加一些铬能减缓它的生锈过程,但也将使它更脆。

Ceramics and Glasses 陶瓷和玻璃

A ceramic is often broadly defined as any inorganic nonmetallic material. By this definition, ceramic materials would also include glasses;however, many materials scientists add the stipulation that “ceramic” must also be crystalline.陶瓷通常被概括地定义为无机的非金属材料。照此定义,陶瓷材料也应包括玻璃;然而许多材料科学家添加了“陶瓷”必须同时是晶体物组成的约定。

A glass is an inorganic nonmetallic material that does not have a crystalline structure.Such materials are said to be amorphous.玻璃是没有晶体状结构的无机非金属材料。这种材料被称为非结晶质材料。Properties of Ceramics and Glasses Some of the useful properties of ceramics and glasses include high melting temperature, low density, high strength, stiffness, hardness, wear resistance, and corrosion resistance.陶瓷和玻璃的特性

高熔点、低密度、高强度、高刚度、高硬度、高耐磨性和抗腐蚀性是陶瓷和玻璃的一些有用特性。

Many ceramics are good electrical and thermal insulators.Some ceramics have special properties: some ceramics are magnetic materials;some are piezoelectric materials;and a few special ceramics are superconductors at very low temperatures.Ceramics and glasses have one major drawback: they are brittle.许多陶瓷都是电和热的良绝缘体。某些陶瓷还具有一些特殊性能:有些是磁性材料,有些是压电材料,还有些特殊陶瓷在极低温度下是超导体。陶瓷和玻璃都有一个主要的缺点:它们容易破碎。

Ceramics are not typically formed from the melt.This is because most

ceramics will crack extensively(i.e.form a powder)upon cooling from the liquid state.陶瓷一般不是由熔化形成的。因为大多数陶瓷在从液态冷却时将会完全破碎(即形成粉末)。

Hence, all the simple and efficient manufacturing techniques used for glass production such as casting and blowing, which involve the molten state, cannot be used for the production of crystalline ceramics.Instead, “sintering” or “firing” is the process typically used.因此,所有用于玻璃生产的简单有效的—诸如浇铸和吹制这些涉及熔化的技术都不能用于由晶体物组成的陶瓷的生产。作为替代,一般采用“烧结”或“焙烧”工艺。

In sintering, ceramic powders are processed into compacted shapes and then heated to temperatures just below the melting point.At such temperatures, the powders react internally to remove porosity and fully dense articles can be obtained.在烧结过程中,陶瓷粉末先挤压成型然后加热到略低于熔点温度。在这样的温度下,粉末内部起反应去除孔隙并得到十分致密的物品。

An optical fiber contains three layers: a core made of highly pure glass with a high refractive index for the light to travel, a middle layer of glass with a lower refractive index known as the cladding which protects the core

glass from scratches and other surface imperfections, and an out polymer jacket to protect the fiber from damage.光导纤维有三层:核心由高折射指数高纯光传输玻璃制成,中间层为低折射指数玻璃,是保护核心玻璃表面不被擦伤和完整性不被破坏的所谓覆层,外层是聚合物护套,用于保护光导纤维不受损。

In order for the core glass to have a higher refractive index than the cladding, the core glass is doped with a small, controlled amount of an impurity, or dopant, which causes light to travel slower, but does not absorb the light.为了使核心玻璃有比覆层大的折射指数,在其中掺入微小的、可控数量的能减缓光速而不会吸收光线的杂质或搀杂剂。

Because the refractive index of the core glass is greater than that of the cladding, light traveling in the core glass will remain in the core glass due to total internal reflection as long as the light strikes the core/cladding interface at an angle greater than the critical angle.由于核心玻璃的折射指数比覆层大,只要在全内反射过程中光线照射核心/覆层分界面的角度比临界角大,在核心玻璃中传送的光线将仍保留在核心玻璃中。

The total internal reflection phenomenon, as well as the high purity of the core glass, enables light to travel long distances with little loss of intensity.全内反射现象与核心玻璃的高纯度一样,使光线几乎无强度损耗传递长距离成为可能。

Composites 复合材料

Composites are formed from two or more types of materials.Examples include polymer/ceramic and metal/ceramic composites.Composites are used because overall properties of the composites are superior to those of the individual components.复合材料由两种或更多材料构成。例子有聚合物/陶瓷和金属/陶瓷复合材料。之所以使用复合材料是因为其全面性能优于组成部分单独的性能。

For example: polymer/ceramic composites have a greater modulus than the polymer component, but aren’t as brittle as ceramics.Two types of composites are: fiber-reinforced composites and particle-reinforced composites.例如:聚合物/陶瓷复合材料具有比聚合物成分更大的模量,但又不像陶瓷那样易碎。

复合材料有两种:纤维加强型复合材料和微粒加强型复合材料。Fiber-reinforced Composites Reinforcing fibers can be made of metals, ceramics, glasses, or polymers that have been turned into graphite and known as carbon fibers.Fibers

increase the modulus of the matrix material.纤维加强型复合材料

加强纤维可以是金属、陶瓷、玻璃或是已变成石墨的被称为碳纤维的聚合物。纤维能加强基材的模量。

The strong covalent bonds along the fiber’s length give them a very high modulus in this direction because to break or extend the fiber the bonds must also be broken or moved.沿着纤维长度有很强结合力的共价结合在这个方向上给予复合材料很高的模量,因为要损坏或拉伸纤维就必须破坏或移除这种结合。

Fibers are difficult to process into composites, making fiber-reinforced composites relatively expensive.把纤维放入复合材料较困难,这使得制造纤维加强型复合材料相对昂贵。Fiber-reinforced composites are used in some of the most advanced, and therefore most expensive sports equipment, such as a time-trial racing bicycle frame which consists of carbon fibers in a thermoset polymer matrix.纤维加强型复合材料用于某些最先进也是最昂贵的运动设备,例如计时赛竞赛用自行车骨架就是用含碳纤维的热固塑料基材制成的。

Body parts of race cars and some automobiles are composites made of glass fibers(or fiberglass)in a thermoset matrix.竞赛用汽车和某些机动车的车体部件是由含玻璃纤维(或玻璃丝)的热固塑料基材制成的。

Fibers have a very high modulus along their axis, but have a low modulus perpendicular to their axis.Fiber composite manufacturers often rotate layers of fibers to avoid directional variations in the modulus.纤维在沿着其轴向有很高的模量,但垂直于其轴向的模量却较低。纤维复合材料的制造者往往旋转纤维层以防模量产生方向变化。

Particle-reinforced composites Particles used for reinforcing include ceramics and glasses such as small mineral particles, metal particles such as aluminum, and amorphous materials, including polymers and carbon black.微粒加强型复合材料[番茄用户1] [番茄用户2] [番茄用户3] [番茄用户4] [番茄用户5] [番茄用户6] 用于加强的微粒包含了陶瓷和玻璃之类的矿物微粒,铝之类的金属微粒以及包括聚合物和碳黑的非结晶质微粒。

Particles are used to increase the modulus of the matrix, to decrease the permeability of the matrix, to decrease the ductility of the matrix.An example of particle-reinforced composites is an automobile tire which has carbon black particles in a matrix of polyisobutylene elastomeric polymer.微粒用于增加基材的模量、减少基材的渗透性和延展性。微粒加强型复合材料的一个例子是机动车胎,它就是在聚异丁烯人造橡胶聚合物基材中加入了碳黑微粒。

Polymers 聚合材料

A polymer has a repeating structure, usually based on a carbon backbone.The repeating structure results in large chainlike molecules.Polymers are useful because they are lightweight, corrosion resistant, easy to process at low temperatures and generally inexpensive.聚合物具有一般是基于碳链的重复结构。这种重复结构产生链状大分子。由于重量轻、耐腐蚀、容易在较低温度下加工并且通常较便宜,聚合物是很有用的。

Some important characteristics of polymers include their size(or molecular weight), softening and melting points, crystallinity, and structure.The mechanical properties of polymers generally include low strength and high toughness.Their strength is often improved using reinforced composite structures.聚合材料具有一些重要特性,包括尺寸(或分子量)、软化及熔化点、结晶度和结构。聚合材料的机械性能一般表现为低强度和高韧性。它们的强度通常可采用加强复合结构来改善。

Important Characteristics of Polymers Size.Single polymer molecules typically have molecular weights between 10,000 and 1,000,000g/mol—that can be more than 2,000 repeating units

depending on the polymer structure!聚合材料的重要特性

尺寸:单个聚合物分子一般分子量为10,000到1,000,000g/mol之间,具体取决于聚合物的结构—这可以比2,000个重复单元还多。

The mechanical properties of a polymer are significantly affected by the molecular weight, with better engineering properties at higher molecular weights.聚合物的分子量极大地影响其机械性能,分子量越大,工程性能也越好。Thermal transitions.The softening  point(glass transition temperature)and the melting point of a polymer will determine which it will be suitable for applications.These temperatures usually determine the upper limit for which a polymer can be used.热转换性:聚合物的软化点(玻璃状转化温度)和熔化点决定了它是否适合应用。这些温度通常决定聚合物能否使用的上限。

For example, many industrially important polymers have glass transition temperatures near the boiling point of water(100℃, 212℉), and they are most useful for room temperature applications.Some specially engineered polymers can withstand temperatures as high as 300℃(572℉).例如,许多工业上的重要聚合物其玻璃状转化温度接近水的沸点(100℃,212℉),它们被广泛用于室温下。而某些特别制造的聚合物能经受住高达300℃(572℉)的温度。

Crystallinity.Polymers can be crystalline or amorphous, but they usually have a combination of crystalline and amorphous structures(semi-crystalline).结晶度:聚合物可以是晶体状的或非结晶质的,但它们通常是晶体状和非结晶质结构的结合物(半晶体)。

Interchain interactions.The polymer chains can be free to slide past one another(thermo-plastic)or they can be connected to each other with crosslinks(thermoset or elastomer).Thermo-plastics can be reformed and recycled, while thermosets and elastomers are not reworkable.原子链间的相互作用:聚合物的原子链可以自由地彼此滑动(热可塑性)或通过交键互相连接(热固性或弹性)。热可塑性材料可以重新形成和循环使用,而热固性与弹性材料则是不能再使用的。

Intrachain structure.The chemical structure of the chains also has a tremendous effect on the properties.Depending on the structure the polymer may be hydrophilic or hydrophobic(likes or hates water), stiff or flexible, crystalline or amorphous, reactive or unreactive.链内结构:原子链的化学结构对性能也有很大影响。根据各自的结构不同,聚合物可以是亲水的或憎水的(喜欢或讨厌水)、硬的或软的、晶体状的或非结晶质的、易起反应的或不易起反应的。

The understanding of heat treatment is embraced by the broader study of metallurgy.Metallurgy is the physics, chemistry, and engineering related to metals from ore extraction to the final product.对热处理的理解包含于对冶金学较广泛的研究。冶金学是物理学、化学和涉及金属从矿石提炼到最后产物的工程学。

Heat treatment is the operation of heating and cooling a metal in its solid state to change its physical properties.According to the procedure used, steel can be hardened to resist cutting action and abrasion, or it can be softened to permit machining.热处理是将金属在固态加热和冷却以改变其物理性能的操作。按所采用的步骤,钢可以通过硬化来抵抗切削和磨损,也可以通过软化来允许机加工。

With the proper heat treatment internal stresses may be removed, grain size reduced, toughness increased, or a hard surface produced on a ductile interior.The analysis of the steel must be known because small percentages of certain elements, notably carbon, greatly affect the physical properties.使用合适的热处理可以去除内应力、细化晶粒、增加韧性或在柔软材料上覆盖坚硬的表面。因为某些元素(尤其是碳)的微小百分比极大地影响物理性能,所以必须知道对钢的分析。

Alloy steel owe their properties to the presence of one or more elements other than carbon, namely nickel, chromium, manganese, molybdenum, tungsten, silicon, vanadium, and copper.Because of their improved physical properties they are used commercially in many ways not possible with carbon steels.合金钢的性质取决于其所含有的除碳以外的一种或多种元素,如镍、铬、锰、钼、钨、硅、钒和铜。由于合金钢改善的物理性能,它们被大量使用在许多碳钢不适用的地方。

The following discussion applies principally to the heat treatment of ordinary commercial steels known as plain carbon steels.With this process the rate of cooling is the controlling factor, rapid cooling from above the critical range results in hard structure, whereas very slow cooling produces the opposite effect.下列讨论主要针对被称为普通碳钢的工业用钢而言。热处理时冷却速率是控制要素,从高于临界温度快速冷却导致坚硬的组织结构,而缓慢冷却则产生相反效果。

A Simplified Iron-carbon Diagram 简化铁碳状态图

If we focus only on the materials normally known as steels, a simplified diagram is often used.如果只把注意力集中于一般所说的钢上,经常要用到简化铁碳状态图。

Those portions of the iron-carbon diagram near the delta region and those above 2% carbon content are of little importance to the engineer and are deleted.A simplified diagram, such as the one in Fig.2.1, focuses on the eutectoid region and is quite useful in understanding the properties and processing of steel.铁碳状态图中靠近三角区和含碳量高于2%的那些部分对工程师而言不重要,因此将它们删除。如图2.1所示的简化铁碳状态图将焦点集中在共析区,这对理解钢的性能和处理是十分有用的。

The key transition described in this diagram is the decomposition of single-phase austenite(γ)to the two-phase ferrite plus carbide structure as temperature drops.在此图中描述的关键转变是单相奥氏体(γ)随着温度下降分解成两相铁素体加渗碳体组织结构。

Control of this reaction, which arises due to the drastically different carbon solubility of austenite and ferrite, enables a wide range of properties to be achieved through heat treatment.控制这一由于奥氏体和铁素体的碳溶解性完全不同而产生的反应,使得通过热处理能获得很大范围的特性。

To begin to understand these processes, consider a steel of the eutectoid composition, 0.77% carbon, being slow cooled along line x-x’ in

Fig.2.1.At the upper temperatures, only austenite is present, the 0.77% carbon being dissolved in solid solution with the iron.When the steel cools to 727℃(1341℉), several changes occur simultaneously.为了理解这些过程,考虑含碳量为0.77%的共析钢,沿着图2.1的x-x’线慢慢冷却。在较高温度时,只存在奥氏体,0.77%的碳溶解在铁里形成固溶体。当钢冷却到727℃(1341℉)时,将同时发生若干变化。

The iron wants to change from the FCC austenite structure to the BCC ferrite structure, but the ferrite can only contain 0.02% carbon in solid solution.铁需要从面心立方体奥氏体结构转变为体心立方体铁素体结构,但是铁素体只能容纳固溶体状态的0.02%的碳。

The rejected carbon forms the carbon-rich cementite intermetallic with composition Fe3C.In essence, the net reaction at the eutectoid is austenite 0.77%C→ferrite 0.02%C+cementite 6.67%C.被析出的碳与金属化合物Fe3C形成富碳的渗碳体。本质上,共析体的基本反应是奥氏体0.77%的碳→铁素体0.02%的碳+渗碳体6.67%的碳。

Since this chemical separation of the carbon component occurs entirely in the solid state, the resulting structure is a fine mechanical mixture of ferrite and cementite.Specimens prepared by polishing and etching in a weak solution of nitric acid and alcohol reveal the lamellar structure of

alternating plates that forms on slow cooling.由于这种碳成分的化学分离完全发生在固态中,产生的组织结构是一种细致的铁素体与渗碳体的机械混合物。通过打磨并在弱硝酸酒精溶液中蚀刻制备的样本显示出由缓慢冷却形成的交互层状的薄片结构。

This structure is composed of two distinct phases, but has its own set of characteristic properties and goes by the name pearlite, because of its resemblance to mother-of-pearl at low magnification.这种结构由两种截然不同的状态组成,但它本身具有一系列特性,且因与低倍数放大时的珠母层有类同之处而被称为珠光体。

Steels having less than the eutectoid amount of carbon(less than 0.77%)are known as hypo-eutectoid steels.Consider now the transformation of such a material represented by cooling along line y-y’ in Fig.2.1.含碳量少于共析体(低于0.77%)的钢称为亚共析钢。现在来看这种材料沿着图2.1中y-y’ 线冷却的转变情况。

At high temperatures, the material is entirely austenite, but upon cooling enters a region where the stable phases are ferrite and austenite.Tie-line and level-law calculations show that low-carbon ferrite nucleates and grows, leaving the remaining austenite richer in carbon.在较高温度时,这种材料全部是奥氏体,但随着冷却就进入到铁素体和奥氏体稳定状态的区域。由截线及杠杆定律分析可知,低碳铁素体成核并长大,剩下含碳

量高的奥氏体。

At 727℃(1341℉), the austenite is of eutectoid composition(0.77% carbon)and further cooling transforms the remaining austenite to pearlite.The resulting structure is a mixture of primary or pro-eutectoid ferrite(ferrite that formed above the eutectoid reaction)and regions of pearlite.在727℃(1341℉)时,奥氏体为共析组成(含碳量0.77%),再冷却剩余的奥氏体就转化为珠光体。作为结果的组织结构是初步的共析铁素体(在共析反应前的铁素体)和部分珠光体的混合物。

Hypereutectoid steels are steels that contain greater than the eutectoid amount of carbon.When such steel cools, as shown in z-z’ of Fig.2.1 the process is similar to the hypo-eutectoid case, except that the primary or pro-eutectoid phase is now cementite instead of ferrite.过共析钢是含碳量大于共析量的钢。当这种钢冷却时,就像图2.1的z-z’线所示,除了初步的共析状态用渗碳体取代铁素体外,其余类似亚共析钢的情况。

As the carbon-rich phase forms, the remaining austenite decreases in carbon content, reaching the eutectoid composition at 727℃(1341℉).As before, any remaining austenite transforms to pearlite upon slow cooling through this temperature.随着富碳部分的形成,剩余奥氏体含碳量减少,在727℃(1341℉)时达到共析组

织。就像以前说的一样,当缓慢冷却到这温度时所有剩余奥氏体转化为珠光体。

It should be remembered that the transitions that have been described by the phase diagrams are for equilibrium conditions, which can be approximated by slow cooling.With slow heating, these transitions occur in the reverse manner.应该记住由状态图描述的这种转化只适合于通过缓慢冷却的近似平衡条件。如果缓慢加热,则以相反的方式发生这种转化。

However, when alloys are cooled rapidly, entirely different results may be obtained, because sufficient time is not provided for the normal phase reactions to occur, in such cases, the phase diagram is no longer a useful tool for engineering analysis.然而,当快速冷却合金时,可能得到完全不同的结果。因为没有足够的时间让正常的状态反应发生,在这种情况下对工程分析而言状态图不再是有用的工具。

Hardening 淬火

Hardening is the process of heating a piece of steel to a temperature within or above its critical range and then cooling it rapidly.淬火就是把钢件加热到或超过它的临界温度范围,然后使其快速冷却的过程。If the carbon content of the steel is known, the proper temperature to which the steel should be heated may be obtained by reference to the iron-iron

carbide phase diagram.However, if the composition of the steel is unknown, a little preliminary experimentation may be necessary to determine the range.如果钢的含碳量已知,钢件合适的加热温度可参考铁碳合金状态图得到。然而当钢的成分不知道时,则需做一些预备试验来确定其温度范围。

A good procedure to follow is to heat-quench a number of small specimens of the steel at various temperatures and observe the result, either by hardness testing or by microscopic examination.When the correct temperature is obtained, there will be a marked change in hardness and other properties.要遵循的合适步骤是将这种钢的一些小试件加热到不同的温度后淬火,再通过硬度试验或显微镜检查观测结果。一旦获得正确的温度,硬度和其它性能都将有明显的变化。

In any heat-treating operation the rate of heating is important.Heat flows from the exterior to the interior of steel at a definite rate.If the steel is heated too fast, the outside becomes hotter than the interior and uniform structure cannot be obtained.在任何热处理作业中,加热的速率都是重要的。热量以一定的速率从钢的外部传导到内部。如果钢被加热得太快,其外部比内部热就不能得到均匀的组织结构。

If a piece is irregular in shape, a slow rate is all the more essential to eliminate warping and cracking.The heavier the section, the longer must be the heating time to achieve uniform results.如果工件形状不规则,为了消除翘曲和开裂最根本的是加热速率要缓慢。截面越厚,加热的时间就要越长才能达到均匀的结果。

Even after the correct temperature has been reached, the piece should be held at that temperature for a sufficient period of time to permit its thickest section to attain a uniform temperature.即使加热到正确的温度后,工件也应在此温度下保持足够时间以让其最厚截面达到相同温度。

The hardness obtained from a given treatment depends on the quenching rate, the carbon content, and the work size.In alloy steels the kind and amount of alloying element influences only the hardenability(the ability of the workpiece to be hardened to depths)of the steel and does not affect the hardness except in unhardened or partially hardened steels.通过给定的热处理所得到的硬度取决于淬火速率、含碳量和工件尺寸。除了非淬硬钢或部分淬硬钢外,合金钢中合金元素的种类及含量仅影响钢的淬透性(工件被硬化到深层的能力)而不影响硬度。

Steel with low carbon content will not respond appreciably to hardening treatment.As the carbon content in steel increases up to around 0.60%, the possible hardness obtainable also increases.含碳量低的钢对淬火处理没有明显的反应。随着钢的含碳量增加到大约0.60%,可能得到的硬度也增加。

Above this point the hardness can be increased only slightly, because steels above the eutectoid point are made up entirely of pearlite and cementite in the annealed state.Pearlite responds best to heat-treating operations;and steel composed mostly of pearlite can be transformed into a hard steel.高于此点,由于超过共析点钢完全由珠光体和退火状态的渗碳体组成,硬度增加并不多。珠光体对热处理作业响应最好;基本由珠光体组成的钢能转化成硬质钢。

As the size of parts to be hardened increases, the surface hardness decreases somewhat even though all other conditions have remained the same.There is a limit to the rate of heat flow through steel.即使所有其它条件保持不变,随着要淬火的零件尺寸的增加其表面硬度也会有所下降。热量在钢中的传导速率是有限的。

No matter how cool the quenching medium may be, if the heat inside a large piece cannot escape faster than a certain critical rate, there is a definite limit to the inside hardness.However, brine or water quenching is capable of rapidly bringing the surface of the quenched part to its own temperature and maintaining it at or close to this temperature.无论淬火介质怎么冷,如果在大工件中的热量不能比特定的临界速率更快散发,那它内部硬度就会受到明确限制。然而盐水或水淬火能够将被淬零件的表面迅速冷却至本身温度并将其保持或接近此温度。

Under these circumstances there would always be some finite depth of surface hardening regardless of size.This is not true in oil quenching, when the surface temperature may be high during the critical stages of quenching.在这种情况下不管零件尺寸如何,其表面总归有一定深度被硬化。但油淬情况就不是如此,因为油淬时在淬火临界阶段零件表面的温度可能仍然很高。

Tempering 回火

Steel that has been hardened by rapid quenching is brittle and not suitable for most uses.By tempering or drawing, the hardness and brittleness may be reduced to the desired point for service conditions.

快速淬火硬化的钢是硬而易碎的,不适合大多数场合使用。通过回火,硬度和脆性可以降低到使用条件所需要的程度。

As these properties are reduced there is also a decrease in tensile strength and an increase in the ductility and toughness of the steel.The operation consists of reheating quench-hardened steel to some temperature below the critical range followed by any rate of cooling.随着这些性能的降低,拉伸强度也降低而钢的延展性和韧性则会提高。回火作业包括将淬硬钢重新加热到低于临界范围的某一温度然后以任意速率冷却。

Although this process softens steel, it differs considerably from annealing in that the process lends itself to close control of the physical properties and in most cases does not soften the steel to the extent that

annealing would.The final structure obtained from tempering a fully hardened steel is called tempered martensite.虽然这过程使钢软化,但它与退火是大不相同的,因为回火适合于严格控制物理性能并在大多数情况下不会把钢软化到退火那种程度。回火完全淬硬钢得到的最终组织结构被称为回火马氏体。

Tempering is possible because of the instability of the martensite, the principal constituent of hardened steel.Low-temperature draws, from 300℉ to 400℉(150℃~205℃), do not cause much decrease in hardness and are used principally to relieve internal strains.由于马氏体这一淬硬钢主要成分的不稳定性,使得回火成为可能。低温回火,300℉到400℉(150℃~205℃),不会引起硬度下降很多,主要用于减少内部应变。

As the tempering temperatures are increased, the breakdown of the martensite takes place at a faster rate, and at about 600℉(315℃)the change to a structure called tempered martensite is very rapid.The tempering operation may be described as one of precipitation and agglomeration or coalescence of cementite.随着回火温度的提高,马氏体以较快的速率分解,并在大约600℉(315℃)迅速转变为被称为回火马氏体的结构。回火作业可以描述为渗碳体析出和凝聚或聚结的过程。

A substantial precipitation of cementite begins at 600℉(315℃), which

produces a decrease in hardness.Increasing the temperature causes coalescence of the carbides with continued decrease in hardness.渗碳体的大量析出开始于600℉(315℃),这使硬度下降。温度的上升会使碳化物聚结而硬度继续降低。

In the process of tempering, some consideration should be given to time as well as to temperature.Although most of the softening action occurs in the first few minutes after the temperature is reached, there is some additional reduction in hardness if the temperature is maintained for a prolonged time.在回火过程中,不但要考虑温度而且要考虑时间。虽然大多数软化作用发生在达到所需温度后的最初几分钟,但如果此温度维持一段延长时间,仍会有些额外的硬度下降。

Usual practice is to heat the steel to the desired temperature and hold it there only long enough to have it uniformly heated.通常的做法是将钢加热到所需温度并且仅保温到正好使其均匀受热。

Two special processes using interrupted quenching are a form of tempering.In both, the hardened steel is quenched in a salt bath held at a selected lower temperature before being allowed to cool.These processes, known as austempering and martempering, result in products having certain desirable physical properties.两种采用中断淬火的特殊工艺也是回火的形式。这两种工艺中,淬硬钢在其被允许冷却前先在一选定的较低温度盐浴淬火。这两种分别被称为奥氏体回火和马氏体回火的工艺,能使产品具有特定所需的物理性能。

Annealing 退火

The primary purpose of annealing is to soften hard steel so that it may be machined or cold worked.退火的主要目的是使坚硬的钢软化以便机加工或冷作。

This is usually accomplished by heating the steel too slightly above the critical temperature, holding it there until the temperature of the piece is uniform throughout, and then cooling at a slowly controlled rate so that the temperature of the surface and that of the center of the piece are approximately the same.通常是非常缓慢地将钢加热到临界温度以上,并将其在此温度下保持到工件全部均匀受热,然后以受控的速率慢慢地冷却,这样使得工件表面和内部的温度近似相同。

This process is known as full annealing because it wipes out all trace of previous structure, refines the crystalline structure, and softens the metal.Annealing also relieves internal stresses previously set up in the metal.这过程被称为完全退火,因为它去除了以前组织结构的所有痕迹、细化晶粒并

软化金属。退火也释放了先前在金属中的内应力。

The temperature to which a given steel should be heated in annealing depends on its composition;for carbon steels it can be obtained readily from the partial iron-iron carbide equilibrium diagram.When the annealing temperature has been reached, the steel should be held there until it is uniform throughout.给定的钢其退火温度取决于它的成分;对碳钢而言可容易地从局部的铁碳合金平衡图得到。达到退火温度后,钢应当保持在此温度等到全部均匀受热。

This usually takes about 45min for each inch(25mm)of thickness of the largest section.For maximum softness and ductility the cooling rate should be very slow, such as allowing the parts to cool down with the furnace.The higher the carbon content, the slower this rate must be.加热时间一般以工件的最大截面厚度计每英寸(25mm)大约需45min。为了得到最大柔软性和延展性冷却速率应该很慢,比如让零件与炉子一起冷下来。含碳量越高,冷却的速率必须越慢。

The heating rate should be consistent with the size and uniformity of sections, so that the entire part is brought up to temperature as uniformly as possible.加热的速率也应与截面的尺寸及均匀程度相协调,这样才能使整个零件尽可能均匀地加热。

Normalizing and Spheroidizing 正火和球化

The process of normalizing consists of heating the steel about 50℉ to 100℉(10℃~40℃)above the upper critical range and cooling in still air to room temperature.正火处理包括先将钢加热到高于上临界区50℉到100℉(10℃~40℃)然后在静止的空气中冷却到室温。

This process is principally used with low-and medium-carbon steels as well as alloy steels to make the grain structure more uniform, to relieve internal stresses, or to achieve desired results in physical properties.Most commercial steels are normalized after being rolled or cast.退火主要用于低碳钢、中碳钢及合金钢,使晶粒结构更均匀、释放内应力或获得所需的物理特性。大多数商业钢材在轧制或铸造后都要退火。

Spheroidizing is the process of producing a structure in which the cementite is in a spheroidal distribution.If steel is heated slowly to a temperature just below the critical range and held there for a prolonged period of time, this structure will be obtained.球化是使渗碳体产生成类似球状分布结构的工艺。如果把钢缓慢加热到恰好低于临界温度并且保持较长一段时间,就能得到这种组织结构。

The globular structure obtained gives improved machinability to the steel.This treatment is particularly useful for hypereutectoid steels that must be machined.所获得的球状结构改善了钢的可切削性。此处理方法对必须机加工的过共析钢特别有用。

Surface Hardening 表面硬化 Carburizing The oldest known method of producing a hard surface on steel is case hardening or carburizing.Iron at temperatures close to and above its critical temperature has an affinity for carbon.渗碳

最早的硬化钢表面的方法是表面淬火或渗碳。铁在靠近并高于其临界温度时对碳具有亲合力。

The carbon is absorbed into the metal to form a solid solution with iron and converts the outer surface into high-carbon steel.The carbon is gradually diffused to the interior of the part.The depth of the case depends on the time and temperature of the treatment.碳被吸收进金属与铁形成固溶体使外表面转变成高碳钢。碳逐渐扩散到零件内

部。渗碳层的深度取决于热处理的时间和温度。

Pack carburizing consists of placing the parts to be treated in a closed container with some carbonaceous material such as charcoal or coke.It is a long process and used to produce fairly thick cases of from 0.03 to 0.16 in.(0.76~4.06mm)in depth.固体渗碳的方法是将要处理的零件与木炭或焦炭这些含碳的材料一起放入密闭容器。这是一个较长的过程,用于产生深度为0.03到0.16 英寸(0.76~4.06mm)这么厚的硬化层。

Steel for carburizing is usually a low-carbon steel of about 0.15% carbon that would not in itself responds appreciably to heat treatment.In the course of the process the outer layer is converted into high-carbon steel with a content ranging from 0.9% to 1.2% carbon.用于渗碳的一般是含碳量约为0.15%、本身不太适合热处理的低碳钢。在处理过程中外层转化为含碳量从0.9%到1.2%的高碳钢。

A steel with varying carbon content and, consequently, different critical temperatures requires a special heat treatment.含碳量变化的钢具有不同的临界温度,因此需要特殊的热处理。

Because there is some grain growth in the steel during the prolonged carburizing treatment, the work should be heated to the critical temperature of the core and then cooled, thus refining the core structure.The steel

should then be reheated to a point above the transformation range of the case and quenched to produce a hard, fine structure.由于在较长的渗碳过程中钢内部会有些晶粒生长,所以工件应该加热到核心部分的临界温度再冷却以细化核心部分的组织结构。然后重新加热到高于外层转变温度再淬火以生成坚硬、细致的组织结构。

The lower heat-treating temperature of the case results from the fact that hypereutectoid steels are normally austenitized for hardening just above the lower critical point.A third tempering treatment may be used to reduce strains.由于恰好高于低临界温度通常使过共析钢奥氏体化而硬化,所以对外层采用较低的热处理温度。第三次回火处理可用于减少应变。

Carbonitriding Carbonitriding, sometimes known as dry cyaniding or nicarbing, is a case-hardening process in which the steel is held at a temperature above the critical range in a gaseous atmosphere from which it absorbs carbon and nitrogen.碳氮共渗

碳氮共渗,有时也称为干法氰化或渗碳氮化,是一种表面硬化工艺。通过把钢放在高于临界温度的气体中,让它吸收碳和氮。

Any carbon-rich gas with ammonia can be used.The wear-resistant case produced ranges from 0.003 to 0.030 inch(0.08~ 0.76mm)in thickness.An advantage of carbonitriding is that the hardenability of the case is significantly increased when nitrogen is added, permitting the use of low-cost steels.可以使用任何富碳气体加氨气,能生成厚度从0.003到0.030英寸(0.08~ 0.76mm)的耐磨外层。碳氮共渗的优点之一是加入氮后外层的淬透性极大增加,为使用低价钢提供条件。

Cyaniding Cyaniding, or liquid carbonitriding as it is sometimes called, is also a process that combines the absorption of carbon and nitrogen to obtain surface hardness in low-carbon steels that do not respond to ordinary heat treatment.氰化

氰化,有时称为液体碳氮共渗,也是一种结合了吸收碳和氮来获得表面硬度的工艺,它主要用于不适合通常热处理的低碳钢。

The part to be case hardened is immersed in a bath of fused sodium cyanide salts at a temperature slightly above the Ac1 range, the duration of soaking depending on the depth of the case.The part is then quenched in water or oil to obtain a hard surface.35

需表面硬化的零件浸没在略高于Ac1温度熔化的氰化钠盐溶液中,浸泡的持续时间取决于硬化层的深度。然后将零件在水或油中淬火。

Case depths of 0.005 to 0.015in.(0.13~0.38mm)may be readily obtained by this process.Cyaniding is used principally for the treatment of small parts.通过这样处理可以容易地获得0.005到0.015英寸(0.13~0.38mm)的硬化深度。氰化主要用于处理小零件。

Nitriding Nitriding is somewhat similar to ordinary case hardening, but it uses a different material and treatment to create the hard surface constituents.渗氮

渗氮有些类似普通表面硬化,但它采用不同的材料和处理方法来产生坚硬表面成分。

In this process the metal is heated to a temperature of around 950℉(510℃)and held there for a period of time in contact with ammonia gas.Nitrogen from the gas is introduced into the steel, forming very hard nitrides that are finely dispersed through the surface metal.这种工艺中金属加热到约950℉(510℃),然后与氨气接触一段时间。氨气中的氮进入钢内,形成细微分布于金属表面又十分坚固的氮化物。

Nitrogen has greater hardening ability with certain elements than with others, hence, special nitriding alloy steels have been developed.氮与某些元素的硬化能力比其它元素大,因此开发了专用的渗氮合金钢。Aluminum in the range of 1% to 1.5% has proved to be especially suitable in steel, in that it combines with the gas to form a very stable and hard constituent.The temperature of heating ranges from 925℉ to 1,050℉(495℃~565℃).在钢中含铝1%到1.5%被证明特别合适,它能与氨气结合形成很稳定坚固的成分。其加热温度范围为925℉到1,050℉(495℃~565℃)。

Liquid nitriding utilizes molten cyanide salts and, as in gas nitriding, the temperature is held below the transformation range.Liquid nitriding adds more nitrogen and less carbon than either cyaniding or carburizing in cyanide baths.液体渗氮利用熔化的氰化物盐,就像气体渗氮,温度保持在低于转化范围内。液体渗氮时在氰化物溶液中加入比氰化及渗碳都较多的氮和较少的碳。

Case thickness of 0.001 to 0.012in.(0.03~0.30mm)is obtained, whereas for gas nitriding the case may be as thick as 0.025 in.(0.64mm).In general the uses of the two-nitriding processes are similar.液体渗氮可以获得厚度为0.001到0.012英寸(0.03~0.30mm)的硬化层,然而气体渗氮则能获得厚0.025英寸(0.64mm)的硬化层。一般而言两种渗氮方法的用途是类

似的。

Nitriding develops extreme hardness in the surface of steel.This hardness ranges from 900 to 1,100 Brinell, which is considerably higher than that obtained by ordinary case hardening.渗氮在钢表面获得远远超出正常标准的硬度。其硬度范围为900到1,100布氏硬度,这远高于普通表面硬化所获得的硬度。

Nitriding steels, by virtue of their alloying content, are stronger than ordinary steels and respond readily to heat treatment.It is recommended that these steels be machined and heat-treated before nitriding, because there is no scale or further work necessary after this process.由于渗氮钢的合金比例,它们比普通钢更强,也容易热处理。建议对这种钢在渗氮前先机加工和热处理,因为渗氮后没有剥落并不需要更多的加工。

Fortunately, the interior structure and properties are not affected appreciably by the nitriding treatment and, because no quenching is necessary, there is little tendency to warp, develop cracks, or change condition in any way.The surface effectively resists corrosive action of water, saltwater spray, alkalies, crude oil, and natural gas.值得庆幸的是由于渗氮处理一点都不影响内部结构和性能,也无需淬火,所以几乎没有任何产生翘曲、裂缝及变化条件的趋势。这种表面能有效地抵御水、盐雾、碱、原油和天然气的腐蚀反应。

Casting is a manufacturing process in which molten metal is poured or injected and allowed to solidify in a suitably shaped mold cavity.During or after cooling, the cast part is removed from the mold and then processed for delivery.铸造是一种将熔化的金属倒入或注入合适的铸模腔并且在其中固化的制造工艺。在冷却期间或冷却后,把铸件从铸模中取出,然后进行交付。

Casting processes and cast-material technologies vary from simple to highly complex.Material and process selection depends on the part’s complexity and function, the product’s quality specifications, and the projected cost level.铸造工艺和铸造材料技术从简单到高度复杂变化很大。材料和工艺的选择取决于零件的复杂性和功能、产品的质量要求以及成本预算水平。

Castings are parts that are made close to their final dimensions by a casting process.With a history dating back 6,000 years, the various casting processes are in a state of continuous refinement and evolution as technological advances are being made.通过铸造加工,铸件可以做成很接近它们的最终尺寸。回溯6,000年历史,各种各样的铸造工艺就如同科技进步一样处于一个不断改进和发展的状态。

Sand Casting 砂型铸造

Sand casting is used to make large parts(typically iron, but also bronze,39

brass, aluminum).Molten metal is poured into a mold cavity formed out of sand(natural or synthetic).砂型铸造用于制造大型零件(具有代表性是铁,除此之外还有青铜、黄铜和铝)。将熔化的金属倒入由型砂(天然的或人造的)做成铸模腔。

The processes of sand casting are discussed in this section, including patterns, sprues and runners, design considerations, and casting allowance.本节讨论砂型铸造工艺,包括型模、浇注口、浇道、设计考虑因素及铸造余量。The cavity in the sand is formed by using a pattern(an approximate duplicate of the real part), which are typically made out of wood, sometimes metal.The cavity is contained in an aggregate housed in a box called the flask.砂型里的型腔是采用型模(真实零件的近似复制品)构成的,型模一般为木制,有时也用金属制造。型腔整个包含在一个被放入称为砂箱的箱子里的组合体内。

Core is a sand shape inserted into the mold to produce the internal features of the part such as holes or internal passages.Cores are placed in the cavity to form holes of the desired shapes.Core print is the region added to the pattern, core, or mold that is used to locate and support the core within the mold.砂芯是插入铸模的砂型,用于生成诸如孔或内通道之类的内部特征。砂芯安放在型腔里形成所需形状的孔洞。砂芯座是加在型模、砂芯或铸模上的特定区域,用

来在铸模内部定位和支撑砂芯。

A riser is an extra void created in the mold to contain excessive molten material.The purpose of this is to feed the molten metal to the mold cavity as the molten metal solidifies and shrinks, and thereby prevents voids in the main casting.冒口是在铸模内部增加的额外空间,用于容纳过多的熔化金属。其目的是当熔化金属凝固和收缩时往型腔里补充熔化金属,从而防止在主铸件中产生孔隙。

In a two-part mold, which is typical of sand castings, the upper half, including the top half of the pattern, flask, and core is called cope and the lower half is called drag, as shown in Fig.3.1.The parting line or the parting surface is line or surface that separates the cope and drag.在典型砂型铸造的两箱铸模中,上半部分(包括型模顶半部、砂箱和砂芯)称为上型箱,下半部分称为下型箱,见图3.1所示。分型线或分型面是分离上下型箱的线或面。

The drag is first filled partially with sand, and the core print, the cores, and the gating system are placed near the parting line.The cope is then assembled to the drag, and the sand is poured on the cope half, covering the pattern, core and the gating system.首先往下型箱里部分地填入型砂和砂芯座、砂芯,并在靠近分型线处放置浇注系统。然后将上型箱与下型箱装配在一起,再把型砂倒入上型箱盖住型模、砂芯和

浇注系统。

The sand is compacted by vibration and mechanical means.Next, the cope is removed from the drag, and the pattern is carefully removed.The object is to remove the pattern without breaking the mold cavity.型砂通过振动和机械方法压实。然后从下型箱上撤掉上型箱,小心翼翼地取出型模。其目的是取出型模而不破坏型腔。

This is facilitated by designing a draft, a slight angular offset from the vertical to the vertical surfaces of the pattern.This is usually a minimum of 1.5mm(0.060in.), whichever is greater.The rougher the surface of the pattern, the more the draft to be provided.通过设计拔模斜度—型模垂直相交表面的微小角度偏移量—来使取出型模变得容易。拔模斜度最小一般为1.5mm(0.060in.),只能比此大。型模表面越粗糙,则拔模斜度应越大。

The molten material is poured into the pouring cup, which is part of the gating system that supplies the molten material to the mold cavity.熔化的金属从浇注杯注入型腔,浇注杯是浇注系统向型腔提供熔化金属的部分。The vertical part of the gating system connected to the pouring cup is the sprue, and the horizontal portion is called the runners and finally to the multiple points where it is introduced to the mold cavity called the gates.42

将浇注系统的垂直部分与浇注杯连接的是浇注口,浇注系统的水平部分称为浇道,最后到多点把熔化金属导入型腔的称为闸道。

Additionally there are extensions to the gating system called vents that provide the path for the built-up gases and the displaced air to vent to the atmosphere.除此之外,还有称为排放口的浇注系统延长段,它为合成气体和置换空气排放到大气提供通道。

The cavity is usually made oversize to allow for the metal contraction as it cools down to room temperature.This is achieved by making the pattern oversize.To account for shrinking, the pattern must be made oversize by these factors on the average.These are linear factors and apply in each direction.型腔通常大于所需尺寸以允许在金属冷却到室温时收缩。这通过把型模做得大于所需尺寸来达到。为解决收缩效应,一般而言型模做得比所需尺寸大,必须考虑线性因素并作用于各个方向。

These shrinkage allowances are only approximate, because the exact allowance is determined by the shape and size of the casting.In addition, different parts of the casting might require different shrinkage allowances.收缩余量仅仅是近似的,因为准确的余量是由铸件的形状和尺寸决定的。另外,铸件的不同部分也可能需要不同的收缩余量。

Sand castings generally have a rough surface sometimes with surface impurities, and surface variations.A machining(finish)allowance is made for this type of defect.砂型铸件一般表面粗糙,有时还带有表面杂质和表面变异。对这类缺陷采用机加工(最后一道工序)的余量。

In general, typical stages of sand casting operation include(as shown in Fig.3.2): 1.Patterns are made.These will be the shape used to form the cavity in the sand.一般而言,砂型铸造作业的典型阶段包括(如图3.2所示): 1.制作型模。做成用于在型砂中形成型腔的形状。

2.Cores may also be made at this time.These cores are made of bonded sand that will be broken out of the cast part after it is complete.3.Sand is mulled(mixed)thoroughly with additives such as bentonite to increase bonding and overall strength.2.同时还要制作砂芯。这些砂芯用粘结砂做成,等铸件完成后将被打碎取出。3.型砂与膨润土之类的添加剂充分地混合以增强连接及整体强度。

4.Sand is formed about the patterns, and gates, runners, risers, vents

and pouring cups are added as needed.A compaction stage is typically used to ensure good coverage and solid molds.4.型砂在型模周围成形,并根据需要安放闸道、浇道、冒口、排放口和浇注杯等。通常要采取压紧步骤来保证良好的覆盖和坚固的铸型。

Cores may also be added to make concave or internal features for the cast part.Alignment pins may also be used for mating the molds later.Chills may be added to cool large masses faster.安放砂芯来制成铸件的凹形结构或内部特征。为了以后铸模匹配还要用到定位销。对大质量铸件可能需要加入冷却物来使其较快冷却。

5.The patterns are removed, and the molds may be put through a baking stage to increase strength.6.Mold halves are mated and prepared for pouring metal.5.取走型模,将铸模烘焙以增加强度。6.匹配上下铸模,做好浇铸金属的准备。

7.Metal is preheated in a furnace or crucible until is above the liquidus temperature in a suitable range(we don’t want the metal solidifying before the pour is complete).The exact temperature may be closely controlled depending upon the application.7.金属在熔炉或坩埚中预热到高于液化温度的一个合适范围内(不希望金属在

浇铸完成前凝固)。确切的温度要根据应用场合严格控制。

Degassing, and other treatment processes may be done at this time, such as removal of impurities(i.e.slag).Some portion of this metal may be remelted scrap from previously cast parts—10% is reasonable.在此期间还要进行排气和其它处理步骤,例如去除杂质(即熔渣)。可以加入一定量原先是这种金属铸件的废料再融化—10%是适当的。

8.The metal is poured slowly, but continuously into the mold until the mold is full.9.As the molten metal cools(minutes to days), the metal will shrink and the volume will decrease.During this time molten metal may backflow from the molten risers to feed the part and maintain the same shape.8.将金属缓慢而连续地注满型模。

9.随着熔化金属的冷却(几分钟到几天),金属收缩体积减小。在此期间熔化金属可能从冒口回流供给零件以保持其形状不变。

10.Once the part starts to solidify small dendrites of solid material form in the part.During this time metal properties are being determined, and internal stresses are being generated.If a part is allowed to cool slowly enough at a constant rate then the final part will be relatively homogenous and stress free.46

10.在零件开始凝固其内部形成固态金属的小型树枝状结晶期间金属性能被确定,同时也产生了内应力。如果零件以恒定速率冷却得足够缓慢,最终零件将相对均质并释放内应力。

11.Once the part has completely solidified below the eutectic point it may be removed with no concern for final metal properties.At this point the sand is simply broken up, and the part removed.At this point the surface will have a quantity of sand adhering to the surface, and solid cores inside.11.一旦零件在共析点以下完全凝固,可以不考虑金属的最后性能而将其取出。这时可以简单地打碎砂型并取出零件,但零件表面会有大量型砂粘附着,内部还有实心的砂芯。

12.A bulk of the remaining sand and cores can be removed by mechanically striking the part.Other options are to use a vibrating table, sand/shot blaster, hand labor, etc.12.大量的剩余型砂和砂芯要通过机械敲击零件来去除。其它的选择还有采用振动台、喷砂/喷丸机、手工作业等等。

13.The final part is cut off the runner gate system, and is near final shape using cutters, torches, etc.Grinding operations are used to remove any remaining bulk.14.The part is taken down to final shape using machining operations.And cleaning operations may be used to remove oxides, etc.47

13.最后零件要用刀具、喷枪等切掉浇道闸道系统,这样就接近最终形状了。再用磨削作业去除多余的部分。

14.通过机加工将零件切削到最终形状。可能还要用清洗作业去除氧化物等。Investment casting 熔模铸造

Investment casting is also known as the lost wax process.This process is one of the oldest manufacturing processes.The Egyptians used it in the time of the Pharaohs to make gold jewelry(hence the name Investment)some 5,000 years ago.熔模铸造也称为失蜡加工。这是最古老的制造工艺之一。大约在5,000年前的法老王时代,埃及人就用它制造黄金饰品(因此而得名投资)。

Intricate shapes can be made with high accuracy.In addition, metals that are hard to machine or fabricate are good candidates for this process.It can be used to make parts that cannot be produced by normal manufacturing techniques, such as turbine blades that have complex shapes, or airplane parts that have to withstand high temperatures.复杂的形状能被高精度地制造。另外较难机加工或制作的金属都能用此工艺。它还能用于生产一般制造技术无法生产的零件,例如有复杂形状的涡轮叶片或必须耐得住高温的飞机零件。

The mold is made by making a pattern using wax or some other material that can be melted away.This wax pattern is dipped in refractory slurry, which coats the wax pattern and forms a skin.This is dried and the process of dipping in the slurry and drying is repeated until a robust thickness is achieved.制作铸型的型模采用石蜡或其它一些能被融化掉的材料做成。石蜡型模浸泡在耐热浆里,让它覆盖型模并形成外壳,然后使其变干。重复这个浸泡、变干的过程直至获得足够的厚度。

After this, the entire pattern is placed in an oven and the wax is melted away.This leads to a mold that can be filled with the molten metal.Because the mold is formed around a one-piece pattern(which does not have to be pulled out from the mold as in a traditional sand casting process), very intricate parts and undercuts can be made.完成后把整个型模放在烤箱里融化石蜡。这样就做成了能填充熔化金属的铸型。由于这种铸型是环绕整块型模形成的(无需像传统的砂型铸造工艺那样拔模),能制作十分复杂的零件和浮雕。

The wax pattern itself is made by duplicating using a stereo lithography or similar model—which has been fabricated using a computer solid model master.石蜡型模本身能用立体制版或类似的模型复制—这可以采用计算机立体模型原

版制作。

The materials used for the slurry are a mixture of plaster, a binder and powdered silica, a refractory, for low temperature melts.For higher temperature melts, sillimanite or alumina-silicate is used as a refractory, and silica is used as a binder.对较低熔化温度而言,用于耐热浆的材料是石膏作粘合剂和用粉末状硅石作耐温材料的混合物。对较高熔化温度而言,则采用硅线石或氧化铝硅酸盐作耐温材料、无水硅酸作粘合剂。

Depending on the fineness of the finish desired additional coatings of sillimanite and ethyl silicate may be applied.The mold thus produced can be used directly for light castings, or be reinforced by placing it in a larger container and reinforcing it more slurry.根据最后所需光洁度也可采用硅线石和乙烷基硅酸盐。这样生成的铸模可直接用于薄壁铸件或通过将其放在较大容器内用更多耐热浆加强。

Just before the pour, the mold is pre-heated to about 1,000℃(1,832℉)to remove any residues of wax, harden the binder.The pour in the pre-heated mold also ensures that the mold will fill completely.在正要浇铸之前,将型模预热到约1,000℃(1,832℉)以去除剩余石蜡、硬化粘合剂。在预热的型模中浇铸也能保证型模完全充满。

怎样写好文章题目? 篇7

文章题目字数不宜超过20个字, 尽量不用缩略语, 不加附标题, 且文题要鲜明, 紧扣内容, 范围不宜过大或过小。题目要准确描述报道的内容, 包含足够的信息以便了解论文内容, 交待重要的关键词、研究所涉及的主要参数 (自变量、因变量) 、研究对象和/或研究方法。如:《小隐静脉栓塞对腓肠神经营养血管逆行皮瓣影响的实验研究》。

题目写好后先进行自我审查:文题是否准确的描述了所报道的研究?是否有误导或不完整的情况?是否包含足够的信息以使读者了解论文内容:重要的关键词、研究所涉及的主要参数 (自变量、因变量) 、研究对象和/或研究方法?

忽然想到——写文章 篇8

古时候,文章都不长。《老子》五千言,写了一生。孔子教了一辈子书,弟子三千,贤人七十,记下来的笔记——后来叫作《论语》——也不过一万数千字。

何以其初都短,其后越来越长?值得研究。据我猜测,大致有技术上的困难和表达上的需要。

古时没有纸笔,老子著书,孔门记言,都得一个字一个字用刀刻在简上,费时费力。一片一片刻了字的竹简木简用皮绳串起来,就成了书,即所谓简册。若是动辄十万言、数十万言,刻起来非常费劲。为作者计,或为记录者计,自然越短越好。所以古人写文章能简省的尽量简省,“辞达而已”。当然,言太简,意太赅,也会给阅读与理解带来很多困难,但技术条件如此,也就只好将就些了。后世技术条件改善,于是注家蜂起,理解不同,歧义迭出,你有心得,我有体会,弄得人头昏脑胀。这固然有太简带来的麻烦,但多半是后来好为人师者强作解人的结果。

待到有了纸笔的发明,书写不再那样困难。为了不致“意不称物,文不逮意”,也为了使文字的表达更有艺术性,更能打动人,于是缘情绮靡、体物浏亮、缠绵凄怆、穷形尽相,文字也就越来越长。

印刷术的发明,省去了抄录的工夫,长篇巨制渐渐乘时而起,但汉字的不便于打字,终究令中国的作者畏于“爬格子”的艰难,所以直到上世纪80年代,十万字的小说便称长篇,百万字以上的著述终属寥寥。这其实未始不是好事,让读者省却了许多看废话的工夫。

及至进入了“电脑时代”,写作已不再艰难,一天数千字乃至数万字的写作速度,并不需要有什么倚马之才。书写技术的便捷,使善于利用者很容易就弄个“著作等身”。所以,看到一些介绍中有什么著述几百万字之类的广告,无须惊为天人。长,不代表著作的质量;多,也不表明学识的渊博。遗憾的是,数量崇拜不仅在一般读者,就是许多以做学问为职业的地方,也以产出的速度和数量定高下——学问云乎哉!

现在写书已被称为“码字儿”,把字儿一个一个码上去,倒也形象。“码字儿”若“进步”到了用“预制件”组装,速度就会飞速增长。这些“预制件”可以来自自己,也可以来自他人。来自自己的叫“复制”,来自他人的叫“抄袭”。复制自己虽使文字不必要地拉长,总还算“版权所有”;抄袭他人若不注明出处,便有剽窃之嫌,有伤令德。此类事已多有揭发,但有趣的是很少见到抄袭者的公开道歉,也不曾见到对剽窃著作的封杀——管事者对某些书毫不宽假,对另一些书却网开一面。这种严厉与宽容并存,消解着学术界的原创精神。

不知是不是为了表现思想上的“保持一致”,在社会科学的某些领域,把“复制”当作研究的习气颇盛。一些洋洋大作,只是在重复或拼装有关文件或讲话。原典既在,何必再弄这些二手、三手的货色?但电脑时代,这类拼装甚为便利,鼠标一点,嫁接完成,再用公款包销下去,名利双收。所以一些部门和一些人乐此不疲,全不问是否在虚耗钱财,制造文字垃圾。

一些有意思的现象值得关注。

譬如,讲到指导思想,上个世纪初,我们说“马克思主义”;二三十年代,说“马克思列宁主义”;40~70年代,说“马克思列宁主义毛泽东思想”;80年代以后又继续添加。单单说在什么思想指导下,就要用去不少字。

诚然,在历史的长河里,人类的认识总是逐步深化的,后一代总要加入新的思想成果。中国的儒学在两千余年间一直是官方的主流意识形态,其间不断有所丰富,但儒学还是儒学,若非论述思想的发展历程,是并不需要从孔、孟、荀、董直到韩愈、朱熹把根脚从头数的。

但今天不同。由于在一些重要文件中这样的说法一再出现,于是给人一种一个都不能少的印象,好像谁要是少写了一个,便别有什么用心似的。这就像县里一个部门作工作总结时,一定要历数从中央到省委到市委到县委的“英明领导”、“高瞻远瞩”、“亲切关怀”、“具体指导”一样,生怕少讲了一个会得罪人。

另一种写作方式也值得注意。某些官员或非官员,似乎刻意追求一种流行的风格,不重内容而重气势,不屑平实而求华丽,几乎到处可以看到排比的句、段,不用人人皆懂的话语而偏好看似深奥的术语。结果,用繁复之辞掩空洞之意,以艰深之语饰浅陋之思。

这类文风,事关政风、学风。工作不求实效而重形式,说话不求解决问题而求讨人喜欢。要改变,须上面带头,而且口说无凭,必得下个疾言厉色的文件,才能叫上上下下稍稍有点震动——冰冻三尺啊!

上一篇:如何与家长沟通论文下一篇:《弘扬和培育民族精神》说课稿