风力发电并网技术(精选8篇)
20世纪90年代,L.Xu, Bhowink, Machromoum, R.Pena等学者对双馈电机在变速恒频风力发电系统中的应用进行了理论、仿真分析和试验研究,为双馈电机在风力发电系统中的应用打下了理论基础。同时,电力电子技术和计算机技术的高速发展,使得采用电力电子元件(IGBT等)和脉宽调制(PWM)控制的变流技术在双馈电机控制系统中得到了应用,这大大促进了双馈电机控制技术在风电系统中的应用。八十年代以后,功率半导体器件发展的主要方向是高频化、大功率、低损耗和良好的可控性,并在交流调速领域内得到广泛应用,使其控制性能可以和直流电机媲美。九十年代微机控制技术的发展,加速了双馈电机在工业领域的应用步伐。近十年来是双馈电机最重要的发展阶段,变速恒频双馈风力发电机组已由基本控制技术向优化控制策略方向发展。其励磁控制系统所用变流装置主要有交交变流器和交直交变流器两种结构形式:(1)交交变流器的特点是容量大,但是输出电压谐波多,输入侧功率因数低,使用功率元件数量较多。(2)采用全控电力电子器件的交直交变流器可以有效克服交交变流器的缺点,而且易于控制策略的实现和功率双向流动,非常适用于变速恒频双馈风力发电系统的励磁控制。
为了改善发电系统的性能,国内外学者对变速恒频双馈发电机组的励磁控制策略进行了较深入的研究,主要为基于各种定向方式的矢量控制策略和直接转矩控制策略。我国科研机构从上世纪九十年代开始了对变速恒频双馈风力发电系统控制技术的研究,但大多数研究还仅限于实验室,只有部分研究成果在中,在小型风力发电机的励磁控制系统中得到应用。因此,加快双馈机组的励磁控制技术的研究进度对提高我国风电机组自主化进程具有重要意义。
除了上面提到的双馈风力发电系统励磁控制技术研究以外,变速恒频双馈风力发电系统还有许多研究热点包括:
(I)风力发电系统的软并网软解列研究
软并网和软解列是目前风力发电系统的一个重要部分。一般的,当电网容量比发电机的容量大得多的时候,可以不考虑发电机并网的冲击电流,鉴于目前并网运行的发电机组已经发展到兆瓦级水平,所以必须要限制发电机在并网和解列时候的冲击电流,做到对电网无冲击或者冲击最小。
(2)无速度传感器技术在双馈异步风力发电系统应用的研究
近年,双馈电机的无位置以及无速度传感器控制成了风力发电领域的一个重要研究方向,在双馈异步风力发电系统中需要知道电机转速以及位置信息,但是速度以及位置传感器的采用提高了成本并且带来了一些不便。理论上可以通过电机的电压和电流实时计算出电机的转速,从而实现无速度传感器控制。如果采用无传感器控就可以使发电机和逆变器之间连线消除,降低了系统成本,增强了控制系统的抗干扰性和可靠性。
(3)电网故障状态下风力发电系统不间断运行等方面
并网型双馈风力发电机系统的定子绕组连接电网上,在运行过程中,各种原因引起的电网电压波动、跌落甚至短路故障会影响发电机的不间断运行。电网发生突然跌落时,发电机将产生较高的瞬时电磁转矩和电磁功率,可能造成发电机系统的机械损坏或热损坏,所以三相电网电压突然跌落时的系统持续运行控制策略的研究是目前研究焦点问题之一。
此外,双馈风力发电系统的频率稳定以及无功极限方面也是目前研究的热点。
在大型风力发电系统运行过程中,经常需要把风力发电机组接入电力系统并列运行。发电机并网是风力发电系统正常运行的“起点”,也是整个风力发电系统能够良好运行的前提。其主要要求是限制发电机在并网时的瞬变电流,避免对电网造成过大的冲击,并网过程是否平稳直接关系到含风电电网的稳定性和发电机的安全性。当电网的容量比发电机的容量大的多(大于25倍)的时候,发电机并网时的冲击电流可以不考虑。但风力发电机组的单机容量越来越大,目前己经发展到兆瓦级水平,机组并网对电网的冲击已经不能忽视。比较严重的后果不但会引起电网电压的大幅下降,而且还会对发电机组各部件造成损害;而且,长时间的并网冲击,甚至还会造成电力系统的解列以及威胁其它发电机组的正常运行。
因此必须通过合适的发电机并网方式来抑制并网冲击电流。
目前,实现发电机并网的方式主要有两种,一种被称为准同期方式,另一种被称为自同期方式。准同期方式是将已经励磁的发电机在达到同期条件后并入电网;自同期方式则是将没有被励磁的发电机在达到额定转速时并入电网,随即给发电机加上励磁,接着转子被拉入同步。自同期方式由于当发电机合闸时,冲击电流较大,母线电压跌落较多而很少采用。因此,现在发电机的主要并网方式为准同期方式,它能控制发电机快速满足准同期条件,从而实现准确、安全并网。
异步风力发电机组并网
异步发电机投入运行时,由于靠转差率来调整负荷,其输出的功率与转速近乎成线性关系,因此对机组的调速要求不像同步发电机那么严格精确,不需要同步设备和整步操作,只要转速接近同步转速时就可并网。但异步发电机的并网也存在一些问题。例如直接并网时会产生过大的冲击电流(约为异步发电机额定电流的4~7倍),并使电网电压瞬时下降。随着风力发电机组电机容量的不断增大,这种冲击电流对发电机自身部件的安全以及对电网的影响也愈加严重。过大的冲击电流,有可能使发电机与电网连接的主回路中自动开关断开;而电网电压的较大幅度下降;则可能会使低压保护动作,从而导致异步发电机根本不能并网。另外,异步发电机还存在着本身不能输出无功功率、需要无功补偿、过高的系统电压会造成发电机磁路饱和等问题。
目前,国内外采用异步发电机的风力发电机组并网方式主要有以下几种。
(1)直接并网方式
这种并网方法要求并网时发电机的相序与电网的相序相同,当风力机驱动的异步发电机转速接近同步转速(90%一100%)时即可完成自动并网,见图(2-6)所示,自动并网的信号由测速装置给出,然后通过自动空气开关合闸完成并网过程。这种并网方式比同步发电机的准同步并网简单,但并网瞬间存在三相短路现象,并网冲击电流达到4~5倍额定电流,会引起电力系统电压的瞬时下降。这种并网方式只适合用于发电机组容量较小或与大电网相并的场合。
(2)准同期并网方式
与同步发电机准同步并网方式相同,在转速接近同步转速时,先用电容励磁,建立额定电压,然后对已励磁建立的发电机电压和频率进行调节和校正,使其与系统同步。当发电机的电压、频率、相位与系统一致时,将发电机投入电网运行,见图(2-7)所示。采用这种方式,若按传统的步骤经整步到同步并网,则仍须要高精度的调速器和整步、同期设备,不仅要增加机组的造价,而且从整步达到准同步并网所花费的时间很长,这是我们所不希望的。该并网方式合闸瞬间尽管冲击电流很小,但必须控制在最大允许的转矩范围内运行,以免造成网上飞车。
(3)降压并网方式
降压并网是在异步发电机和电网之间串接电阻或电抗器或者接入自祸变压器,以便达到降低并网合闸瞬间冲击电流幅值及电网电压下降的幅度。因为电阻、电抗器等元件要消耗功率,在发电机进入稳态运行后必须将其迅速切除。显然这种并网方法的经济性较差。
(4)晶闸管软并网方式
这种并网方式是在异步发电机定子与电网之间通过每相串入一只双向晶闸管连接起来,来对发电机的输入电压进行调节。双向晶闸管的两端与并网自动开关K2的动合触头并联,如图2-9所示。
接入双向晶闸管的目的是将发电机并网瞬间的冲击电流控制在允许的限度内。图(2-9)示出软并网装置的原理。通过采集US和IS的幅值和相位,对晶闸管的导通角进行控制。具体的并网过程是:当风力发电机组接收到由控制系统微处理机发出的启动命令后,先检查发电机的相序与电网的相序是否一致,若相序正确,则发出松闸命令,风力发电机组开始启动;当发电机转速接近同步转速时(约为99 %-100%同步转速),双向晶闸管的控制角同时由180度到0度逐渐同步打开,与此同时,双向晶闸管的导通角则同时由0度到180度逐渐增大,此时并网自动开关K2未动作,动合触点未闭合,异步发电机即通过晶闸管平稳地并入电网,随着发电机转速的继续升高,电机的转差率趋于零,当转差率为零时,双向晶闸管已全部导通,并网自动开关K2动作,短接双向晶闸管,异步发电机的输出电流将不再经双向晶闸管,而是通过已闭合的自动开关K2流入电网。在发电机并网后,应立即在发电机端并入补偿电容,将发电机的功率因数(cos }p)提高到0.95以上。由于风速变化的随机性,在达到额定功率前,发电机的输出功率大小是随机变化的,因此对补偿电容的投入与切除也需要进行控制,一般是在控制系统中设有几组容量不同的补偿电容,根据输出无功功率的变化,控制补偿电容的分段投入或切除。这种并网方法的特点是通过控制晶闸管的导通角,来连续调节加在负载上的电压波形,进而改变负载电压的有效值。目前,采用晶闸管软切入装置((SOFT CUT-IN)已成为大型异步风力发电机组中不可缺少的组成部分,用于限制发电机并网以及大小电机切换时的瞬态冲击电流,以免对电网造成过大的冲击。
晶闸管软并网技术虽然是目前一种较为先进的并网方法,但它也对晶闸管器件以及与之相关的晶闸管触发电路提出了严格的要求,即晶闸管器件的特性要一致、稳定以及触发电路可靠,只有发电机主回路中的每相的双向晶闸管特性一致,并且控制极触发电压、触发电流一致,全开通后压降相同,才能保证可控硅导通角在0度到180度范围内同步逐渐增大,才能保证发电机三相电流平衡,否则会对发电机
不利。
适合交流励磁双馈风力发电机组的并网技术
目前,适合交流励磁双馈风力发电机组的并网方式主要是基于定子磁链定向矢量控制的准同期并网控制技术,包括空载并网方式,独立负载并网方式,以及孤岛并网方式。另外,对于垂直轴型的双馈机组,由于不能自动起动,所以必须采用“电动式”并网方式。下面对各种并网方式的实现原理分别给予了简要介绍。
(1)空载并网技术
所谓空载并网就是并网前双馈发电机空载,定子电流为零,提取电网的电压信息(幅值、频率、相位)作为依据提供给双馈发电机的控制系统,通过引入定子磁链定向技术对发电机的输出电压进行调节,使建立的双馈发电机定子空载电压与电网电压的频率、相位和幅值一致。当满足并网条件时进行并网操作,并网成功后控制策略从并网控制切换到发电控制。如图(2-10)所示。
(2)独立负载并网技术
独立负载并网技术的基本思路为:并网前双馈电机带负载运行(如电阻性负载),根据电网信息和定子电压、电流对双馈电机和负载的值进行控制,在满足并网条件时进行并网。独立负载并网方式的特点是并网前双馈电机已经带有独立负载,定子有电流,因此并网控制所需要的信息不仅取自于电网侧,同时还取自于双馈电机定子侧。
负载并网方式发电机具有一定的能量调节作用,可与风力机配合实现转速的控制,降低了对风力机调速能力的要求,但控制较为复杂。
(3)孤岛并网方式
孤岛并网控制方案可分为3个阶段。第一阶段为励磁阶段,见图(2-12)所示,从电网侧引入一路预充电回路接交—直—交变流器的直流侧。预充电回路由开关K1、预充电变压器和直流充电器构成。
当风机转速达到一定转速要求后,K1闭合,直流充电器通过预充电变压器给交—直—交变流器的直流侧充电。充电结束后,电机侧变流器开始工作,供给双馈电机转子侧励磁电流。此时,控制双馈电机定子侧电压逐渐上升,直至输出电压达到额定值,励磁阶段结束。
第二阶段为孤岛运行阶段。首先将Kl
断开,然后启动网侧变流器,使之开始升压运行,将直流侧
升压到所需值。此时,能量在网侧变流器,电机侧变流器以及双馈电机之间流动,它们共同组成一个孤岛运行方式。
第三阶段为并网阶段。在孤岛运行阶段,定子侧电压的幅值、频率和相位都与电网侧相同。此时闭合开关K2,电机与电网之间可以实现无冲击并网。并网后,可通过调节风机的桨距角来增加风力机输入能量,从而达到发电的目的。
(4)“由动式”并网方式
前面介绍的几种并网方式都是针对具有自起动能力的水平轴双馈风力发电机组的准同期并网方式,对于垂直轴型的双馈机组(又称达里厄型风力机)由于不具备自启动能力,风力发电机组在静止状态下的起动可由双馈电机运行于电动机工况来实现。
如图(2-13)所示,为实现系统起动在转子绕组与转子侧变频器之间安装一个单刀双掷开关K3,在进行并网操作时,首先操作K3将双馈发电机转子经电阻短路,然后闭合K1连接电网与定子绕组。在电网电压作用下双馈电机将以感应电动机转子串电阻方式逐渐起动。通过调节转子串电阻的大小,可以提高起动转矩减小起动电流,从而缓解机组起动过程的暂态冲击。当双馈感应发电机转速逐渐上升并接近同步转速时,转子电流将下降到零。在此条件下,操作K3断开串联电阻后将转子绕组与转子侧变频器相连接,同时触发转子侧变频器投入励磁。最后在成功投入励磁后,调节励磁使双馈发电机迅速进入定子功率或转速控制状态,完成机组起动过程。
这种并网方式实现方法简单,通过适当的顺序控制就能够实现不具备自起动能力的双馈发电机组的起动与并网的需要,如果电机转子侧安装有“CrowBarProtection”保护装置,则通过控制器投切“CrowBar Protection”就可以实现系统的起动与准同期并网。
空载并网方式并网前发电机不带负载,不参与能量和转速的控制,所以为了防止在并网前发电机的能量失衡而引起的转速失控,应由原动机来控制发电机组的转速。独立负载并网方式并网前接有负载,发电机参与原动机的能量控制,表现在一方面改变发电机的负载,调节发电机的能量输出,另一方面在负载一定的情况下,改变发电机转速的同时,改变能量在电机内部的分配关系。前一种作用实现了发电机能量的粗调,后一种实现了发电机能量的细调。可以看出,空载并网方式需要原动机具有足够的调速能力,对原动机的要求较高;独立负载并网方式,发电机具有一定的能量调节作用,可与原动机配合实现转速的控制,降低了对原动机调速能力的要求,但控制复杂,需要进行电压补偿和检测更多的电压、电流量。孤岛并网方式是一种近年来才提出的比较新颖的一种并网方式,在并网前形成能量回路,转子变换器的能量输入由定子提供,降低了并网时的能量损耗。
其中空载并网方式由于具有控制策略简单,控制效果好,而在实际机组中广泛采用,而负载并网方式、孤岛并网方式以及“电动式”并网方式由于存在控制系统较为复杂,系统稳定性差等缺点目前仍然停留在理论探索阶段。
双馈发电机并网控制与功率控制的切换
双馈风力发电系统并网控制的目的是对发电机的输出电压进行调节,使建立的DFIG的定子空载电压与电网电压的幅值、频率、和相位保持一致,当满足并网条件时进行并网操作,并网成功后进行最大风能追踪控制
.并网成功后一方面变桨距系统将桨叶节距角置于0以获得最佳风能利用系数,与此同时转子励磁系统开始进行最大功率点跟踪(Maximum Power pointTracking,MPPT)控制,以捕获最大风能。并网切换前后控制策略有较大差异,如果直接切换,则控制系统重新从零开始调节,必然引起转子电压的突变,从而造成并网瞬间系统产生振荡,这种振荡可能短时间内使系统输出有很大的偏差,致使控制量超过系统可能的最大允许范围,容易造成发电机损坏,而这在实际的并网过程中是十分不利的。为此,要达到发电机顺利、安全并网的目的还必须实现控制策略的无扰切换,使转子输出电压平稳的过渡到新的稳定状态。
双馈发电机的解列控制
1 风电机简介
风力发电机组包括异步风电机组和双馈风电机组, 相对于异步发电机组, 双馈风电机组有很大的优势, 其最大的优势在于双馈电机能根据风速来改变风机的转速。当风速较低时, 双馈电机能保持风机运行在最佳的叶尖速比, 从而得到最大的动能;当风速较大时, 双馈电机可以调节桨距释放多于能量, 从而使机组获得较平滑的动能。
2 双馈风电机组的模型
2.1 风速模型
风速是独立于发电系统的, 考虑风电场分布的随机性, 现在国内外较多的使用风力四分模型, 及基本风模型、随机风模型、阵风模型和渐变风模型。电机是电力系统中能源转换模块, 不同于传统传统电机, 在风力发电中须先将风能转化为叶片的动能, 之后由风叶传递能量转化为电能, 由空气动力学可知, 在一定的风速下, 风能利用系数越大, 机械输出功率越大。
2.2 电机稳态模型
双馈发电机的稳态等值电路如图1所示, 其相当于在普通绕线式异步电机等值电路的转子电路中加入了电压源。
3 等值建模的建立
图1中介绍了双馈电机的等值电路, 当风力发电机组发电机个数为两个时, 此时等效电路如图2所示。需要说明的是, 建模过程中不考虑尾流效应。
等值参数计算相对比较复杂, 当双馈电机组电机个数较多时, 用电路理论计算等值参数会相当繁琐、复杂。加权参数聚合法可以解决多台机组并联参数计算的复杂问题, 等值前后以它们各自容量为基值。
4 仿真
在Simulink仿真平台中搭建了实际模型和等值模型。实际模型中有单机容量为1.5MW的双馈发电机20台, 单机容量2MW的风机10台。采用一机一变方式将电压升至10k V后, 再用10k V/110k V变压器接入电网, 输电距离为30km。运用加权参数等值法, 可以算出等值后的等值机的参数, 将30机等效为一台机进行仿真。
稳态运行时的比较:
以渐变风为例进行稳态运行时的仿真。上升型的渐变风起始时刻为5s, 起始风速为8m/s, 上升斜率为1, 终止时刻为9s, 终止风速为12m/s, 下降型风速起始时刻为5s, 起始风速为14m/s, 下降斜率为1, 终止风速为8m/s。对上升型渐变风, 两种模型的响应曲线如图3所示;对于下降型渐变风, 两种模型的响应曲线如图4所示。
为了说明等值效果, 本文使用相对误差或平均相对误差来定量的说明。由仿真结果可知, 对于上升型渐变风等值模型与实际模型的有功功率最大相对误差为0.62%, 平均相对误差为0.27%, 出口处电压的最大相对误差为0.21%平均相对误差为0.11%。对于下降型渐变风, 等值模型与实际模型的有功功率最大相对误差为1.16%, 平均相对误差为0.29%, 出口处电压的最大相对误差为0.14%, 平均相对误差为0.007%。可以看出, 稳态时模型的误差是很小的。
5 结论
双馈风力发电机正常工作运行时转速随风速的变化而变化, 其等值过程与异步发电机相比有所区别。是否能够沿用异步机等值模型进行理论分析和验证值得商榷。本文在Simulink仿真平台中对风电场每台机组进行建模, 并建立了风电场的等值模型。仿真结果表明, 该等值模型能在稳态运行时保持良好的等值效果, 具有一定的可信度。
摘要:本文介绍了双馈电机的组成结构和工作原理;简述了风力场模型、双馈风电机工作稳态模型;并比较了电机容量加权法和多电机组并联时等值计算的参数聚合, 然后在Matlab/Simulink仿真平台中建立了风电场实际模型和等值模型。仿真结果表明, 该等值模型能在稳态运行时保持良好的等值效果, 具有一定的可信度, 仿真结果与理论分析相符, 证实了电机容量加权法可以在一定范围内适用于双馈型风电场等值。
关键词:风力发电,并网,探讨
参考文献
[1]王承煦, 张源.风力发电[M].北京:中国电力出版社, 2003.
[2]蔺红, 晁勤.风电系统建模与仿真分析[J].风力发电, 2000 (3) .
[3]Slootweg J G.Wind power modeling and impact on power system dynamics[D].Technische Universities Delft, 2003.
[4]Akhmatov V.Analysis of dynamic behavior of electric power systems with large amount of wind power[D].Rsted-DTU Technische.Universities of Denmark, 2003.
关键词:风力发电 变桨距风力发电技术 主动失速/混合失速发电技术
中图分类号:TM614 文献标识码:A 文章编号:1672-3791(2014)08(a)-0110-01
随着社会的不断发展,世界能源结构也在逐步变化,即由“矿物能源系统”转变为“以可再生能源为基础的可持续能源系统”。可再生能源是在自然界可以循环再生的资源,如太阳能、风能、生物质能、地热能、海洋能等都是其中的典型代表,其是与人类共存的能源,可谓取之不尽、用之不竭。风能是可再生资源中应用较为广泛的一种,目前其主要应用于发电。实际上风能的使用历史比较悠久,一开始人们主要将其用于抽水,磨面等,随着社会的不断进步和发展,其主要被用于发电。研究发现,风力发电发展前景广阔,其发电成本与常规电力基本接近,因此其逐渐受到世界各国的重视,对于其研究也逐渐深入。根据相关调查显示,全世界的风能总量约1300亿千瓦,中国的风能总量约16亿千瓦,因此我们应不断加强风力发电技术的探索和实践,以为我国的经济发展提供能源保障。
风能是一种可再生、永不枯竭、无污染且储量巨大的能源,其属于自然能源的范畴,风能的利用相对而言比较简单,其不同于煤、油、然气等,需要先从地下采掘出来再进行二次加工;不同于水能,必须建造坝以推动水轮机运转;也不同于原子能的利用,需耗费大量的成本与技术研发力量。风力发电具有较为稳定的发电成本,对环境污染小,因此其发展前景较为广阔。尤其是对于缺水、缺燃料和交通不便的沿海岛屿、草原牧区、山区和高原地带,根据当地的实际情况合理利用风力发电,具有重要的现实意义。本文就风力发电控制技术做简要探讨。
由于自然风速的大小和方向的随机变化,风力发电机组切入电网和切出电网、输入功率的限制、风轮的主动对风以及对运动过程中故障的检测和保护必须能够自动控制。风力发电系统的控制技术从定桨距恒速运行至基于变桨距技术的变速运行,已经基本实现了风力发电机组理想地向电网提供电力的最终目标。功率调节是风力发电机组的关键技术之一,功率调节方式主要包括定桨距失速调节、变桨距调节和主动失速调节三种控制方法。随着风力发电机组由定桨距恒速运行发展到变桨距变速运行后,风力发电机组控制系统可通过风速和风向变化对机组进行并网和脱网及调向控制,同时还可通过变距系统对机组进行转速和功率的控制,以提高机组的运行效率、安全性和可靠性,促进年发电数量和质量的提升。
1 定桨距失速风力发电技术
定桨距风力发电机迈入风力发电市场是在20世纪80年代中期,其研制成功解决了发电机组的并网问题,运行安全可靠。定桨距风力发电机主要是软并网技术、空气动力刹车技术、偏行与自动解缆技术三种技术的结合。定桨距风力发电机组的特点是桨叶与轮毂固定连接,在风速发生变化时,桨叶的迎风角度不发生变化结合桨叶翼型本身的失速特性,在风速高于额定值时,气流的功角就会达到失速状态,可使桨叶的表面的表面产生紊流,使发动机的效率降低来达到限制功率的目的,风力发动机的这一特性控制发电系统安全可靠,但是为了达到限制功率的目的,导致叶片重,结构复杂,机组的整体效率较低,所以说当风速达到某一限度时必须要停止使用。发电机转速是由电网频率限制,输出功率由桨叶本身性能限制,当风速比额定转速高时,桨叶能够通过失速调节功能将功率控制在额定值范围之内,其起到重大作用的是叶片独特的翼型结构,在遇到强风时,流过叶片背风面的气流产生紊流,降低叶片气动效率,影响能量捕获,产生失速。失速是一个较为复杂的过程,在风速不稳定时,很难得出失速的效果,因此很少用来控制MW级以上的大型风力发电机。
2 变桨距风力发电技术
从空气动力学角度考虑,当风速过高时,可以通过调整桨叶节距、改变气流对叶片攻角,改变风力发电机组获得的空气动力转矩,以保持稳定的输出功率。采用变桨距调节方式,风机输出功率曲线平滑,在阵风时,塔筒、叶片、基础受到的冲击较失速调节型风力发电机要小,可减少材料使用率,降低整机重量。它能自动调节叶片桨距角度,适应不同风况下功率的调节,特别是使得在接近额定风速附近得功率曲线充实,增加风力发电机的年发电量。但其也有一定的缺点,即其需要一套复杂的变桨距机构,变桨距机构的设计要求对阵风的响应速度足够快,以减小由于风的波动引起的功率脉动。同时,变桨距执行机构及液压驱动系统较复杂,运行可靠性难以有效保证,其成本也较高。
3 主动失速/混合失速发电技术
主动失速/混合失速发电技术是上述两种技术的组合。低风速时采用变桨距调节可提高气动效率,使桨距角向减小的方向转过一个角度,增大相应的攻角,加深叶片的失速效应,从而限制风能的捕获。这种方式变桨距调节不需要很灵敏的调节速度,执行机构的功率相对较小。风力发电机组在超过额定风速(一般为14~16 m/s)以后,由于机械强度和发电机、电力电子容量等物理性能的限制,必须降低风力机的能量捕获,使功率输出保持在额定值附近,同时减少叶片承受负荷和整个风力机收到的冲击,从而有效避免风力机受到损害。这种调节将引起叶片攻角的变化,从而导致更深层次的失速,使功率输出更加平滑。
4 变速风力发电技术
风力发电机组分恒速恒频风力发电和变速恒频风力发电。变速风力发电技术是改变了风力机的恒速运动规律,可以根据风速的变化调整运行,保持恒频发电,当风速小时争取获得更大的风能,风速过大时调整储存转化能量,比恒速风力发电机组的实用范围更广泛。变速风力发电技术可以根据风速的变化保证恒定的最佳叶尖速比,低风速时尽量获取多的风能,以保证平稳输出;高风速时及时调整风轮转速储存能量,避免功率过大。当风速变大风能变强时风轮可以吸收储存部分的风能,提高了传动系统的柔性,减轻了主轴承受的应力及扭矩。通过电力电子装置的作用,变速风力的风能转化为可以输入电网的电能,使风力机组安全平稳的运行,能量传输机构系统也平稳运行。不同地区的风速大小变化不同,恒速风力发电技术只能适用于部分风速符合要求的地区,而变速风力发电技术可以适应不同的风速区,扩宽了风力发电的适用范围,推动了我国风力发电市场的发展。
参考文献
[1]陈永祥,方征.中国风电发展现状、趋势及建议[J].科技综述,2010(4):14-19.
[2]王超,张怀宇,王辛慧,等.风力发电技术及其发展方向[J].电站系统工程,2006,22(2):11-13.
本文主要介绍风电电价的构成,发展风力发电的必要性和现阶段我国发展风电面临的论难和机遇。通过对国内外的电力来源,能源结构,风能储量及分布,风电的社会价值等方面的评价入手阐述我国发展风电的必要性和紧迫性。
通过对风电场建设规模,风力发电成本要素,风电电价构成,减低成本途径,政府现行对风电的税收鼓励政策,现行风电产业特点和风电设备制造技术以及风电的社会效益等方面的分析,为政府,风电产业,融资领域和社会关注层面为解决风电产业中得各种矛盾以及为促进和发展风电产业建设提供理论依据和解决方案。
阐明我国积极发展风力发电事业,风电技术国产化和提高风电市场竞争力在我国具备着巨大的潜力。积极利用和发展风电这一再生能源,推动我国走可持续发展的能源之路,在我国已是势在必行。
关键词:风力发电,能源结构,政府鼓励,风电电价
1.绪论
1.1 引言
能源,是人类生存的基本要素,也是国民经济发展的主要物质基础。随着国际工业化的进程,全球未来能源消耗预计仍将以3的速度增长,常规能源资源面临日益枯竭的窘境。进入20世纪,由于对能源的渴求,人们无节制地开采石油,煤炭,天然气等这些埋在地层深处的维系人类生存的“能源食粮”,不仅严重地污染了我们的生存空间,恶化了自然环境,而且带来了更可怕的恶果 — 能源枯竭。进入70年代,世界能源发生危机,石油价格剧烈上涨,极大的刺激了那些能源消耗大国,使他们把研究开发其他能源放到了重要位置,要生存就必须寻求开发新能源。为此,各国政府纷纷制定自己的能源政策,给新能源开发以特殊优惠政策和政府税收补贴,从而使风能,原子能,太阳能,潮汐能,地热能等的开发利用得以迅速发展。进入21世纪,可再生能源的发展与研究将在全球的资源利用中得到越来越多的重要,可再生能源在资源消耗中也将占据越来越高的比例。
世界能源危机为风电发展提供了机遇,但由于起步较晚,存在很多不确定因素阻碍风电行业的发展。我国风电行业发展比较迅速,但与国际风电行业的发展水平还有很大差距,国内的风电发动设备主要依靠进口,对外依赖性强,虽然风电成本已下降很多,但相比火电成本的优势在短期内并不会明显突出,风电行业的发展还有很多的阻碍因素。正是风电行业投资的高风险,必然为风电行业发展带来高收益,不论是风电产业的经济效益、对社会的效益,还是我国目前奉行的可持续发展和节约战略,这些都为发电行业提供了很大的发展空间。
《中国风电产业市场发展研究及投资分析报告》根据国家统计局、国家发改委、国研网、欧洲风能协会和其他的一些权威渠道,内容丰富、翔实。在撰写过程中,运用了大量的图、表等分析工具,结合相关的经济学理论,综合运用定量和定性的分析方法,对风电行业的运行及发展趋势做了比较详细的分析,对影响行业发展的基本因素进行了审慎的剖析,报告还对国外风电行业发展迅速的国家相关政策进行了介绍和分析判断,为我国风电行业的发展提供依据和选择,是能源企业以及相关企事业单位、计划投资于风电行业的企业和风电设备业行业准确了解目前我国风电市场动态,把握风电行业发展趋势,制定企业战略的重要参考依据 1.2 风力发电的历史和现状
风能是人类最早利用的能源之一。早在公元前 2000 年,埃及,波斯等国就己出现帆船和风磨,中世纪荷兰与美国已有用于排灌的水平轴风车。中国是世界上最早利用风能的国家之一,早在 1800 年前,中国就有风车提水的纪录。下面简单介绍一下国内外现代风力机研制的历史和现状。
1.2.1中国风电的历史和现状
中国对现代风力机的研制可以追溯到二十世纪 50 年代,但有系统地研究还是从二十世纪 70 年代开始的。中国为了解决西部草原牧区,东部海岛及边远山区的用电问题,国家鼓励开发离网型风力机,国内各风电科研机构主要从事离网型的研制,并形成了一定的规模。根据中国的具体情况,重点推广了户用微型发电机,功率一般为 1001000W,目前已形成了一个生产,销售,维修服务较完善的体系,部分产品出口。这为电网不能通达 3的地区约 60 万居民解决了基本用电问题。电灯,电视进入千家万户,提高了人民群众的生活质量。据世界能源组织统计,世界上十个最大的小型风力发电机生产企业中,中国占七个。截至 2000 年底,全国累计生产了离网型风力发电机组近二十万台。
1.3 中国风电电价定价机制的演变过程
中国的并网风电从 20 世纪 80 年代开始发展,尤其是“十一五”期间,风电发展非常迅速,总装机容量从1989 年底的4200kW增长到2008年的 1,200 万 kW,跃居世界第四位,标志着中国风电进入了大规模开发阶段。总体看来,中国并网风电场的发展经历了三个阶段,即初期示范阶段、产业化建立阶段、规模化及国产化阶段。各阶段的电价特点及定价机制概括如下:
1.3.1 初期示范阶段(1986-1993 年)
中国并网型风电发展起步于 1986 年。1986 年 5 月,第一个风电场在山东荣成马兰湾建成,其安装的Vestas V15-55/11风电机组,是由山东省政府和航空工业部共同拨付外汇引进的。此后,各地又陆续使用政府拨款或国外赠款、优惠贷款等引进了一些风电机组,建设并网型风电场。由于这些风电场主要用于科研或作为示范项目,未进入商业化运行,因此,上网电价参照当地燃煤电价,由风力发电厂与电网公司签订购电协议后,报国家物价部门核准,电价水平在 0.28 元/kWh 左右,例如 20世纪90 年代初期建成的达坂城风电场,上网电价不足0.3元/kWh总体来说,此阶段风电装机累积容量为4200kW,风电发展的特点是利用国外赠款及贷款,建设小型示范电场。政府的扶持主要是在资金方面,如投资风电场项目及风力发电机组的研制。风电电价水平基本与燃煤电厂持平。
1.3.2产业化建立阶段(1994-2003 年)
1994年起,中国开始探索设备国产化推动风电发展的道路,推出了“乘风计划”,实施了“双加工程”,制定了支持设备国产化的专项政策,风电场建设逐渐进入商业期。这些政策的实施,对培育刚刚起步的中国风电产业起到了一定作用,但由于技术和政策上的重重障碍,中国风电发展依然步履维艰。每年新增装机不超过十万千瓦。到2003年底,全国风电装机容量仅56.84 万千瓦。
这一阶段,风电电价经历了还本付息电价和经营期平均电价两个阶段。1994 年,国家主管部门规定,电网管理部门应允许风电场就近上网,并收购全部上网电量,上网电价按发电成本加还本付息、加合理利润的原则确定,高出电网平均电价部分的差价由电网公司负担,发电量由电网公司统一收购。随着中国电力体制改革的深化,电价根据“厂网分开,竞价上网”的目标逐步开始改革。
总体来说,这一时期的电价政策呈现出如下特点:上网电价由风力发电厂与电网公司签订购电协议,各地价格主管部门批准后,报国家物价部门备案,因此,风电价格各不相同。最低的仍然是采用竞争电价,与燃煤电厂的上网电价相当,例如,中国节能投资公司建设的张北风电场上网电价为 0.38 元/千瓦时;而最高上网电价每千瓦时超过 1 元,例如浙江的括苍山风电场上网电价高达每千瓦时1.2元。
由此可见,从初期示范阶段到产业化建立阶段,电价呈现上升趋势。
1.3.3规模化及国产化阶段(2003 后)
为了促进风电大规模发展,2003年,国家发展改革委组织了第一期全国风电特许权项目招标,将竞争机制引入风电场开发,以市场化方式确定风电上网电价。截至2007年,共组织了五期特许权招标,总装机容量达到880万千瓦。
为了推广特许权招标经验,2006年国家发展改革委颁布《可再生能源发电价格和费用分摊管理试行办法》(发改价格[2006]7号)文件,提出了“风力发电项目的上网电价实行政府指导价,电价标准由国务院价格主管部门按照招标形成的价格确定”。根据该文件,部分省(区、市),如内蒙古、吉林、甘肃、福建等,组织了若干省级风电特许权项目.1.3.4目前中国风电电价政策
随着风电的快速发展,“招标加核准”的模式已无法满足风电市场发展和政府宏观引导的现实需要。因此,在当前各地风电进入大规模建设阶段,从招标定价加政府核准并行制度过渡到标杆电价机制,是行业发展的必然,也将引导风电产业的长期健康发展。
2009年 7月底,国家发展改革委发布了《关于完善风力发电上网电价政策的通知》(发改价格[2009]1906号),对风力发电上网电价政策进行了完善。文件规定,全国按风能资源状况和工程建设条件分为四类风能资源区,相应设定风电标杆上网电价。
1.4中国政府对风电的补贴政策
中国政府一直大力支持风电的发展,从2002 年开始,要求电网公司在售电价格上涨的部分中拿出一定份额,补贴可再生能源发电(即高出煤电电价的部分)。,电网和中国政府对风电的政策性补贴力度逐年加大,由 2002 年的 1.38 亿元上升到 2008 年的 23.77 亿元1(见图 4)。由此可见,中国政府的政策是鼓励可再生能源发展的,因此,中国风电迅速发展,三年间装机容量翻番。尽管如此,由于风电运行的不确定性,技术操作能力和管理水平的限制,中国风电企业的盈利仍然是微薄的。结论
从以上分析我们可以看出,中国的风电电价变化和风电行业的发展特点密不可分。风电行业发展经历了初期示范、产业化建立、规模化及国产化、目前逐渐完善等四个阶段。与此相对应,四个阶段的风电电价基本情况为:初期示范阶段:与燃煤电价持平(不足0.3元/kWh);产业化建立阶段:由风力发电厂和电网公司签订购电协议确定,电价各不相同(0.38元/kWh~1.2元/kWh);规模化及国产化阶段:招标电价与核准电价共存,国家招标电价保持上升;目前完善阶段:四类标杆电价(0.51元/kWh,0.54元/kWh,0.58元/kWh,0.61元/kWh)。在这期间,中国政府一直努力探索合理的风电电价市场形成机制。不同阶段的机制不同,风电电价亦有所波动,国家的指导电价逐年上升,核准电价则略微下降,这都符合中国风电产业和世界风电产业的发展规律,使中国的风电电价更趋理性。同时,可以看到,中国政府在探索风电价格机制和规范风电电价的过程中,一直给予风电行业巨大的支持,2002年至2008年,国家对风电的补贴额从1.38亿元上升为23.77亿元,每年都在大幅度增长,这极大地提高了投资者的积极性,促使中国的风电装机容量成倍增加,中国一跃成为风电大国。
因此,我们认为,中国政府是依据风电本身发展的客观规律、电网的承受能力来确定风电电价,在确定电价时从未考虑 CDM 因素,定价过程完全与CDM无关。但是,也应该看到,在中国风力发展的过程中,CDM对风力发电企业克服资金和技术障碍确实发挥了积极作用,如果没有CDM,中国风电发展速度不会如此迅速,更不会为减缓全球温室气体排放做出如此巨大的贡献。因此,我们希望EB在审核中国风电项目时能充分考虑和理解中国特殊的定价机制,推动全球范围内更多高质量 CDM 项目的成功注册,为减缓全球气候变化作出更多贡献。
参考文献:
风能是一种能量密度低、稳定性较差的能源,由于风速、风向的随机性变化,导致风力机叶片攻角不断变化,使叶尖速比偏离最佳值,风力机的空气动力效率及输入到传动链的功率发生变化,影响了风电系统的发电效率并引起转矩传动链的振荡,会对电能质量及接入的电网产生影响,对于小电网甚至会影响其稳定性。风力发电机组通常采用柔性部件,这有助于减小内部的机械应力,但同时也会使风电系统的动态特性复杂化,且转矩传动模块会有很大振荡。目前,对风力发电机的控制策略研究根据控制器类型可分为两大类:基于数学模型的传统控制方法和现代控制方法。传统控制采用线性控制方法,通过调节发电机电磁转矩或桨叶节距角,使叶尖速比保持最优值,从而实现风能的最大捕获。对于快速变化的风速,其调节相对滞后。同时基于某工作点的线性化模型的方法,对于工作范围较宽、随机扰动大、不确定因素多、非线性严重的风电系统并不适用。
现代控制方法主要包括变结构控制、鲁棒控制、自适应控制、智能控制等[7,8]。变结构控制因具有快速响应、对系统参数变化不敏感、设计简单和易于实现等优点而在风电系统中得到广泛应用。鲁棒控制具有处理多变量问题的能力,对于具有建模误差、参数不准确和干扰位置系统的控制问题,在强稳定性的鲁棒控制中可得到直接解决。模糊控制是一种典型的智能控制方法,其最大的特点是将专家的知识和经验表示为语言规则用于控制,不依赖于被控制对象的精确的数学模型,能够克服非线性因素的影响,对被调节对象有较强的鲁棒性。由于风力发电机的精确数学模型难以建立,模糊控制非常适合于风力发电机组的控制,越来越受到风电研究人员的重视。人工神经网络是以工程技术手段来模拟人脑神经元网络的结构与特征的系统。利用神经元可以构成各种不同的拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。利用神经网络的学习特性,可用于风力机的低风速的节距控制。
3存在的问题及展望
尽管近年来我国风电产业得到了迅猛的发展,但同时也暴露出众多的问题。首先,我国尚未完全掌握风电机组的核心设计及制造技术。在设计技术方面,我国不仅每年需支付大量的专利、生产许可及技术咨询费用,在一些具有自主研发能力的风电企业中,其设计所需的应用软件、数据库和源代码都需要从国外购买。在风机制造方面,风机控制系统、逆变系统需要大量进口,同时,一些核心零部件如轴承、叶片和齿轮箱等与国外同类产品相比其质量、寿命及可靠性尚有很大差距。其次,我国风电发展规划与电网规划不相协调,上网容量远小于装机容量。风电发展侧重于资源规划,风电场的建设往往没有考虑当地电网的消纳能力,从而造成装机容量大,并网发电少的现状。2009年新增装机容量中1/3未能上网,送电难已经成为制约风电发展的瓶颈。最后,我国风电的技术标准和规范不健全,包括风机制造、检测、调试、关键零部件生产及电场入网等相关标准亟需建立和完善。因此,展望我国未来的风电产业发展,必须加强自主创新掌握核心技术;必须加大电网建设力度,合理规范风电开发;必须加大政策扶持力度,建立健全完善统一的风电标准规范体系。
参考文献:
[1] 陈永祥,方征.中国风电发展现状、趋势及建议[J].科技综述,2010(4):14-19.[2] 张明锋, 邓凯,陈波等.中国风电产业现状与发展[J].机电工程,2010,1
风力发电厂的运行与维护检修技术
风力发电场的运行与维护检修技术
风力发电机组的日常运行工作主要包括:通过中控室的监控计算机,监视风力发电机组的各项参数变化及运行状态,并按规定认真填写《风电场运行日志》。当发现异常变化趋势时,通过监控程序的单机监控模式对该机组的运行状态连续监视,根据实际情况采取相应的处理措施。遇到常规故障,应及时通知维护人员,根据当时的气象条件检查处理,并在《风电场运行日志》上做好相应的故障处理记录及质量记录;对于非常规故障,应及时通知相关部门,并积极配合处理解决。
风电场应当建立定期巡视制度,运行人员对监控风电场安全稳定运行负有直接责任,应按要求定期到现场通过目视观察等直观方法对风力发电机组的运行状况进行巡视检查。应当注意的是,所有外出工作(包括巡检、起停风力发电机组、故障检查处理等)出于安全考虑均需两人或两人以上同行。检查工作主要包括风力发电机组在运行中有无异常声响、叶片运行的状态、偏航系统动作是否正常、塔架外表有无油迹污染等。巡检过程中要根据设备近期的实际情况有针对性地重点检查故障处理后重新投运的机组,重点检查起停频繁的机组,重点检查负荷重、温度偏高的机组,重点检查带“病”运行的机组,重点检查新投入运行的机组。若发现故障隐患,则应及时报告处理,查明原因,从而避免事故发生,减少经济损失。同时在《风电场运行日志》上做好相应
风力发电场的运行与维护检修技术
巡视检查记录。
当天气情况变化异常(如风速较高,天气恶劣等)时,若机组发生非正常运行,巡视检查的内容及次数由值长根据当时的情况分析确定。当天气条件不适宜户外巡视时,则应在中央监控室加强对机组的运行状况的监控。通过温度、出力、转速等的主要参数的对比,确定应对的措施。
二、输变电设施的运行
由于风电场对环境条件的特殊要求,一般情况下,电场周围自然环境都较为恶劣,地理位臵往往比较偏僻。这就要求输变电设施在设计时就应充分考虑到高温、严寒、高风速、沙尘暴、盐雾、雨雪、冰冻、雷电等恶劣气象条件对输变电设施的影响。所选设备在满足电力行业有关标准的前提下,应当针对风力发电的特点力求做到性能可靠、结构简单、维护方便、操作便捷。同时,还应当解决好消防和通信问题,以便提高风电场运行的安全性。
由于风电场的输变电设施地理位臵分布相对比较分散,设备负荷变化较大,规律性不强,并且设备高负荷运行时往往气象条件比较恶劣,这就要求运行人员在日常的运行工作中应加强巡视检查的力度。在巡视时应配备相应的检测、防护和照明设备,以保证工作的正常进行。
风电场场区内的变压器及附属设施、电力电缆、架空线路、通信线路、防雷设施、升压变电站的运行工作应执行下
风力发电场的运行与维护检修技术
列标准:
SD292-1988《架空配电线路及设备运行规程(试行)》 DL/T 572-1995《电力变压器运行规程》
GBI4285-1993《继电保护和安全自动装臵技术规程》 DL/T T596-1996《电力设备预防性试验规程》 DL408-1991《电业安全工作规程(发电厂和变电所电气部分)》
DL409-1991电业安全工作规程(电力线路部分)》 DL/T 5027-1993《电力设备典型消防规程》
DL/T620-1997《交流电气装臵的过电压保护和绝缘配合》
电力部(79)电生字53号《电力电缆运行规程》
风力发电场的运行与维护检修技术
一、机组常规巡检
为出现保证风力发电机组的可靠运行,提高设备可利用率,在日常的运行维护工作中建立日常登机巡检制度。维护人员应当根据机组运行维护手册的有关要求并结合机组运行的实际状况,有针对性地列出巡检标准工作内容并形成表格,工作内容叙述应当简单明了,目的明确,便于指导维护人员的现场工作。通过巡检工作力争及时发现故障隐患,防范于未然,有效地提高设备运行的可靠性。有条件时应当考虑借助专业故障检测设备,加强对机组运行状态的监测和分析,进一步提高设备管理水平。
二、风力发电机组的日常故障检查处理
(1)当标志机组有异常情况的报警信号时,运行人员要根据报警信号所提供的故障信息及故障发生时计算机记录的相关运行状态参数,分析查找故障的原因,并且根据当时的气象条件,采取正确的方法及时进行处理,并在《风电场运行日志》上认真做好故障处理记录。
(2)当液压系统油位及齿轮箱油位偏低时,应检查液压系统及齿轮箱有无泄漏现象发生。若是,则根据实际情况采取适当防止泄漏措施,并补加油液,恢复到正常油位。在必要时应检查油位传感器的工作是否正常。
(3)当风力发电机组液压控制系统压力异常而自动停机时,运行人员应检查油泵工作是否正常。如油压异常,应
风力发电场的运行与维护检修技术
检查液压泵电动机、液压管路、液压缸及有关阀体和压力开关,必要时应进一步检查液压泵本体工作是否正常,待故障排除后再恢复机组运行。
(4)当风速仪、风向标发生故障,即风力发电机组显示的输出功率与对应风速有偏差时,应检查风速仪、风向标转动是否灵活。如无异常现象,则进一步检查传感器及信号检测回路有无故障,如有故障予以排除。
(5)当风力发电机组在运行中发现有异常声响时,应查明声响部位。若为传动系统故障,应检查相关部位的温度及振动情况,分析具体原因,找出故障隐患,并做出相应处理。
(6)当风力发电机组在运行中发生设备和部件超过设定温度而自动停机时,即风力发电机组在运行中发电机温度、晶闸管温度、控制箱温度、齿轮箱温度、机械卡钳式制动器刹车片温度等超过规定值而造成了自动保护停机。此时运行人员应结合风力发电机组当时的工况,通过检查冷却系统、刹车片间隙、润滑油脂质量,相关信号检测回路等,查明温度上升的原因。待故障排除后,才能起动风力发电机组。
(7)当风力发电机组因偏航系统故障而造成自动停机时,运行人员应首先检查偏航系统电气回路、偏航电动机、偏航减速器以及偏航计数器和扭缆传感器的工作是否正常。必要时应检查偏航减速器润滑油油色及油位是否正常,借以
风力发电场的运行与维护检修技术
判断减速器内部有无损坏。对于偏航齿圈传动的机型还应考虑检查传动齿轮的啮合间隙及齿面的润滑状况。此外,因扭缆传感器故障致使风力发电机组不能自动解缆的也应予以检查处理。待所有故障排除后再恢复起动风力发电机组。
(8)当风力发电机组转速超过限定值或振动超过允许振幅而自动停机时,即风力发电机组运行中,由于叶尖制动系统或变桨系统失灵,瞬时强阵风以及电网频率波动造成风力发电机组超速;由于传动系统故障、叶片状态异常等导致的机械不平衡、恶劣电气故障导致的风力发电机组振动超过极限值。以上情况的发生均会使风力发电机组故障停机。此时,运行人员应检查超速、振动的原因,经检查处理并确认无误后,才允许重新起动风力发电机组。
(9)当风力发电机组桨距调节机构发生故障时,对于不同的桨距调节形式,应根据故障信息检查确定故障原因,需要进入轮毂时应可靠锁定叶轮。在更换或调整桨距调节机构后应检查机构动作是否正确可靠,必要时应按照维护手册要求进行机构连接尺寸测量和功能测试。经检查确认无误后,才允许重新起动风力发电机组。
(10)当风力发电机组安全链回路动作而自动停机时,运行人员应借助就地监控机提供的故障信息及有关信号指示灯的状态,查找导致安全链回路动作的故障环节,经检查处理并确认无误后,才允许重新起动风力发电机组。
风力发电场的运行与维护检修技术
(11)当风力发电机组运行中发生主空气开关动作时,运行人员应当目测检查主回路元器件外观及电缆接头处有无异常,在拉开箱变侧开关后应当测量发电机、主回路绝缘以及晶闸管是否正常。若无异常可重新试送电,借助就地监控机提供的有关故障信息进一步检查主空气开关动作的原因。若有必要应考虑检查就地监控机跳闸信号回路及空气开关自动跳闸机构是否正常,经检查处理并确认无误后,才允许重新起动风力发电机组。
(12)当风力发电机组运行中发生与电网有关故障时,运行人员应当检查场区输变电设施是否正常。若无异常,风力发电机组在检测电网电压及频率正常后,可自动恢复运行。对于故障机组必要时可在断开风力发电机组主空气开关后,检查有关电量检测组件及回路是否正常,熔断器及过电压保护装臵是否正常。若有必要应考虑进一步检查电容补偿装臵和主接触器工作状态是否正常,经检查处理并确认无误后,才允许重新起动机组。
(13)由气象原因导致的机组过负荷或电机、齿轮箱过热停机,叶片振动,过风速保护停机或低温保护停机等故障,如果风力发电机组自起动次数过于频繁,值班长可根据现场实际情况决定风力发电机组是否继续投入运行。
(14)若风力发电机组运行中发生系统断电或线路开关跳闸,即当电网发生系统故障造成断电或线路故障导致线路
风力发电场的运行与维护检修技术
开关跳闸时,运行人员应检查线路断电或跳闸原因(若逢夜间应首先恢复主控室用电),待系统恢复正常,则重新起动机组并通过计算机并网。
(15)风力发电机组因异常需要立即进行停机操作的顺序:
1)利用主控室计算机遥控停机。
2)遥控停机无效时,则就地按正常停机按钮停机。3)当正常停机无效时,使用紧急停机按钮停机。4)上述操作仍无效时,拉开风力发电机组主开关或连接此台机组的线路断路器,之后疏散现场人员,做好必要的安全措施,避免事故范围扩大。
(16)风力发电机组事故处理:在日常工作中风电场应当建立事故预想制度,定期组织运行人员做好事故预想工作。根据风电场自身的特点完善基本的突发事件应急措施,对设备的突发事故争取做到指挥科学、措施合理、沉着应对。
发生事故时,值班负责人应当组织运行人员采取有效措施,防止事故扩大并及时上报有关领导。同时应当保护事故现场(特殊情况除外),为事故调查提供便利。
事故发生后,运行人员应认真记录事件经过,并及时通过风力发电机组的监控系统获取反映机组运行状态的各项参数记录及动作记录,组织有关人员研究分析事故原因,总结经验教训,提出整改措施,汇报上级领导。
风力发电场的运行与维护检修技术
风力发电场的运行与维护检修技术
6)模块式插件检查与紧固;
7)显示器及控制按键开关功能检查;
8)电气传动桨距调节系统的回路检查(驱动电动机、储能电容、变流装臵、集电环等部件的检查、测试和定期更换);
9)控制柜柜体密封情况检查; 10)机组加热装臵工作情况检查; 11)机组防雷系统检查; 12)接地装臵检查。2.机械部分
1)螺栓连接力矩检查;
2)各润滑点润滑状况检查及油脂加注; 3)润滑系统和液压系统油位及压力检查; 4)滤清器污染程度检查,必要时更换处理; 5)传动系统主要部件运行状况检查; 6)叶片表面及叶尖扰流器工作位臵检查; 7)桨距调节系统的功能测试及检查调整; 8)偏航齿圈啮合情况检查及齿面润滑; 9)液压系统工作情况检查测试; 10)钳盘式制动器刹车片间隙检查调整; 11)缓冲橡胶组件的老化程度检查; 12)联轴器同轴度检查;
风力发电场的运行与维护检修技术
13)润滑管路、液压管路、冷却循环管路的检查固定及渗漏情况检查;
14)塔架焊缝、法兰间隙检查及附属设施功能检查; 15)风力发电机组防腐情况检查。
二、例行维护周期
正常情况下,除非设备制造商的特殊要求,风力发电机组的例行维护周期是固定的,即:
新投运机组:500h(一个月试运行期后)例行维护; 已投运机组:2500h(半年)例行维护;
三、维护计划的编制
风力发电机组例行维护计划的编制应以机组制造商提供的例行维护内容为主要依据,结合风力发电机组的实际运行状况,在每个维护周期到来之前进行整理编制。计划内容主要包括工作开始时间、工作进度计划、工作内容、主要技术措施和安全措施、人员安排以及针对设备运行状况应注意的特殊检查项目等。
在计划编制时还应结合风电场所处地理环境和风力发电机组维护工作的特点,在保证风力发电机组安全运行的前提下,根据实际需要可以适当调整维护工作的时间,以尽量避开风速较高或气象条件恶劣的时段。这样不但能减少由维护工作导致计划停机的电量损失,降低维护成本,而且有助
风力发电场的运行与维护检修技术
于改善维护人员的工作环境,进一步增加工作的安全系数,提高工作效率。
四、例行维护的组织与管理 例行维护组织形式:
风力发电机组的例行维护在风电场的工作任务中所占的比例较重,如何科学合理地进行组织和管理,对风电场的经济运行至关重要。
依据风电场装机容量和人员构成的不同,出现较多的主要有以下两种组织形式,即集中平行式作业和分散流水式作业:
1.集中平行式作业是指在相对集中的时间内,维护作业班组集中人力、物力,分组多工作面平行展开工作。装机数量较少的中小容量风电场多采用这种方式。
特点:工期相对较短,便于生产动员和组织管理。但是,人员投入相对较多,维护工具的需求量较大。
2.分散流水式作业是指将整个维护工作根据工作性质分为若干阶段,科学合理地分配工作任务,实现专业分工协作,使各项工作之间最大限度地合理搭接,以更好的保证工作质量,提高劳动生产率。适于装机数量较多的大中型风电场。
风力发电场的运行与维护检修技术
特点:人员投入及维护工具的使用较为合理,劳动生产率较高,成本较低。但是,工期相对较长,对组织管理和人员素质的要求较高。
例行维护工作开始前,维护工作负责人应根据风电场的设备及人员实际情况选择适合自身的工作组织形式,提早制定出周密合理的例行维护计划,落实维护工作所需的备品备件和消耗物资,保证维护工作所需的安全装备及有精度要求的工量卡具已按规定程序通过相应等级的鉴定,并已确实到位。
为了使每个维护班组了解维护工作的计划及进度安排,在例行维护工作正式开始前应召开由维护人员和风电场各部门负责人共同参加的例行维护工作准备会,通过会议应协调好各部门间的工作,“以预防为主”督促检查各项安全措施的落实情况,确定各班组的负责人,“以人为核心”做到责任到人,分工负责,确保维护计划的各项工作内容得以认真执行,并按规定填写相应的质量记录。
工作中应做到“安全生产,文明操作”,爱惜工具,节约材料,在保证质量的前提下控制消耗、降低成本。同时还应注意工作进度的掌握,加强组织协调,切实关心一线维护人员的健康和生活,在实际生产中提高企业的凝聚力。
五、检修工作总结
风力发电场的运行与维护检修技术
1)风力发电机组的维护检修工作必须要把安全生产作为重要的任务,工作中严格遵守风力发电机组维护工作安全规程,做到“安全与生产的统一”,确保维护检修工作的正常进行。
2)严格控制维护检修工作的进度,在计划停机时间内完成维护检修计划中所列的工作内容,达到要求的技术标准。并按规定填写有关质量记录,在工作负责人签字确认后及时整理归档。
3)工作过程中应当加强成本控制,严格管理,统筹安排,避免费用超支。
4)工作时要注意保持工作场地的卫生,废弃物及垃圾统一收集,集中处理,树立洁净能源的良好形象。
5)维护检修工作结束后,检修工作负责人应对各班组提交的工作报告进行汇总整理,组织班组人员对在维护检修工作中发现的问题及隐患进行分析研究,并及时采取针对性的措施,进一步提高设备的完好率。
6)整个工作过程结束后,检修工作负责人应对维护检修计划的完成情况和工作质量进行总结。同时,还应综合维护检修工作中发现的问题,对本维护周期内风力发电机组的运行状况进行分析评价,并对下一维护周期内风力发电机组的预期运行状况及注意事项进行阐述,为今后的工作提供有益的积累。
风力发电场的运行与维护检修技术
2500(一年)例行维护。
随着风力发电装机容量不断增加, 风电场对风力发电机组的运行要求也随之严格, 如要求在电网故障下具有不间断运行的能力。对于目前风电机组不间断运行的能力一般不会超过秒级, 如果电力系统故障时间达到秒级, 风电机组脱离电网保护自己, 同时独立向负载供电。
风力分布式发电系统一般通过电力电子变换器与电网或负载相连。基于新能源的风力分布式发电系统结构框图如图1所示。分布式发电系统通过反向并联可控硅 (SCR) 构成的并网开关与电网相连。本地负载通过公共耦合点与电网相连。
基于新能源的风力分布式发电系统不仅需要具有并网运行的能力, 也需具有带独立负载离网运行的能力。为了实现上述功能, 风力分布式发电系统不仅要具备2种运行模式和控制策略, 还必须具有上述情况相互切换的功能, 且在运行模式切换瞬间还需确保电压幅值和频率的稳定, 满足负载对供电质量的运行要求。因此, 如何实现离网与并网运行之间的柔性切换, 保证本地负载的稳定运行是新能源风力分布式发电系统必须解决的关键问题之一。
目前, 科学家对并网运行时变流器的控制进行了研究。例如采用基于电网电压定向的矢量控制策略, 通过直流母线电压外环、电网输入电流内环的双环控制网侧变流器, 实现系统稳定运行控制;针对不平衡电网条件下网侧变流器的控制, 提出了正负序分离双PI电流控制策略, 其基本思想是将不平衡电压与电流分解成正、负序分量再分别实行同步坐标系下PI控制;在离网运行控制中, 在正转同步速旋转坐标系中通过比例-积分 (PI) 调节器实施电压外环和电流内环的精确控制, 实现三相对称线性负载下离网型风电、光伏等系统的输出电压控制。为了改善负载侧变换器在不平衡和非线性负载下的输出性能, 目前已对负载侧变换器在不平衡负载或非线性负载下的输出电压矫正技术进行了研究。提出了输电系统FACTS技术中用于电网不平衡条件下电压源型逆变器运行与控制的新方案, 其基本方法是将不对称系统分解成对称分量再实行d、q轴解耦控制。该方案采用1/4周期延时的最小时延正、负序分解技术, 最大限度地减小了对控制动态性能大有影响的分解时延影响。
本文提出一种电网故障条件下确保电压幅值和频率的稳定, 满足负载对供电质量的运行要求的离网/并网运行柔性切换技术。
2 并网与离网运行柔性切换技术
2.1 从离网运行切换至并网运行
假定由于电网发生故障, 风力分布式发电系统脱离电网, 处于离网模式独立带负载运行。此时, 变流器采用电压控制策略, 且并网开关为关断状态。当电网故障清除, 电网电压恢复后, PCC处电压的幅值和相位与电网电压的幅值和相位可能不一致。因此, 为了保证分布式发电系统运行模式切换前后本地负载电压的稳定, 且为了避免并网时产生较大的冲击电流, 要求在并网开关重合前, 必须调节负载侧变换器输出电压的幅值和相位, 使其跟踪电网电压。
变流器对电网电压幅值的跟踪, 可以通过逐渐增加或减少输出电压的幅值来实现;变流器对电网电压相位的跟踪则可以通过锁相环 (PLL) 来完成。但要保证相位一致, 需通过增加或减少负载侧变换器输出电压的频率实现。
根据电网导则规定, 电压频率波动范围需小于0.2Hz。为了缩短调频时间, 又保证频率变化率在负载可接受的范围内。为了避免当相位差接近π时, 频率变化率在+0.2Hz和-0.2Hz反复变化, 在π附近增加了一个小滞环来解决这个问题。分布式发电系统与电网同步调频示意如图2所示。
一旦公共耦合点处电压的幅值和相位与电网电压的幅值和相位一致时, 控制系统发出指令使并网开关闭合, 同时将变流器控制策略由电压控制策略切换至电流控制策略。其控制流程如图3 (a) 所示, 可简要归纳为以下主要步骤:
(1) 检测电网是否已经恢复;
(2) 调节公共耦合点处电压幅值和相位, 使之与电网电压幅值和相位一致;
(3) 一旦公共耦合点处电压和电网电压一致, 闭合并网开关, 变流器控制策略由电压控制模式切换至电流控制模式。
2.2 从并网运行切换至离网运行
假定分布式发电系统初始运行在并网模式。网侧变换器采用电流控制策略, 公共耦合点处电压由电网电压控制。当电网发生故障时, 分布式发电系统须迅速脱离电网, 切换至独立运行模式继续为本地负载供电。
当电网发生故障时, 公共耦合点处的电压跌落。当电压跌落到一定阈值时, 控制器发出指令, 关闭并网开关。同时, 变换器控制策略从电流控制策略切换至电压控制策略。
当变流器控制策略切换至电压控制策略时, 需保证变流器产生的电压的幅值和相位与脱网前一刻公共耦合点处电压的幅值和相位保持一致, 从而避免切换瞬间因负载电压突变而产生的冲击电流。
通过DSP实时采样公共耦合点处的电压, 将脱网前一刻采到的电压的幅值和相位作为电压控制策略下幅值和相位的参考值。电压幅值从脱网前一刻的电压幅值逐渐恢复负载电压额定值。其控制流程如图3 (b) 所示, 可简要归纳为以下主要步骤:
(1) 检测电网故障, 发并网开关关闭指令;
(2) 检测此时PCC处电压幅值和相位;
(3) 变流器从电流控制切换至电压控制, 参考值为脱网前一刻电压幅值和相位值;
(4) 逐渐使负载电压从设定阈值升至额定值。
3 结束语
【关键词】发电机;同期并网;自动准同期;电压;频率
引言
发电机必须并入电力系统才能将所发出的电能上送至系统中,才能实现电能从发电机流向用电设备,对发电机与电力系统之间的并列操作就是同期并网操作,同期并网操作是发电机操作中的一项关键内容,操作出现问题将直接导致发电机并网失败。当前,企业电网的规模日益增大,同时发电机的数量和容量都在不断增加,这就需要对同期并网技术进行深入的了解,最终实现能够将发电机准确、可靠、稳定的并入系统目标。
1、发电机并网的条件手动准同期的缺点
1.1发电机并网的条件
(1)发电机机端母线的电压与系统母线的电压幅值相等并且波形一致。
(2)发电机所发出电的频率与系统的频率相同,均为50Hz。
(3)发电机侧电压与系统侧电压的相序相同。
(4)合闸的瞬间,发电机侧电压与系统侧电压相位相同。
在以上四个条件具备的基础上,就能完成发电机的顺利并网,在并网瞬间,发电机机端电压与系统电压的瞬时值越是差距越小,则发电机并网时受到的冲击就越小,并网过程就越平稳。
2、手动同期并网的缺点
老式发电机采用的手动准同期装置,虽然可以通过人工观察合闸前的发电机与系统两侧的电压、频率等数值,通过调节发电机本体和励磁装置来调节发电机侧的参数使其等于系统侧参数,并在参数相同的时刻合上并网开关,实现发电机的并网操作,但是根据实际情况来看,其始终摆脱不了如下几条缺点:
(1)不能自动选择合闸的时机,对操作人员的专业素质和操作熟练程度依赖性较大。
(2)老的手动准同期装置的精度下降,虽然是在同期装置所显示的可以合闸的区间进行合闸并网工作,但是往往由于操作的延时和装置的细小误差而使实际合闸过程并不满足发电机并网的条件,这种状况就造成了非同期并网。
(3)过程完全需要人工进行干预,不能实现自动调节。
3、微机自动准同期装置的结构
我厂选用的微机自动准同期装置属于越前时间恒定的自动并列装置,这种并列装置对发电机侧和系统侧的电压频率进行检测,当在设定的越前时刻检测到两侧的电压差和频率差均在设定的允许范围之内,则迅速启动合闸逻辑并输出合闸信号驱动断路器合闸,实现发电机的并网,这样能够最大程度上保证在经过了断路器固有的合闸延时之后,两侧电压与频率的差值仍然处于最小的范围。如果在合闸逻辑启动之前装置判断出电压或者频率的差值超出设定的允许范围,则马上闭锁合闸出口,并在程序内部将合闸逻辑闭锁,通过检测到的电压频率差值来对分别给出发电机转速升高降低以及电压升高降低指令。微机自动准同期装置包括了以下五部分:
3.1导前时间设定部分,微机自动准同期装置的导前时间是通过4位拨码来进行设置的,四位拨码代表了16进制的0000-1111共计16个数,对应时间为0.1-1.6秒,这个前导时间的设定需要对断路器固有的合闸时间进行检测,使前导的时间与断路器合闸时间匹配。系统电压与发电机机端电压之差形成的以滑差周期脉动的电压信号。其周期也可以通过拨码进行设置。
3.2自动调压单元,微机系统通过模拟转数字模块对高压设备二次侧的电压信号进行采集,采集周期通常系统固定为10ms,经过采集器的电压信号为一个0~5V的直流信号,微机通过内部的比较器对系统电压与发电机机端电压进行比较,根据两侧电压的差值给出发电机电压升高或者降低信号,直至调节后两侧的电压差值保持在5%以内。
3.3自动调频单元,调频单元配置高速频率采集通道,分别对发电机侧和系统侧的频率进行快速采集比较,当发电机频率低于系统侧频率时就对应的升高发电机转速,反之则降低发电机转速,直到达到并网要求的频率之差控制在0.33Hz以内。
3.4自动同期合闸单元,当发电机机端与系统侧的电压和频率均在规定的范围之内时,自动同期合闸单元则投入并密切监视两侧的电压和频率值,如果在设定的保持时间之内电压和频率差值均未越过规定的范围,这就表示发电机当前的运行状态十分平稳,下一个滑差时间内必然会出现最佳的同期合闸时间点。此时立即投入自动同期合闸准备逻辑,等待下一个滑差时间周期内同步点的到来,一旦检测的该同步点则逻辑输出断路器合闸,发电机成功并网,若此周期内未检测到最佳的同步点,则程序继续等待同步点的出现。在自动合闸单元中需要设置合闸动作的时间提前量,这个提前量应该能与断路器的合闸时间相匹配。
3.5出口执行和信号指示单元,出口执行单元包括了输入输出接口芯片,光电隔离电路以及大功率驱动电路和出口继电器,根据功能一般采用了五出口继电器的结构,五个出口继电器分别完成发电机升转速、降转速、发电机电压升高、降低、同期合闸五个功能,其中可以通过内部逻辑分别对五个出口进行功能连锁或者闭锁,出口继电器分别对应了不同的信号指示灯,可以通过指示灯来观察自动准同期装置的运行状态。
4、微机自动准同期装置的应用优势
4.1微机自动准同期装置的操作比老式准同期装置便捷简单,操作人员只要按下启动按钮就能完成发电机同期并网的复杂操作,消除了发电机并网对操作人员素质的依赖性。
4.2能够适时的选择最佳时机进行合闸,客服了传统手动准同期装置在合闸瞬间其内部需要进行的角度检测,将同期并网的冲击降到最小。
4.3由于其前导时间和滑差时间可以通过外部的拨码进行调节,这就可以使自动准同期装置适应不同的发电机出口断路器,使得合闸时间的提前量总能够与断路器固有的合闸时间保持一致,确保在最佳的时间内完成合闸。
4.4微机自动检同期装置运行可靠,能够适应较频繁的发电机并网操作,且其不受外部环境的影响,对于复杂的工厂现场,其能够切实的保障发电机同期并网操作的长期可靠性,提高整个系统运行的稳定性。
5、结束语
自动准同期装置在宣钢发电机系统中得以成功运用,时间证明了其在可靠性、快速性、稳定性等多方面均远远的超过了传统依靠手动准同期的操作方法,保障了发电机并网操作的成功率,直接增加了企业发电机运行的经济效益。
参考文献
[1]粟梅,郭旭东,官诗军.一种新型的微机自动准同期装置.电力设备网
【风力发电并网技术】推荐阅读:
永磁风力发电机核心技术07-01
变速恒频双馈风力发电机组控制技术研究10-04
风力发电机组11-05
风力发电机组检修09-19
风力发电场安全规程07-14
风力发电的研究结题报告07-19
风力发电的现状及前景11-09
新能源风力发电政策12-12
风力发电工程建设监理总结11-20