奇偶性优秀教学设计(共10篇)
一.教学目标
1.知识目标;使学生理解奇函数,偶函数的概念,学会运用定义判断函数的奇偶性 2.能力目标:通过设置问题情境培养学生判断,推理的能力
3.情感目标:通过绘制和展示优美的函数图象来陶冶学生的情操.通过组织学生分组讨
论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质.二 教学重点 难点
重点是函数的奇偶性的概念,难点是函数奇偶性的判断 三 教学方法
本节课采用观察,归纳,启发探究相结合的数学方法,运用现代化多媒体教学手段,进行教学活动,首先按照由特殊到一般的认知规律,由形及数,数形结合,通过设置问题引导学生观察分析归纳,形成概念,使学生在独立思考的基础上进行合作交流,在思考,探索和交流的过程中获得对函数奇偶性的全面的体验和理解,对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固,同时设计问题,探究问题,深化对概念的理解.用心爱心专心
用心爱心专心3-
函数的奇偶性的定义如下:
(1) 一般地, 如果对于函数f (x) 在定义域内的任一个x, 都有f (-x) =f (x) , 那么函数f (x) 叫做偶函数。
(2) 一般地, 如果对于函数f (x) 在定义域内的任一个x, 都有f (-x) =-f (x) , 那么函数f (x) 叫做奇函数。
学习这个定义要紧紧抓住两个要点: (1) 函数的定义中的x是任一个值。 (2) 都有f (-x) =f (x) (或f (-x) =-f (x) )
在讲课中, 我特别注意强调x是任一个而不是某一个, 而不少同学经常要用具体的某一个值来判断函数的奇偶性, 正是对定义缺乏深刻的理解。而定义中的都有f (-x) =f (x) (或f (-x) =-f (x) ) , 表示对于任意的x都成立, 即上面的式子是一个恒等式, 而不是对于部分x成立。
应该特别注意的是, 仅仅简单地记住这个定义的两个要点是远远不够的, 因为, 函数的奇偶性的定义包含着更深刻的内涵:
(一) 定义中涉及的求f (x) , f (-x) , 这里应该强调的是:f (x) 与f (-x) 必须同时有意义。因此, 可以得出下面的结论, 函数f (x) 是奇函数 (或偶函数) 的必要条件是函数的定义域必须是关于原点对称的数集 (原点可在也可不在定义域内) 。下面, 让我们总结一下常见的关于原点对称和关于原点不对称的数集。
在讲课中, 我通过对常见的关于原点对称和关于原点不对称的数集进行总结, 使同学们很快就能根据数集的形式来判断函数的定义域是否是关于原点对称的数集, 从而进一步判断出函数的奇偶性。
(二) 函数的奇偶性是整个定义域内的性质, 仅在定义域内的一个真子集中讨论函数的奇偶性是没有意义的。这一点和研究函数的单调性的方法不同。
因此, 只有深刻地理解函数的奇偶性的定义的内涵, 才能正确地判断函数的奇偶性。
二、关于函数奇偶性的几个重要性质
根据函数的奇偶性的定义, 我们可以系统地总结出函数的奇偶性的几个重要性质:
(1) 对称性:奇 (偶) 函数的定义域关于原点对称。
(2) 整体性:函数的奇偶性是整体性质, 对定义域内的任意一个x都必须成立。
(3) 可逆性:①f (-x) =f (x) ⇔f (x) 是奇函数
②f (-x) =-f (x) ⇔f (x) 是偶函数
(4) 等价性:①f (-x) =f (x) ⇔f (-x) -f (x) =0
②f (-x) =-f (-x) ⇔f (-x) +f (x) =0
(5) 图像的对称性:奇函数的图像关于原点对称。偶函数的图像关于y轴对称。
三、如何判断一个函数的奇偶性
根据函数的奇偶性的定义判断函数的奇偶性有两个步骤。首先应判断函数的定义域是否是关于原点对称的数集, 其次是验证f (-x) =f (x) (或f (-x) =-f (x) ) 对于定义域中的任意x是否成立。两个条件中尤以第一个条件最为重要, 因为如果不能满足第一个条件, 即使第二个条件成立也不能判断函数的奇偶性。不少同学在判断函数的奇偶性时经常只依据第二个条件是否成立来进行判断, 因而产生了错误。
根据判断函数的奇偶性的两个条件, 我们可以把函数按奇偶性分为: (1) 奇函数; (2) 偶函数; (3) 非奇非偶函数; (4) 既是奇函数也是偶函数四种类型。下面, 我们根据各种题型举行举例分析。
上述几个例子都是根据判断函数的奇偶性的两个步骤来判断函数的奇偶性的, 它属于比较简单的题目, 属于基本的题型。但有的题目较复杂, 例如:
由上面的例子可知, 若函数的表达式较复杂时, 一定要对式子的特点进行分析才得出恒等式是否成立的结论, 必要时应对表达式先进行化简, 再根据定义进行判断。
另外, 判断函数的奇偶性也可以根据它的图像的对称性进行判断。如果函数的图像关于原点对称, 则该函数一定是奇函数, 如果函数的图像关于y轴对称, 则该函数一定是偶函数。反之, 若函数
的图像关于原点或y轴不对称, 则该函数一定是非奇非偶函数。
四、几个判断函数奇偶性例子的错解分析
分析:上述解题结论正确, 过程错误。因为f (x) 与f (-x) 不能同时有意义。因此, 正确的解法是, 只有判断函数的定义域关于原点不对称, 就可以直接得出结论, 而不用验证f (-x) =f (x) (或f (-x) =-f (x) ) 是否成立。
分析:上述解题过程是错误的。很明显, 解题过程中没有考虑f (x) 的定义域是否是关于原点对称的数集。实际上, f (x) 的定义域是关于原点不对称的数集, 因此, f (x) =x2是非奇非偶函数。这道题也可以从它图像的对称性进行判断。
总之, 只要深刻地理解函数的奇偶性的定义, 那么, 判断函数的奇偶性就不难了。
摘要:函数的奇偶性是函数的重要性质之一。本文主要探讨函数的奇偶性的定义、性质, 函数按奇偶性的分类, 奇偶函数的图像特征以及几个常见的判别函数的奇偶性的错例分析。
关键词:奇函数,偶函数,函数奇偶性
参考文献
[1]陆利标.中学数学教与学.奇偶性的误区——忽视定义域.2007.
[2]韩忠月.高中数学教与学.高一数学测试题, 2007.
关键词:函数奇偶性;数学教学
中图分类号:G633.6 文献标识码:A 文章编号:1009-010X(2015)36-0044-03
近期观摩了几位老师《函数的奇偶性》的教学,颇有感悟,所思为文,谨与各位老师共同探讨。
一、理解课标,分析教材
关于普通高中课程标准实验教科书·数学(必修1)(人教A版)(以下简称人教版教材)P33~36的教学内容,《数学课程标准》明确要求:结合具体函数,了解奇偶性的含义;学会运用函数图象理解和研究函数的性质。《数学课标解读》中特别说明:在教学中,要重视图形在数学学习中的作用,挖掘函数图象对函数概念和性质的理解,对数学的理解、数学思考的辅助功能;要注意几何直观的局限性,避免用几何直观代替逻辑证明的错误做法。
《教师教学用书》中也明确指出:研究函数性质时的“三步曲”为:第一步,观察图象,描述函数图象特征;第二步,结合图、表,用自然语言描述函数图象特征;第三步,用数学符号语言定义函数性质。教科书在处理函数的奇偶性时,沿用了处理函数单调性的方法,利用图象、表格探究数量变化特征,通过代数运算、验证发现的数量特征,在这个基础上建立奇(偶)函数的概念。
综上可见,从研究对象来看,奇偶性是从形到数,再从数到形,思维对象在数形之间不断地转换;从思维方式来看,有尝试、归纳、猜想、直观等合情推理,也有严谨的演绎推理,思维方式在直觉与逻辑之间转换;从语言形式来看,有自然语言、图形语言、符号语言,问题表征在三种语言间转换,学生思维在这三对转换之间不断地由粗糙到精致、由直观到逻辑、由肤浅到深刻、由零碎到系统,得以自然的生长。
二、教学片断,持续思考
(一)“生活问题数学化”与“数学问题生活化”
大部分老师通过生活中的实例,展示一些美丽的具有对称性的图片,通过感性材料的观察、分析,提炼出感性材料的本质属性,让学生在对具体问题的体验中感知概念。有的老师从具体函数图象引入,回顾单调性的研究过程,从数学的问题出发,引入本节课。两种方式均是在学生认知的基础上提出问题,引发学生在最近思维发展区积极思考,努力建立已有基础与发展区之间的联系。前者从一般轴对称和中心对称到特殊对称,从生活中的“形”到数学中的“形”,从“形”规律到“式”的规律。后者采用“开门见山”的导入方式,充分利用教材的编排顺序,直接点明要学的内容,沿用单调性的研究方法,使学生的思维迅速定向,明确目标、突出重点。情境引入环节,是“数学问题生活化”,还是“生活问题数学化”,值得我们探讨。
(二)“奇偶性的定义”与“奇偶性的性质”
有些教师从几何的角度给出定义:如果函数的图象是给出的,并且图象是关于y轴对称,这样的函数就是偶函数;如果图象是关于原点对称,这样的函数就是奇函数。人教版教材也是从几何直观的角度导出函数奇偶性的定义的。那么,我们是否可以用观察图象来判断函数的奇偶性呢?
问题的关键在于,函数图象是怎么画出来的呢?学生刚从初中升入高中,所接触的函数只是一些最基本的初等函数,如一次函数、二次函数、正比例函数、反比例函数。而这些函数的图象是比较简单的,可以通过描点连线得到。但是这样得到的图象是不精确的、粗糙的。另外,函数图象千姿百态,并不是都简单易画的(当然我们可以借助图形计算器),那我们该如何判断函数的奇偶性呢?
经过这样的思考,显然只有严格推理,才能明确函数的奇偶性。即便是我们很清楚的正比例函数、反比例函数也要通过定义去判断去验证。正是函数具有奇函数或偶函数性质,函数的图象才一定会关于原点对称或关于y轴对称。至此,谁为定义谁为性质一目了然。
(三)“判断奇偶性”与“x的任意性”
大多数老师把“判断函数奇偶性”作为教学的重难点,总结判断的步骤。从教学出发,应该把“x的任意性”作为重点,重头戏应该是用几何直观感受对称,进而用代数形式给这种对称关系进行一般性刻画。前者,是从评价出发,受考试影响的结果。后者,是从认知出发,努力寻找将已有知识纳入到新学知识的途径,利用已有的研究方法来研究新的知识,让新的知识能够在已有的方法中持续生长。如,回顾研究函数单调性的过程与方法,重温单调性中“任取”的突破过程,这样做都是为了让知识能够自然而顺利的生长。如果只是停留在对知识的死记硬背,追求概念教学的最小化和习题教学的最大化,那么学生对知识的理解只能是机械的、零碎的。
(四)“整体到局部” 与“局部到整体”
如果把函数的一个个具体的知识看作“树木个体”,把与函数相联系的知识与方法看作“森林整体”的话,教学中就要处理好“树木个体与森林整体”的关系,要求既能够从“个体”认识“整体”,也能够从“整体”认识“个体”,两个方面都不可缺少。为此,既要注重与函数相关知识与方法的认识,又要注意对函数某一个特殊性质的分析与理解。所以,在函数奇偶性教学中,要在函数概念“大背景”下展开教学与学习。
遗憾的是,很多教学没有在认识函数整体上下功夫。例如,函数图象认识,从奇偶性角度,就是知道函数图象部分,再由部分推断函数整体;反之,由整体推断部分,具体的说就是“已知奇偶函数的一半图象,求另一半图象”。如果按照以下教学流程很难体现以上教学思想①展示生活或数学中的对称现象;②从具体到一般,形成奇(偶)函数的概念;③通过例题或练习,规范判断函数奇偶性的步骤;④课堂小结,布置作业。这个教学流程应该说基本完成了函数性质教学要求,但从更高要求,或者从提升学生研究函数能力角度看,对函数整体性认识是有些欠缺的。事实上,人教版教材中不仅设置了一些从整体认识函数图象与性质思考题(P35),还给出了相应的练习题(P36练习中的第2题)。教材中如此安排,目的是想告诉学生:奇偶性是研究函数的一种工具,奇偶性就是对称性,要从整体上理解函数的奇偶性。在已知函数奇偶性的前提下,若知道半个定义域的情况,可得出整个定义域内的整体情况,体会由局部到整体的数学思想。对于教材的把握,我们应该深入理解教材编写者的意图,活学活用教材,把蕴涵的思想和方法显化。
三、课堂感悟,教学启示
教学是一门遗憾的艺术。一节课成功与否,是要看有没有高水平的思维活动,有没有围绕学科概念的本质和主要的思想方法,有没有在学生认知的基础上提出问题,引发学生在最近思维发展区积极思考,培养学生的思维能力,帮助其逐渐形成良好的学习方法。教学过程中,要精心设计带有启发性和思考性的问题,创设问题情境,使学生从被动地“听”发展为主动地获取和体验数学概念,促使学生掌握知识、形成能力。
随着时间的推移,数学中的具体知识将会被多数人遗忘,但数学中所承载的文化将会影响久远。学生在数学的课堂上,不仅学会具体知识,还应掌握一定的研究方法,这对教师的要求将会更高。教学中,数学教师要不断地以课标、教材为本进行教学研究,要从课堂教学研究向学科的整体把握转变,不断地进行回顾反思,促使教学水平不断提高。
参考文献:
[1]严士健,张奠宙,王尚志.普通高中数学课程标准(实验)解读[Z].江苏:江苏教育出版社,2004,3.
[2]徐爱勇.一样的“哈姆雷特”,异样的“精彩”:从《双曲线的标准方程》两节课谈起[J].数学教学,2012,(2):12~14.
[3]普通高中课程标准实验教科书·数学(必修1)(人教A版)[M].人民教育出版社,2009,5.
[4]普通高中课程标准实验教师教学用书·数学(必修1)(人教A版)[M].人民教育出版社,2010,5.
2、经历探索加法中数的奇偶变化过程,在活动重视学生体验探究方法,培养学生分析、解决问题的能力。
3、结合小游戏使学生体会生活中有很多事情中存在数学规律,从而调动学生学习数学的兴趣。通过实践报告,以小组合作的形式探究加法中奇偶性的变化规律,培养学生的小组合作意识和能力。
教学重点:
从生活中的摆渡问题,发现数的奇偶性规律。
教学难点:
运用数的奇偶性规律解决生活中的实际问题。
教具准备:
实物投影仪、一个杯子。
学具准备:
每人一枚硬币。
教学过程:
一、揭示课题:
自然数包含有奇数和偶数,一个自然数不是奇数就是偶数。这一节课我们要进一步认识数的奇偶性。
二、组织活动,探索新知。
(一)活动一:示图:小船最在南岸,从南岸驶向北岸,再从北岸驶回南岸,不断往返。
1、(1)小船摆渡11次后,船在南岸还是北岸?为什么?
(2)有人说摆渡100次后,小船在北岸。他的说法对吗?为什么?
2、请任说一个摆渡的次数,学生回答在南岸还是北岸?
3、请学生列表并观察。
4、想:摆渡的次数与船所在的位置有什么关系?
摆渡奇数次后,船在岸。
摆渡偶数次后,船在岸。
(二)活动二:试一试
1、师:一个杯子杯口朝上放在桌上,翻动1次,杯口朝下,反动2次杯口朝上。翻动10次后,杯口朝---,反动19次后杯口朝-----。
2、师示范,生活动:
摆开始状态第1次第2次第3次
下上下(师示范,生活动)
3、师:任说一个翻动的次数,学生抢抢抢答杯口朝上还是朝下?
4、观察杯口,找规律:
想一想:翻动的次数与杯口的朝向有什么关系?
翻动奇数次后,杯口朝。
翻动偶数次后,杯口朝。
5、师:把“杯子”换成“硬币”你能提出类似的问题吗?
6、学生你说我答,一人任说一个翻动次数,另一人判断杯口朝上还是朝下。
(三)活动三:观察下面两组数:
1、出示圆内数:121820346801652
2、出示方框内数1149252133710187
(1)读一读:
(2)说一说圆中的数有什么特点?
(3)方框中的数有什么特点?
3、偶数有什么特征?奇数有什么特征?
(四)活动四:试一试:
1、从圆中任意取出两个数相加,和是偶数。
同桌两人:一人说算式,一人计算和。
师:从以上举例可以发现?
任请一组同桌汇报,
(1)偶数+偶数=(2)从正方形中任意取出两个数相加,和是。
(3)任意写出两个偶数,它们的和是。
(4)任意写出两个奇数,它们的和是。
(5)分别从圆和正方形中各取一个数相加,和是。
(6)任意写出一个偶数,一个奇数,它们的和是。
(7)判断下列算式的结果是奇数还是偶数。
10389+20xx=
11387+131=
三、总结。
八里关中小 周文卿
教学内容:北师大版数学五年级上册第14页。教学目标:
1、使学生尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、让学生经历探索加法运算中数的奇偶性变化的过程,发现数的奇偶性的变化规律。
3、在活动中培养等学生的观察、推理和归纳能力。
4、学生通过自主探索发现规律,感受数学内在的魅力,培养学生学习数学的兴趣。
教学重点:探索数的奇偶性变化规律。
教具学具准备:课件,数字卡片,盒子等。教学过程:
复习引入新课(通过引导学生回忆、提问或列举等形式,复习奇、偶数)
(一)创设情境,激趣导入。
1、教室里光线是不是有些暗啊?那我把灯拉开吧!请同学们看仔细了,马上我有问题问大家。我拉了3次开关后,“开关”是打开的还是关闭了?10次呢?
2、做“你说我猜”的游戏。
3、小结:老师之所以猜的这么快,是因为老师掌握了这其中的秘诀。那就是----数的奇偶性的规律。(板书:数的奇偶性,齐读。)同学们想不想也知道这个秘诀呢?„„。那么这节课我们就来研究数的奇偶性的规律,等你们把它的规律找出来了,你猜得会比我还要准、还要快!(为自己加油!)
(二)自主探究,发现规律。
1、学生独立思考后进行汇报交流。
方法:用文字列举出开、关的情况
开、关;开、关;开、关;开、关;开、关;开、关„„
让学生数数,直观地发现第10次拉过开关后,开关是关闭的。随着学生的回答,师适时演示课件。
2、增加人次,深入探究。
如果我拉了50或者80次,用列举的方法判断“开关”的开、关情况还方便吗?你还能想出什么好方法呢?
3、第二次小组汇报交流。
师分别演示列表和画图方法课件。让学生观察这两种解题方法,引导他们从中发现规律并作答:当拉的次数是1、3、5、7„„的时候,开关处于开启状态,而当拉的次数是2、4、6、8„„的时候,开关处于关闭状态。即,拉的次数是奇数时,开关被打开;拉的次数是偶数时,开关被关闭。
(三)巩固应用,拓展训练。
1、看书学习并解决小船的靠岸问题。(适时课件演示)
2、解决杯子上下翻转,杯口的朝向问题。(适时教具、课件演示)
(四)活动小结:
当一个事物只有两种(运动或变化)状态时,运动奇数次后,状态与初始状态相反,运动偶数次时,状态与初始状态相同。
(五)有奖游戏:
1、街上有一家商店为了招揽生意,搞起了购物摸奖活动。凡是在他那购物的同学,都可以得到一次摸奖的机会,而且奖品还很丰厚。那我们同学们有没有人想试试自己的手气呢?„„。
2、游戏开始。部分学生按规则抽取卡片,并将卡片上两个数相加的算式及得数写在黑板上。(上来的同学无一人获奖。)
3、引发思考。
是你们运气不好,还是其中隐藏着什么秘密?想一想:如果继续抽下去,你们有获奖的可能吗?如果让你修改一下游戏规则,你能保证你能够获奖呢?(留作课后思考)
(六)课堂小结:
1、说说这节课你有什么收获?
授课教师——李振明
授课班级——高一(8)
教学目的:
1、使学生理解函数的奇偶性的概念,并能判断一些简单函数的奇偶性;
2、进一步培养学生分析问题和解决问题的能力。教学重点和难点: 函数奇偶性的判断
一、引入新课: 题1:已知函数f(x)=3x 画出图形,并求: f(2),f(-2),f(-x)。
题2:已知函数g(x)= 2x2画出图形,并求: g(1),g(-1),g(-x)。
考察:f(x)与f(-x),g(x)与g(-x)之间的关系是什么?
二、定义:对于函数f(x),在它的定义域内,任
意一个x.①如果都有f(-x)=f(x),则函数f(x)叫做奇函数。②如果都有f(-x)=f(x),则函数f(x)叫做偶函数。
三、例:判断下列函数的奇偶性
① f(x)=x5+x ② f(x)=x4-x2 ③ f(x)=3x+1 定理:
1、性质:奇函数的图象关于原点对称。偶函数的图象关于y轴对称。
2、如果一个函数的图象关于原点对称,那么这个函数是奇函数。
如果一个函数的图象关于y轴对称,那么这个函数是偶函数。
四、巩固练习
(1)如果对于函数f(x)的(任意一个X),都有(f(-x)=f(x)),那么函数f(x)就叫做偶函数。
如果对于函数f(x)的(任意一个X),都有(f(-x)=f(x)),那么函数f(x)就叫做奇函数。
(2)奇函数的图象关于(关于原点)对称,偶函数的图象关于(y轴对称)对称。
(3)已知函数y = f(x)是奇函数,如果f(a)=1那么f(-a)=(-1)(4).在下列各函数中,偶函数是(B)
(5)函数f(x)=|x+2|-|x-2|的奇偶性是(A)
A.奇函数
B.偶函数
C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数
四、小结
1、定义:对于函数f(x),在它的定义域内,把任 意一个x换成-x,(x,-x都在定义域)。
①如果都有f(-x)=f(x),则函数f(x)叫做奇函数。②如果都有f(-x)=f(x),则函数f(x)叫做偶函数。
2、性质:奇函数的图象关于原点对称。
偶函数的图象关于y轴对称。如果一个函数的图象关于原点对称,那么这个函 数是奇函数。
如果一个函数的图象关于y轴对称,那么这个函 数是偶函数。
五、课后思考题
已知函数f(x)=(m2-1)x2 +(m-1)x+n+2,则当m、n为何值时,为奇函数
一、教材分析
函数的奇偶性是函数的重要性质, 是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起, 反映在图象上为:偶函数的图象关于y轴对称, 奇函数的图象关于坐标原点成中心对称.这样, 就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.本节课在教材的基础上对函数图象的对称性进行了拓展, 进一步研究函数图象关于直线x=a轴对称和关于点 (a, 0) 中心对称时几何特征与代数表征之间的关系.
二、教学目标
1.初步理解函数图象关于直线x=a轴对称和关于点 (a, 0) 中心对称时的代数表征;
2.能在问题中对对称性的代数表征进行识别和简单应用;
3.在研究问题的过程中, 培养学生观察、抽象的能力, 以及从特殊到一般的概括能力;运用类比数学方法, 渗透数形结合的数学思想.
三、教学重点
1.函数图象对称性的代数表征;
2.函数图象对称性的几何特征与代数表征之间的转换.
四、教学难点
函数图象对称性的几何特征与代数表征之间的转换.
五、教学过程
(一) 复习回顾
师:函数的奇偶性是函数的一个基本性质, 它反映的是一个函数图象的对称性质, 这种对称性质不仅广泛存在于数学问题之中, 而且利用对称性往往能更简捷地使问题得到解决, 对称性还充分体现了数学的对称之美.今天我们首先深入研究一个函数图象的轴对称性.
师:首先来看函数y=x2 (x∈R) , 它为偶函数, 从“形”的角度看, 即几何特征为关于y轴对称;从“数”的角度看, 即代数表征为f (x) =f (-x) .
思考1那么对于函数y= (x-1) 2 (x∈R) , 它的图象关于直线x=1对称, 对应的代数表征是什么呢?
(二) 直观感知
师:观察函数y= (x-1) 2 (x∈R) 图象上点坐标的变化, 可以发现图象上关于直线x=1对称的两点A和A'横坐标之间的关系, 若点A坐标为 (x, f (x) ) , 则点A'的坐标为 (2-x, f (2-x) ) , 由于点A和A'关于直线x=1对称, 故f (x) =f (2-x) .
结论一:若函数y=f (x) (x∈D) 图象关于直线x=1对称, 则, f (x) =f (2-x) ;
师:那么, 若函数图象关于直线x=2对称呢?请说明理由.
思考2除了f (x) =f (2-x) , 还有没有其他形式的代数表征同样反映函数y=f (x) (x∈D) 图象关于直线x=1对称?
师:假设点A和A'离对称轴的距离都为x, 则点A坐标为 (1+x, f (1+x) ) , 则点A'的坐标为 (1-x, f (1-x) ) , 由于点A和A'关于直线x=1对称, 故f (1+x) =f (1-x) .
结论二:若函数y=f (x) (x∈D) 的图象关于直线x=1对称, 则, f (1+x) =f (1-x) ;
师:那么, 若函数图象关于直线x=2对称呢?请说明理由.
思考3由特殊到一般, 当函数y=f (x) (x∈D) 的图象关于直线x=a对称时, 代数表征是什么?
结论三:若函数f (x) (x∈D) 的图象关于直线x=a对称, 则, f (x) =f (2a-x) , 或f (a+x) =f (a-x) .
(三) 辨析提高
思考4观察结论一、二的两个代数表征, 它们之间有没有相同之处?
结论四:若函数y=f (x) (x∈D) 的图象关于直线x=a对称, 则, f (x) =f (2a-x) , f (a+x) =f (a-x) , …, f (x1) =f (x2) , 其中, 即x1、x2以a为中点.
(四) 类比归纳
师:再回忆奇函数和偶函数的区别与联系, 运用类比的数学方法, 大家完成以下结论:
结论一:若函数y=f (x) (x∈D) 图象关于点 (1, 0) 对称, 则, f (x) =-f (2-x) ;或f (1+x) =-f (1-x) ;
(五) 简单应用
例1已知函数y=f (x) (x∈D) 分别满足以下条件, 请分别说明函数图象关于______对称.
f (-2+x) =f (-2-x) , f (4+x) =f (3-x) ,
f (x-1) =-f (-3-x) , f (x+1) +f (-x+1) =0.
例2已知y=f (x) 为二次函数, 满足f (x+1) =f (3-x) , 试比较f (1) 与f (4) 的大小关系.
(六) 课堂小结
1.今天我们学习了什么内容?
2.学习了什么数学思想和方法?
(七) 课后作业
1.设二次函数f (x) 满足f (x+2) =f (3-x) , 且f (x) =0的两实数根平方和为10, f (x) 图象过点 (0, 3) , 求f (x) 的解析式.
2.已知函数y=f (x) (x∈R) 满足f (-x) =-f (x+4) , 且函数f (x) 在区间 (2, +∞) 上单调递增.如果x1<2<x2, 且x1+x2<4, 则f (x1) +f (x2) 的值 ()
A.恒小于0B.恒大于0
C.可能为0D.可正可负
教学反思
本节课《1.3.2函数的奇偶性 (二) 》是数学必修1中《1.3.2奇偶性》的第二节课, 在本节课之前学生已经学习了函数奇偶性, 能应用函数奇偶性解决简单的问题, 对函数图象对称性有了初步的认识;由于我所教的班级为实验班, 而且在前节课最后有学生就提问当对称轴不在轴及对称中心不在原点时代数表征是什么, 所以本节课的内容是对函数奇偶性的拓展, 进一步研究函数图象的对称性;从函数图象对称性的几何特征和代数表征两个方面去研究, 建立二者间的关系.
本节课的设计框架是由特殊到一般, 由几何到代数, 采用类比的数学方法建立更一般的函数图象对称性的几何特征和代数表征之间的关系.第一步, 从函数图象轴对称开始, 引导学生类比于函数图象对称轴为y轴时代数表征的结论, 比较容易得到当函数图象对称轴为直线x=1时的代数表征, 然后类比得出函数图象对称轴为直线x=2时的代数表征, 层层递进从而得到函数图象对称轴为直线x=a时的代数表征f (x) =f (2a-x) ;第二步, 对刚才的结论进行辨析, 确定了结论的存在性, 分析结论是否唯一.是否唯一是本节课的难点, 我设计了用距离的概念引入另一个代数表征f (a+x) =f (a-x) , 然后将f (x) =f (2a-x) 与f (a+x) =f (a-x) 进行对比, 比较容易地分析出运用整体替换的思想, 替换后自变量和为定值, 因变量相等即为轴对称性的结论;第三步, 运用类比的数学思想, 得到函数图象关于点 (a, 0) 对称的对应结论.
本节课的引入还可以设计为由二次函数y= (x-1) 2引入, 引导学生计算验证f (x) =f (2-x) , 然后去掉二次函数模型, 再引导学生辨析任意一个函数图象关于直线x=1对称时, 是否都满足f (x) =f (2-x) .
本节课使我满意的地方有以下几点:
一、学生自主探究的效果很好, 所有概念都是由学生总结得到的, 充分发挥了学生学习的主观能动性, 这得益于“先行组织者”的使用;
二、适时追问学生回答结果的理由, 充分展示学生的思维过程, 给其他同学以借鉴, 可以达到事半功倍的效果;
1. 已知[f(x)]是奇函数,[g(x)]是偶函数,且[f(-1)+g(1)=2],[f(1)+g(-1)=4],则[g(1)]等于( )
A. 4 B. 3 C. 2 D. 1
2. 已知[f(x)]是定义在R上的奇函数,当[x≥0]时,[f(x)=3x+m]([m]为常数),则[f(-log35)]的值为( )
A. 4 B. -4 C. 6 D. -6
3. 已知[f(x)]是定义在R上的奇函数,若对于[x≥0],都有[f(x+2)=f(x)],且当[x∈[0,2]]时,[f(x)=ex-1,][f(2013)+f(-2014)=]( )
A. [1-e] B. [e-1]
C. [-1-e] D. [e+1]
4. 已知函数[f(x)]的定义域为[(3-2a,a+1)],且[f(x+1)]为偶函数,则实数[a]的值可以是( )
A. [23] B. 2 C. 4 D. 6
5. 已知奇函数[f(x)=3x+a(x≥0),g(x)(x<0),]则[g(-2)]的值为( )
A. -6 B. -8 C. 4 D. 6
6. 定义运算[ab=a2-b2,][ab=][(a-b)2],则[f(x)=2x(x2)-2]为( )
A. 奇函数 B. 偶函数
C. 常函数 D. 非奇非偶函数
7. 已知函数[f(x)=12(ex-e-x)],则[f(x)]的图象( )
A. 关于原点对称 B. 关于[y]轴对称
C. 关于[x]轴对称 D. 关于直线[y=x]对称
8. 函数[f(x)=log2(1+x),g(x)=log2(1-x),]则[f(x)-g(x)]是( )
A. 奇函数
B. 偶函数
C. 既不是奇函数又不是偶函数
D. 既是奇函数又是偶函数
9. 已知定义在[R]上的函数[f(x)],对任意[x∈R],都有[f(x+6)=f(x)+f(3)]成立,若函数[y=f(x+1)]的图象关于直线[x=-1]对称,则[f(2013)=]( )
A. 0 B. 2013 C. 3 D. -2013
10. 已知定义在[R]上的函数[y=f(x)]满足以下三个条件:①对于任意的[x∈R],都有[f(x+4)=f(x)];②对于任意的[x1,x2∈R]且[0≤x1 A. [f(4.5) B. [f(7) C. [f(7) D. [f(4.5) 二、填空题(每小题4分,共16分) 11. 若函数[fx=ax2+bx+3a+b][(a-1≤x≤][2a)]是偶函数,则点[a,b]的坐标是 . 12. 已知函数[f(x)]是定义在R上的奇函数,其最小正周期为3,且[x∈(-32,0)]时,[f(x)=] [log2(-3x+1)],则[f(2014)]= . 13. 定义在[[-2,2]]上的奇函数[f(x)]在[(0,2]]上的图象如图所示,则不等式[f(x)>x]的解集为 . 14. 给出定义:若[m-12 三、解答题(共4小题,44分) 15. (10分)设[a]为实数,函数[f(x)=x2+|x-a|][+1],[x∈R]. (1)讨论[f(x)]的奇偶性; (2)求[f(x)]的最小值. 16. (12分)已知函数[f(x)=-x2+2x,x>0,0,x=0,x2+mx,x<0]是奇函数. (1)求实数[m]的值; (2)若函数[f(x)]在区间[[-1,a-2]]上单调递增,求实数[a]的取值范围. 17. (10分)已知函数[f(x)]的定义域是([0,+∞)],且满足[f(xy)=f(x)+f(y),f(12)=1],对于[0 (1)求[f(1)]; (2)解不等式[f(-x)+f(3-x)]≥-2. 18. (12分)设函数[f(x)=ax-(k-1)a-x(a>0][且a≠1)]是定义域为[R]的奇函数. (1)求[k]值; (2)若[f(1)<0],试判断函数单调性并求使不等式[f(x2+tx)+f(4-x)<0]恒成立的[t]的取值范围; (3)若[f(1)=32],且[g(x)=a2x+a-2x-2mf(x)],在[[1,+∞)]上的最小值为-2, 求[m]的值. 教学目标: 1、理解并掌握偶函数、奇函数的概念; 2、熟悉掌握偶函数、奇函数的图像的特征; 3、会证明一些简单的函数的奇偶性。 教学重点:偶函数、奇函数的概念,判断函数的奇偶性; 教学难点:函数的奇偶性的定义的理解。教学过程: 1、创设情境,直观感受 (1)请同学们欣赏图片,并根据图片说一说这些图片具有怎样的对称性。这些图片展现了数学的对称美,他们是轴对称图形或者中心对称图形。我们熟知的函数中也有如此美的图像。函数的图像一般都是呈现在直角坐标系中的,而在我们直角坐标系中,有2条坐标轴以及一个点,今天我们所要研究的就是在坐标轴中的对称。有三种,关于y轴对称,关于原点对称,关于x轴对称。请问,一个函数图像可能关于x轴对称吗?(这个学生应该比较好回答。)那么就只有2种关于y轴对称和关于原点对称。(这里要复习一下一个点关于y轴对称和关于原点对称的点的坐标特点。) 请同桌讨论一下,举出我们所学习的函数中图像是关于y轴对称或者关于原点对称。 (请2组同学进行汇报,并且将函数的大致图像画到黑板上。) 2、概念引入,理性分析 (1)从函数图像上诠释研究奇偶函数的价值 根据同学举得例子,来探讨这2类函数研究的价值:因为这2类函数具有美丽的对称性,那么我们在画函数图像的时候只需要作出一半的图像,另外一半对称过去就可以;而且在研究函数性质的时候,只需要研究一半,另外一半的性质也可以相应的得出。 (2)从符号语言、解析式来诠释奇偶函数 既然这2类函数具有特殊的对称性,那么如何证明这种对称性呢? (此处引导学生:图像是点集,要证明图像的性质,只需要证明点的性质即可。)第一组图像中的点1,f(1),它关于y轴的对称点为1,f(1),下面证明1,f(1)点在函数的图像上即可,如何证明点在函数图像上呢?只需要证明点的坐标满足函数解析式即可(带入证明)。同样的对于点2,f(2),它关于y轴的对称点为2,f(2),下面说明点2,f(2)在函数图像即可。依次下去,需要验证多少个点才可以?(无数个),那么这样太麻烦,我们想一个简单的方式,找一个具有一般性的点a,f(a),它关于y轴的对称点为a,f(a),下面证明点a,f(a)在函数图像即可,依然是带入验证。 (归纳刚才的研究过程,得出偶函数的定义) (1)偶函数的定义: 如果对于函数yf(x)的定义域D内的任意实数x,都有f(x)f(x),那么就把函数yf(x)叫做偶函数。 (关键词:“任意”即“所有”、“每一个”)(可提问同学此定义的关键词是什么?) (2)偶函数的性质: ①定义域关于原点对称;(依据:定义域D内的任意实数x,都有f(x)f(x),也就是说f(x)f(x)是恒等式,恒等式要成立的前提是有意义,xD且xD,得出定义域关于原点对称) ②偶函数的图像关于y轴对称。(依据:有偶函数的定义即可得到)③偶函数中有恒等式f(x)f(x)成立。 (数学中,有“偶”就有“奇”,请同学们类比得出奇函数的定义与性质)(提示同学们从下面几点进行研究:①奇函数图像的特征;②奇函数的定义;③奇函数的性质) (3)奇函数的定义 如果对于函数yf(x)的定义域D内的任意实数x,都有f(x)f(x),那么就把函数yf(x)叫做奇函数。 (4)奇函数的性质:①定义域关于原点对称; ②奇函数的图像关于原点对称。 ③奇函数中有恒等式f(x)f(x)成立。 根据奇函数的定义,请同学们自己列举奇函数的例子。 3、例题分析,巩固理解 例 1、(根据学生列举的奇函数的例子,提问,如何求证此函数是奇函数?依据:定义。)例 2、求证函数f(x)x21是偶函数。 例 3、判断下列函数的奇偶性 (1)yx22,x3,3 (2)y0,x1,1 (此处分析既奇又偶函数的特征:解析式一定是y0的形式,主要就是在定义域上做文章。) 小结:如何判断函数的奇偶性 (1)一看:看定义域是否关于原点对称,如果不关于原点对称,则非奇非偶;(2)二找:找f(x)与f(x)的关系;(3)三判断:根据关系,下结论。 例 4、(如果时间充足,可作为拓展题目)已知yf(x)是偶函数,它在y轴右边图像如图所示,画出yf(x)在y轴左边的图像。(同学做好,可以投影展示) 4、课堂小结 (1)函数奇偶性的定义;(2)判断函数奇偶性的步骤 《函数的奇偶性》说课稿1 一、教材分析 函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关联,而且为后面学习指、对、幂函数的性质作好了坚实的准备和基础。因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。 二。教学目标 1.知识目标: 理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性。 2.能力目标: 通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想。 3.情感目标: 通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力。 三。教学重点和难点 教学重点:函数的奇偶性及其几何意义。 教学难点:判断函数的奇偶性的方法与格式。 四、教学方法 为了实现本节课的教学目标,在教法上我采取: 1、通过学生熟悉的函数知识引入课题,为概念学习创设情境,拉近未知与 已知的距离,激发学生求知欲,调动学生主体参与的积极性。 2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。 3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。 五、学习方法 1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。 2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。 六。教学程序 (一)创设情景,揭示课题 “对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性? 观察下列函数的图象,总结各函数之间的共性。 f(x)= x2 f(x)=x x 通过讨论归纳:函数 是定义域为全体实数的抛物线;函数f(x)=x是定义域为全体实数的直线;各函数之间的共性为图象关于 轴对称。观察一对关于 轴对称的点的坐标有什么关系? 归纳:若点 在函数图象上,则相应的点 也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等。 (二)互动交流 研讨新知 函数的奇偶性定义: 1.偶函数 一般地,对于函数 的定义域内的任意一个 ,都有 ,那么 就叫做偶函数。(学生活动)依照偶函数的定义给出奇函数的定义。 2.奇函数 一般地,对于函数 的定义域的任意一个 ,都有 ,那么 就叫做奇函数。 注意: 1.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质。 2.由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个 ,则 也一定是定义域内的一个自变量(即定义域关于原点对称)。 3.具有奇偶性的函数的图象的特征 偶函数的图象关于 轴对称;奇函数的图象关于原点对称。 (三)质疑答辩,排难解惑,发展思维。 例1.判断下列函数是否是偶函数。 (1) (2) 解:函数 不是偶函数,因为它的定义域关于原点不对称。 函数 也不是偶函数,因为它的定义域为 ,并不关于原点对称。 例2.判断下列函数的奇偶性 (1) (2) (3) (4) 解:(略) 小结:利用定义判断函数奇偶性的格式步骤: ①首先确定函数的定义域,并判断其定义域是否关于原点对称; ②确定 ; ③作出相应结论: 若 ; 若 . 例3.判断下列函数的奇偶性: ① ② 分析:先验证函数定义域的对称性,再考察 . 解:(1) >0且 >= < < ,它具有对称性。因为 ,所以 是偶函数,不是奇函数。 (2)当 >0时,-<0,于是 当<0时,->0,于是 综上可知,在r-∪r+上, 是奇函数。 例4.利用函数的奇偶性补全函数的图象。 教材p41思考题: 规律:偶函数的图象关于 轴对称;奇函数的图象关于原点对称。 说明:这也可以作为判断函数奇偶性的依据。 例5.已知 是奇函数,在(0,+∞)上是增函数。 证明: 在(-∞,0)上也是增函数。 证明:(略) 小结:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致。 (四)巩固深化,反馈矫正 (1)课本p42 练习1.2 p46 b组题的1.2.3 (2)判断下列函数的奇偶性,并说明理由。 ① ② ③ ④ (五)归纳小结,整体认识 本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。 (六)设置问题,留下悬念 1.书面作业:课本p46习题a组1.3.9.10题 2.设 >0时, 试问:当<0时, 的表达式是什么? 《函数的奇偶性》说课稿2 各位老师,大家好! 今天我说课的课题是高中数学人教A版必修一第一章第三节“函数的基本性质”中的“函数的奇偶性”,下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。 一、教材分析 (一)教材特点、教材的地位与作用 本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。 函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。 (二)重点、难点 1、本课时的教学重点是:函数的奇偶性及其几何意义。 2、本课时的教学难点是:判断函数的奇偶性的方法与格式。 (三)教学目标 1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法; 2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。 3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。 二、教法、学法分析 1.教学方法:启发引导式 结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用“引导发现法”进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构。使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性。 2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。让每一位学生都能参与研究,并最终学会学习。 三、教辅手段 以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学 四、教学过程 为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。指导观察,形成概念。学生探索、发展思维。知识应用,巩固提高。归纳小结,布置作业。 (一)设疑导入,观图激趣 让学生感受生活中的美:展示图片蝴蝶,雪花 学生举例生活中的对称现象 折纸:取一张纸,在其上画出直角坐标系,并在第一象限任画一函数的图象,以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形。 问题:将第一象限和第二象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点 以y轴为折痕将纸对折,然后以x 轴为折痕将纸对折,在纸的背面(即第三象限)画出第二象限内图象的痕迹,然后将纸展开。观察坐标喜之中的图形: 问题:将第一象限和第三象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点 (二)指导观察,形成概念 这节课我们首先从两类对称:轴对称和中心对称展开研究。 思考:请同学们作出函数y=x2的图象,并观察这两个函数图象的对称性如何 给出图象,然后问学生初中是怎样判断图象关于 轴对称呢此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律 借助课件演示,学生会回答自变量互为相反数,函数值相等。接着再让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。 思考:由于对任一x,必须有一-x与之对应,因此函数的定义域有什么特征 引导学生发现函数的定义域一定关于原点对称。根据以上特点,请学生用完整的语言叙述定义,同时给出板书: (1)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数 提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢 (同时打出 y=1/x的图象让学生观察研究) 学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义: (2)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x), 则称f(x)为奇函数 强调注意点:“定义域关于原点对称”的条件必不可少。 接着再探究函数奇偶性的判断方法,根据前面所授知识,归纳步骤: (1)求出函数的定义域,并判断是否关于原点对称 (2)验证f(-x)=f(x)或f(-x)=-f(x) 3)得出结论 给出例题,加深理解: 例1,利用定义,判断下列函数的奇偶性: (1)f(x)= x2+1 (2)f(x)=x3-x (3)f(x)=x4-3x2-1 (4)f(x)=1/x3+1 提出新问题:在例1中的函数中有奇函数,也有偶函数,但象(4)这样的是什么函数呢? 得到注意点:既不是奇函数也不是偶函数的称为非奇非偶函数 接着进行课堂巩固,强调非奇非偶函数的原因有两种,一是定义域不关于原点对称,二是定义域虽关于原点对称,但不满足f(-x)=f(x)或f(-x)=-f(x) 然后根据前面引入知识中,继续探究函数奇偶性的第二种判断方法:图象法: 函数f(x)是奇函数=图象关于原点对称 函数f(x)是偶函数=图象关于y轴对称 给出例2:书P63例3,再进行当堂巩固, 1,书P65ex2 2,说出下列函数的奇偶性: Y=x4 ; Y=x-1 ;Y=x ;Y=x-2 ;Y=x5 ;Y=x-3 归纳:对形如:y=xn的函数,若n为偶数则它为偶函数,若n为奇数,则它为奇函数 (三)学生探索,发展思维。 思考:1,函数y=2是什么函数 2,函数y=0有是什么函数 (四)布置作业: 课本P39习题1.3(A组) 第6题, B组第3 五、板书设计 《函数的奇偶性》说课稿3 一、说教材 《数的奇偶性》是义务教育课程标准实验教科书数学(北师大版)五年级上册第一单元的内容,教材在学习了数的特征的基础上,安排了多个数学活动,让学生探索和理解数的.奇偶性,尝试运用“列表”和“画示意图”等解决问题的策略,发现规律,解决生活中的一些问题。让学生经历探索加法中数的奇偶性变化的过程,在活动中发现数的奇偶性的变化规律,体验研究方法,提高推理能力。 二、说学情: 五年级学生在学习过程中已经具备一定的观察能力,分析交流等能力。进行小组合作和交流时,大多数学生能较清晰地表达出自己的主张和见解。绝大部分学生愿意通过自主思考,小组内和全班范围内交流的学习方式来提升自己对问题的认识。 三、说教法: 为适应数学学科“实践与应用”的需求,根据培养学生的求知欲和自我实现的需要,这节课我以学生自主合作探究为主要教学策略,扶放结合,把课堂中更多的时间留给学生去探究和发现,使他们能自主的总结规律、解决问题。 四、说学法: 1、通过动手操作,运用列表法和画图法发现数的奇偶性变化规律。 2、运用观察、猜测、验证方法得出结论,探索加法中奇偶的变化的过程,在过程中发现规律。 五、说目标: 1、在具体情境中,通过实际操作,尝试运用“列表”“画示意图”等方法发现数的奇偶性规律,并运用其解决生活中的一些简单问题。 2、经历探索加减法中数的奇偶性变化的过程,在活动中发现数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。 3、使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。 六、说重、难点: 1、掌握加法中数的奇偶性的变化规律。 2、能应用数的奇偶性分析和解释生活中一些简单问题。 七、说流程: (一)、旧知回顾: 1、什么是奇数?什么是偶数? 2、下面的数哪些是奇数?哪些是偶数?(课件出示) 3、判断:自然数不是奇数就是偶数。 在此处设计导语:在我们研究的自然数中,可以把它们按奇偶性分为奇数和偶数两类,我们还可以用这些数的奇偶性来解决生活中的简单问题呢。这节课我们就来上一节数学活动课,继续探究一下有关“数的奇偶性”的问题(板书课题) (二)、创设情景,引出问题。 师:同学们,在南方的水乡,有很多地方的交通工具是船,有很多人以摆渡为生,请看王伯伯的船,最初小船在南岸,从南岸驶向北岸,再从北岸驶向南岸,不断往返。船摆渡11次后,船停在南岸还是北岸? 探究小船所在的位置: 师:你准备用什么方法来分析。(生口答) 师:请同学们选出其中一种分析方法,把分析过程写在草稿纸上。 小组交流,汇报。 《函数的奇偶性》说课稿4 一、教材与学生 1、教材 《数的奇偶性》是在学生已经学习数的奇数和偶数的基础上进行的。因为这个知识才刚刚从中学数学,或小学奥数系列进入教材学生不熟悉,,教师也陌生,我就想,能否让学生亲身体会一下奥数并不神秘,同时能在快乐中去学有价值、有难度的数学。 2、学生 五年级学生在不断的学习过程中已经具备一定的观察、思考、分析、交流以及动手操作的能力。但基础的差异,环境的不同,后天开发的不等,故我在循序渐进,步步为营的同时,准备放开手脚,让学生去动手探索。 二、教学目标 1.让学生在观察中自然认识奇数和偶数;掌握数加减的奇偶性; 2.运用设疑——猜想——验证—运用的教学模式,培养的自主探究的能力; 3.让学生在一系列的活动中思考、学习,增长数学兴趣和增强学习的内驱力。 三、教法和学法 主要是自主探究与开放式教学相结合。 1、让学生自主探索规律,并全程参与。 我想,什么也不能代替学生的亲身体验。这里我讲一个小故事——有一天,我感冒了。不想说,也不想动,就说:孩子们,今天讲台就交给你们了,我就是一个擦黑板工。同学们笑了,尽管我讲的是租船和租车的复杂问题,但孩子们讲的头头是道,写的一丝不苟。为什么不在适当的时候把课堂还给学生呢?! 2、大胆开放,抛弃束缚。 我的教学不想拘泥于一点,不想修建一个房屋让孩子们在里面玩,在思维的国度,应该是平等的,自由的。这难道不是北大的思想吗?开放式教学不是我们北大附中的精髓吗? 因此我打破了教材的局限,设计了一个崭新的思路—— 四、教学设计和思路 (一)游戏导入,感受奇偶性 1、游戏一:6只小鸭子、5只蝴蝶找伴 2、游戏二:转轮盘 (1)讲要求:指针停在几上就再走几步; (2)独白: A请他们全班去吃饭,地方吗 B学生开心极了,当听到是东方饺子王………一片赞叹。 C结果:乘兴而来,败兴而归,有的指责我—骗人 (我—我怎么骗人了?) 讨论:为什么会出现这种情况呢? 如果游戏一是感知数的奇偶,开始了微笑,那么游戏二就彻底激发了学生的学习的积极性和主动性,在笑声中,叹息声中,在失败中开始了思索,在思索中寻找答案。 (此时学生议论纷纷,正是引出偶数、奇数的最佳时机) 3、板书课题,加以破题,加以过渡。 (二)猜想验证,认识奇偶性 1、为什么没有人中奖呢?(学生猜想,教师板书) 2、真的是这样吗?(教师加以验证) (我在验证的同时,表扬学生达到了一年级水平,二年级的高度,三年级的容量,学生在笑声中体验了愉悦,在开心中学到了知识,增长了能力) (而在我展现了验证的过程后,开始表扬自己,这个人多帅,多聪明,像不像我——————,哈哈不服气,你来呀!) (三)大胆猜想,细心求证 1、独立来写(写出了加法,又写出了减法,我提示—有没有乘除呢?) 2、小组合作验证纠偏 3、小组展示(满满的一黑板,加减乘除都有。而且欲罢不能,我就在表扬学生的基础上,圈出我们今天应该掌握的加法的奇偶性。) (四)坡度练习,层层加深 1、填空 2、判断(这些内容,由浅入深,由难及易,层层推进) 3、填表(着重讲解了这一道题—因为它是例题,我把填表作为要点,学会观察与思考,从而得到规律。) 4、动手(有动脑的,动口的,这里的翻杯子就是动手了。) 五、课堂小结,课后延伸 1、说说我们这节课探索了什么?你发现了什么?或者有什么想说的? 2、思考题 那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次? 《函数的奇偶性》说课稿5 一、说教学内容及农远资源说明。 《数的奇偶性》是北师大版教材五年级上册第一单元《倍数与因数》最后一课时;是在学生掌握奇数、偶数特点等知识基础之上的一次延伸;是让学生学会用数学策略解决生活问题的一次尝试。因此,本课时教学资源的使用目的主要是帮助学会解决问题的策略,体验猜想结果—举例验证—得出结论这种数学研究方式。农远资源我主要应用于课前的情境创设;教学中对学生体验猜想结果—举例验证—得出结论数学研究方式的辅助;以及学生应用数学模型解决问题中的游戏等环节。 二、说教学目标。 我从知识与技能角度确立目标一:尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。从过程与方法角度确立目标二:通过活动让学生经历猜想结果—举例验证—得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。从情感、态度和价值观角度确立目标三:让学生在活动中体验研究方法,感悟解决问题的不同策略,提高推理能力。 三、说设计理念及农远资源的辅助使用。 本课我是四个方面进行设计的。 第一,我从故事引入,创设一个以摆渡为生的船夫想请学生们帮他解决一个问题这一情境。学生遇到这样一个以前从未见过的问题,便产生认知上的冲突,激发了学生的学习兴趣,也调动了学生学习的积极性,在情境创设中,多媒体资源的辅助使用,有效的调动了学生的求知欲,牢牢地把学生吸引在对未知内容的探究之上了。 第二,我组织学生分小组合作,动手操作,感受数的奇偶性,理解解决问题的不同策略,经历猜想结果—举例验证—得出结论这一数学研究方式。 这部分内容是本课教学的重点也是难点,我安排三个活动,层层推进,帮助学生学习。 活动一:对于船夫提出的划11次船在南岸还是北岸这一问题,我组织学生讨论,寻找解决问题的办法。引导学生尝试用不同的方法来解决,全班汇报交流时,利用媒体展示“列表”、“画示意图”等方式让学生理解解决问题的不同策略。 活动二:让学生翻动自己准备的纸杯子,通过动手操作进一步发现数的奇偶性规律,同时让学生想若把“杯子”换成“硬币”你能提出怎样的问题,并试着回答这些问题,再用硬币操作验证。安排这一活动目的是培养学生提出假设问题—猜想结果—再实践验证的数学研究习惯,发展学生主动探究能力。 活动三:是让学生合作探究加法中数的奇偶性,让学生体验猜想结果—举例验证—得出结论的`数学研究方式。本活动主要是让学生相互之间加强交流,形成自主、合作、探究的数学学习课堂。的使用有效的帮助学生建构出数学模型。 第三,运用数学模型,解决实际问题。 这一部分我安排三个内容。第一个内容是出示几个算式,让学生判断结果是奇数还是偶数。这一内容在学生已有数的奇偶性特征这一数学模型经验之后,独立完成已经没有障碍。第二个内容是有3个杯子全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转使得3个杯子全部杯口朝下。这一内容是对前面同一问题的拓展,目的是让学生进一步理解奇偶性,同时培养学生动手实践能力。第三个内容,我安排的是一个游戏,也是一个实际问题,游戏是用骰子掷一次得到一个点数,从A点开始,连续走两次,走到哪一格,那一格的奖品归你。通过这个游戏让学生明白无论掷几,走两次都是偶数,而奖品都在奇数区域里,所以不论怎样都不能获得奖品。让学生运用学过的数学知识解开其中的奥秘,获得情感体验。 第四,总结反思,交流收获,同时进一步拓展知识视野,让学生将学习的知识与生活实际联系起来,培养学生初步的数学应用能力。 以上四步骤,让学生经历从情境创设到建构数学模型,再到运用模型解决解决问题三个阶段,三种层次。学生学会用自己的策略解决问题。媒体资源的辅助使用,让学生的体验更深刻,教学效果更显著,完全实现了课前确立的教学目标 《函数的奇偶性》说课稿6 教学目标 1.使学生理解奇函数、偶函数的概念; 2.使学生掌握判断某些函数奇偶性的方法; 3.培养学生判断、推理的能力、加强化归转化能力的训练; 教学重点 函数奇偶性的概念 教学难点 函数奇偶性的判断 教学方法 讲授法 教具装备 幻灯片3张 第一张:上节课幻灯片A。 第二张:课本P58图2—8(记作B)。 第三张:本课时作业中的预习内容及提纲。 教学过程 (I)复习回顾 师:上节课我们学习了函数单调性的概念,请同学们回忆一下:增函数、减函数的定义,并复述证明函数单调性的步骤。 生:(略) 师:这节课我们来研究函数的另外一个性质——奇偶性(导入课题,板书课题)。 (II)讲授新课 (打出幻灯片A) 师:请同学们观察图形,说出函数y=x2的图象有怎样的对称性? 生:(关于y轴对称)。 师:从函数y=f(x)=x2本身来说,其特点是什么? 生:(当自变量取一对相反数时,函数y取同一值)。 师:(举例),例如: f(-2)=4, f(2)=4,即f(-2)= f(-2); f(-1)=1,f(1)=1,即f(-1)= f(1); …… 由于(-x)2=x2 ∴f(-x)= f(x). 以上情况反映在图象上就是:如果点(x,y)是函数y=x2的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=x2的图象上,这时,我们说函数y=x2是偶函数。 一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。 例如:函数f(x)=x2+1, f(x)=x4-2等都是偶函数。 (打出幻灯片B) 师:观察函数y=x3的图象,当自变量取一对相反数时,它们对应的函数值有什么关系? 生:(也是一对相反数) 师:这个事实反映在图象上,说明函数的图象有怎样的对称性呢? 生:(函数的图象关于原点对称)。 师:也就是说,如果点(x,y)是函数y=x3的图象上任一点,那么与它关于原点对称的点(-x,-y)也在函数y=x3的图象上,这时,我们说函数y=x3是奇函数。 一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有f(-x) =-f(x),那么函数f(x)就叫做奇函数。 例如:函数f(x)=x,f(x) =都是奇函数。 如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。 注意:从函数奇偶性的定义可以看出,具有奇偶性的函数: (1)其定义域关于原点对称; (2)f(-x)= f(x)或f(-x)=- f(x)必有一成立。因此,判断某一函数的奇偶性时。 首先看其定义域是否关于原点对称,若对称,再计算f(-x),看是等于f(x)还是等于- f(x),然后下结论;若定义域关于原点不对称,则函数没有奇偶性。 (III)例题分析 课本P61例4,让学生自看去领悟注意的问题并判断的方法。 注意:函数中有奇函数,也有偶函数,但是还有些函数既不是奇函数也不是偶函数,唯有f(x)=0(x∈R或x∈(-a,a).a>0)既是奇函数又是偶函数。 (IV)课堂练习:课本P63练习1。 (V)课时小结 本节课我们学习了函数奇偶性的定义及判断函数奇偶性的方法。特别要注意判断函数奇偶性时,一定要首先看其定义域是否关于原点对称,否则将会导致结论错误或做无用功。 (VI)课后作业 一、课本p65习题2.3 7。 二、预习:课本P62例5、例6。预习提纲: 1.请自己理一下例5的证题思路。 2.奇偶函数的图角各有什么特征? 板书设计 课题 奇偶函数的定义 注意: 判断函数奇偶性的方法步骤。 小结: 【奇偶性优秀教学设计】推荐阅读: 函数奇偶性教案设计10-24 函数奇偶性的教学设计05-30 函数单调性奇偶性练习11-18 函数奇偶性的归纳总结06-29 高一必修1第一章《函数的奇偶性》教案06-10 翠鸟优秀教学设计06-08 《西湖》优秀教学设计06-30 饮酒优秀教学设计07-09 《乌塔》优秀教学设计07-13 《举手》优秀教学设计11-15函数的奇偶性(教案) 篇9
《函数的奇偶性》说课稿 篇10