三元材料总结(精选6篇)
层状的Co02,其理论容量为274 mAh/g,实际容量在140~155 mAh/g。其优点为:工作电压高,充放电电压平稳,适合大电流放电,比能量高,循环性能好。缺点是:实际比容量仅为理论容量的50%左右,钴的利用率低,抗过充电性能差,在较高充电电压下比容量迅速降低。另外,再加上钴资源匮乏,价格高的因素,因此,在很大程度上减少了钻系锂离子电池的使用范围,尤其是在电动汽车和大型储备电源方面受到限制。
镍钴锰三元复合正极材料研究工作中面临的问题和不足
(1)合成工艺不成熟,工艺复杂。由于世界各国对于复合正极材料的研究最近几 年才开始,且材料中的Ni2+极难氧化成Ni3+,锰离子也存在多种氧化价态,因而合成层状结构的正极材料较为困难,尚未研究出最佳的合成工艺。由于大量掺入过渡金属元素等因素,复合正极材料的合成工艺相对复杂,需经过长时间的煅烧,并且大多只能在氧气气氛中,温度高于900℃的条件下合成出具有优异电化学性能的复合正极材料,这对于该材料的工业化生产带来了很大的局限性。(2)忽略了镍钴锰三元复合正极材料合成过程中前驱体的研究。由于目前合成复 合正极材料均需煅烧,而国内外普遍采用直接市售的、Ni-H电池及陶瓷行业专用的镍化物、钴化物和锰化物作为煅烧原料进行合成,仅考虑原料的化学组成,而未注意到煅烧前驱体的种类和相关性能对复合正极材料的结构和电化学性能产生的巨大影响。
目前开发高性能、低成本的新型锂离子电池正极材料的研究思路主要有:
(1)充分综合钴酸锂良好的循环性能、镍酸锂的高比容量和锰酸锂的高安全性及低成本等特点,利用分子水平混合、掺杂、包覆和表面修饰等方法合成镍钴锰等多元素协同的复合嵌锂氧化物;
(2)高安全性、价廉、绿色环保型橄榄石结构的LiMPO4(M=Fe、Mn、V等)的改性和应用;
(3)通过对传统的钴酸锂、镍酸锂和锰酸锂等正极材料进行改性、掺杂或修饰,以改善其理化指标和电化学性能。其中利用具有多元素过渡金属协同效应的镍钴锰等复合嵌锂氧化物,因其良好的研究基础及可预见的应用前景而成为近年备受关注的焦点之一。
锂离子电池正极材料应达到的要求:
锂离子电池正极材料一般均采用嵌入化合物,主要是过渡金属氧化物,一方面,过渡金属存在混合价态,电子导电性比较理想;另一方面不易发生歧化反应。性能优良的锂离子电池正极材料应该具有以下几个方面的性能:
(l)正极材料中要有丰富的锂存在,这样才能够有大量的锂进行可逆嵌入和脱嵌反应,就可以使电池的容量得到提高。在锂离子脱嵌时电极反应的自由能变化不大,以保证电池充放电电压平稳。
(2)在进行嵌入/脱嵌过程中,锂离子要具有良好的嵌入和脱嵌可逆性,并且在这个过程中正极材料的结构应该变化很少,这样有利于提高锂离子电池的循环性能,具有大量的界面结构和表观结构,有利于增加嵌锂的空间位置,提高嵌锂容量。
(3)正极材料需具有大孔径隧道结构,以便锂离子在“隧道”中有较大的扩散系数和迁移系数,并具有良好的电子导电性和离子导电性,这样可减少极化,提供最大工作电流。
(4)作为正极材料的嵌入化合物,应该与电解液尽可能的少反应或者不反应,彼此间的化学相容性要好,在整个充放电过程中电化学稳定性高,并且与电解质 保持良好的热稳定性,以保证工作的安全。
(5)过渡金属离子在嵌入化合物中应具有较高的氧化还原电位,从而使电池的输出电压高。氧化还原电位随锂离子的变化尽可能少,这样电池的电压不会发生显著地变化,可保持较平稳的充电和放电。
(6)电解液的稳定电位区间大于电池的应用电位区间。
(7)在产品的产业化方面,正极材料应该具备原材料容易获得,价格相对低廉,对环境无污染,能量密度高,易于制作成各种形状的电极结构,提高锂离子电池的性能价格比。
三元材料LiNi1/3Co1/3Mn1/3O2的发展:
近年来,为应对汽车工业迅猛发展带来的诸如环境污染、石油资源急剧消耗等负面影响,各国都在积极开展采用清洁能源的电动汽车EV以及混合动力电动车HEV的研究。其中作为车载动力的动力电池成为EV和HEV发展的主要瓶颈。
商业化的锂离子电池主要采用LiCoO2作为正极材料,LiCoO2存在安全性和耐过充性问题,Co属于稀有资源,价格昂贵,且金属钴容易对环境造成污染。而LiNiO2的稳定性差,容易引起安全问题,需在氧气气氛下合成,并且容易发生阳离子混排和生成非化学计量结构化合物。锰系正极材料价格低廉,资源丰富,分布广泛,其中层状LiMnO2是一种热力学不稳定材料,容量虽高,但是在充放电过程中层状结构会向尖晶石型结构转变,导致比容量衰减快,电化学性能不稳定。LiMn2O4在循环过程中容易发生晶型转变以及锰离子的溶解和Jahn-Teller效应,导致电池容量衰减。LiFePO4可称为零污染正极材料,由于其在价格便宜和高安全性方面的优势,而倍受重视,近年来,该材料得到广泛研究和应用,但该材料电导率低,且振实密度小,因而,其应用领域依然受到很大限制。
综合LiCoO2,LiNiO2,LiMnO2三种锂离子电池正极材料的优点,三元材料的性能好于以上任一单一组分正极材料,存在明显的协同效应,被认为是最有应用前景的新型正极材料。通过引入Co,能够减少阳离子混合占位,有效稳定材料的层状结构,降低阻抗值,提高电导率。引入Ni,可提高材料的容量。引入Mn,不仅可以降低材料成本,而且还可以提高材料的安全性和稳定性。三元材料可以按照不同比例,由镍钴锰三种金属元素组成复合型过渡金属氧化物,用通式LiNi1-x-yCoxMnyO2来表示。目前比较普遍的做法是将Ni/Mn两种金属元素的摩尔比固定为1:1,以维持三元过渡金属氧化物的价态平衡,然后再调整它们与Co元素的比例,在平衡性能和成本的基础上,优化组成。现在文献中最常见的组成是LiNi1/3Co1/3Mn1/3O2三元正极材料,此外还有LiNi2/5Co1/5Mn2/5O2,LiNi3/8Co2/8Mn3/8O2等。
作为一类具有三元协同效应的功能材料,Ni、Co、Mn的计量比对该材料的合成及性能影响显著。一般来说,Ni的存在能使LiNixCoyMn1-x-yO2的晶胞参数c和a值分别增加,同时c/a值减小,晶胞体积相应增大,有助于提高材料的可逆嵌锂容量。但过多Ni2+的存在又会因为与Li+发生位错现象而使材料的循环性能恶化。Co能有效地稳定复合物的层状结构并抑制3a和3b位置阳离子的混合,即减小Li层与过渡金属层的阳离子混合,从而使锂离子的脱嵌更容易,并能提高材料的导电性和改善其充放电循环性能;但随Co的比例增大,晶胞参数中的c和a值分别减小,c/a值反而增加,使得晶胞体积变小,导致材料的可逆嵌锂容量下降。而Mn的引入除了大幅度降低成本外,还能有效地改善材料的安全性能,但Mn的含量太高则容易出现尖晶石相而破坏材料的层状结构。
目前,镍钴锰三元正极材料的研究主要集中在材料的合成以及电化学性能与结构的关系上。在实际电池中,正极材料颗粒的形貌、粒径分布、比表面积及振实密度等物性特征对材料的加工性能及电池的综合电性能影响很大,为了拓宽锂离子电池的应用范围,尤其是将三元材料应用于对安全性、循环性以及倍率特性要求苛刻的动力电池上,高密度、粒径分布均匀的球形三元材料的制备已经成为研究的热点,而如何在保证其电化学性能的前提下提高其振实密度则是三元材料走向大规模应用的关键。
预计到2015年和2020年我国车用和储能锂离子电池将达到如下目标(表l,2),大规模应用于电动交通、智能电网等领域,进一步促进新能源产业的快速发展。
三元材料LiNi1/3Co1/3Mn1/3O2的结构特点:
LiNi1/3Co1/3Mn1/3O2正极材料具有与LiCoO2相似的单一的基于六方晶系的α-NaFeO2型层状岩盐结构,空间点群为R3m。锂离子占据岩盐结构(111)面的3a位,过渡金属离子占据3b位,氧离子占据6c位,每个过渡金属原子由6个氧原子包围形成MO6八面体结构,而锂离子嵌入过渡金属原子与氧形成的Ni1/3Co1/3Mn1/3O层。因为二价镍离子的半径(0.069nm)与锂离子的半径(0.076nm)相接近,所以少量镍离子可能会占据3a位,导致阳离子混合占位情况的出现,而这种混合占位使得材料的电化学性能变差。通常在XRD中,将(003)/(104)峰的强度比以及(006)/(012)和(018)/(110)峰的分裂程度作为阳离子混合占位情况的标志。一般情况下,(003)/(104)峰的强度比高于1.2,且(006)/(012)和(018)/(110)峰出现明显分裂时,层状结构明显,材料的电化学性能优良。LiNi1/3Co1/3Mn1/3O2的晶胞参数a=2.8622Å、c=14.2278 Å。在晶格中镍、钴、锰分别以+
2、+
3、+4价存在,同时也存在少量的Ni3+和Mn3+,在充放电过程中,除了有Co3+/4+的电子转移外,还存在Ni2+/3+和Ni3+/4+的电子转移,这也使得材料具有了更高的比容量。Mn4+只是作为一种结构物质而不参与氧化还原反应。Koyama等提出2个描述LiNi1/3Co1/3Mn1/3O2晶体结构模型,即具有[√3×√3]R30°型超结构[Ni1/3Co1/3Mn1/3]层的复杂模型,晶胞参数a=4.904 Å,c=13.884 Å,晶格形成能为-0.17eV和CoO2、NiO2和MnO2层有序堆积的简单模型,晶格形成能为+0.06eV。因此,在合适的合成条件下,完全可以形成第一种模型,这种晶型在充放电过程中可以使晶格体积变化达到最小,能量有所降低,有利于晶格保持稳定。
[Ni1/3Co1/3Mn1/3]超晶格型结构模型
LiNi1/3Co1/3Mn1/3O2有序堆积简模型
三元材料LiNi1/3Co1/3Mn1/3O2的电化学性能及热稳定性
LiNi1/3Co1/3Mn1/3O2作为锂离子电池正极材料,具有较高的锂离子扩散能力,理论容量达278mAh/g,在充电过程中,在3.6V~4.6V之间有两个平台,一个在3.8V左右,另一个在4.5V左右,主要归因于Ni2+/Ni4+和Co3+/Co4+2个电对,且容量可达250 mAh/g,为理论容量的91%。在2.3V~4.6V电压范围内,放电比容量为190 mAh/g,100次循环后,可逆比容量比190 mAh/g还要多。在2.8V~4.3V、2.8V~4.4V和2.8V~4.5V电位范围内进行电性能测试,放电比容量分别为159 mAh/g、168 mAh/g和177 mAh/g.且在不同温度下(55℃、75℃、95℃)和不同倍率放电时充放电,材料的结构变化均较小,具有良好的稳定性,高温性能良好,但低温性能有待改进。
锂离子电池的安全性一直都是商业化的一个重要衡量标准,在充电状态下与电解液的热效应是正极材料是否适用于锂离子电池的关键。
DSC测试结果表明,充电后的LiNi1/3Co1/3Mn1/3O2在250~350℃未发现尖峰,LiCoO2在160℃和210℃有2个放热尖峰,LiNiO2在210℃有一个放热尖峰。三元材料在这个温度范围内也有一些放热和吸热反应,但反应要温和得多。
三元材料LiNi1/3Co1/3Mn1/3O2的制备技术有哪些:
正极材料微观结构的改善和宏观性能的提高与制备方法密不可分,不同的制备方法导致所制备的材料在结构、粒子的形貌、比表面积和电化学性质等方面有很大的差别。目前LiNi1/3Co1/3Mn1/3O2的制备技术主要有固相合成法、化学沉淀法、溶胶凝胶法、水热合成法、喷雾降解法等。
固相合成法:一般以镍钴锰和锂的氢氧化物或碳酸盐或氧化物为原料,按相应的物质的量配制混合,在700~1000℃煅烧,得到产品。该方法主要采用机械手段进行原料的混合及细化,易导致原料微观分布不均匀,使扩散过程难以顺利地进行,同时,在机械细化过程中容易引入杂质,且煅烧温度高,煅烧时间长,反应步骤多,能耗大,锂损失严重,难以控制化学计量比,易形成杂相,产品在组成、结构、粒度分布等方面存在较大差异,因此电化学性能不稳定。
案例
1、Y.J.Shin等将Co3O4和Li2CO3通过固相反应制得LiCoO2,然后将适量的LiCoO2、NiO、MnO2和Li2CO3通过固相反应得到LiNi1/3Co1/3Mn1/3O2。由于配料混合的不均匀性直接影响到正极材料中镍钴锰分布,因此产品在组成、结构、粒度分布等方面存在较大差别,材料电化学性能重现性不好。
案例
2、N.Yabuuchi等将Ni(OH)
2、Co(OH)2和Mn(OH)2按Co:Ni:Mn=0.98:1.02:0.98充分混合,球磨,在150℃下预热1h,然后在空气中加热到1000℃烧结14h得到LiNi1/3Co1/3Mn1/3O2,用高温固相法直接烧结上述原料,容易出现混料不均、无法形成均相共熔体以及各批次产物质量不稳定等问题。
溶胶-凝胶法:先将原料溶液混合均匀,制成均匀的溶胶,并使之凝胶,在凝胶过程中或在凝胶后成型、干燥,然后煅烧或烧结得所需粉体材料。溶胶凝胶技术需要的设备简单,过程易于控制,与传统固相反应法相比,具有较低的合成及烧结温度,可以制得高化学均匀性、高化学纯度的材料,但是合成周期比较长,合成工艺相对复杂,成本高,工业化生成的难度较大。
案例:J.Li等以锂、镍、锰、钴的乙酸盐为原料,柠檬酸为络合剂,在80℃制成溶胶,然后在120℃干燥,形成凝胶,并在450℃预烧5h,900℃再焙烧15h,得到最终产物。
化学共沉淀法:一般是把化学原料以溶液状态混合,并向溶液中加入适当的沉淀剂,使溶液中已经混合均匀的各个组分按化学计量比共沉淀出来,或者在溶液中先反应沉淀出一种中间产物,再把它煅烧分解制备出微细粉料。化学共沉淀法分为直接化学共沉淀法和间接化学共沉淀法。直接化学共沉淀法是将Li、Ni、Co、Mn的盐同时共沉淀,过滤洗涤干燥后再进行高温焙烧。间接化学共沉淀法是先合成Ni、Co、Mn三元混合共沉淀,然后再过滤洗涤干燥后,与锂盐混合烧结;或者在生成Ni、Co、Mn三元混合共沉淀后不经过过滤而是将包含锂盐和混合共沉淀的溶液蒸发或冷冻干燥,然后再对干燥物进行高温焙烧。与传统的固相合成技术相比,采用共沉淀方法可以使材料达到分子或原子线度化学计量比混合,易得到粒径小、混合均匀的前驱体,且煅烧温度较低,合成产物组分均匀,重现性好,条件容易控制,操作简单,目前工业上已有规模生产。
案例
1、S.C.Zhang等以LiNO3、Ni(NO3)
2、Co(NO3)2和MnCl2为原料按摩尔量的比3.3:1:1:1溶解在乙醇里形成总离子浓度为3mol/L的溶液,将此溶液以1滴/秒的速度滴加到3mol/L的KOH乙醇溶液中,分离出沉淀并在80℃干燥10h,然后在空气中于400~800℃煅烧,获得粒径10~40nm的粉末正极材料。
案例
2、X.F.Luo等按化学计量比将NiS04·6H20、CoSO4·7H2O和MnS04·H2O溶解到蒸馏水中,在该混合溶液中缓慢加入2mol/L NaOH溶液和适量的2mol/L NH4OH,同时在50℃氩气保护下激烈搅拌24h。反应完全后,将所得沉淀物过滤,并用蒸馏水洗涤,在50~60℃真空条件下干燥一夜。将所得产物与过量5%的Li0H·H20混合。将所得粉末压成饼状,在480℃加热5h,650℃加热9h,然后在空气中于700~1000℃煅烧18h,获得LiNi1/3C01/3Mn1/302。在以氢氧化物作沉淀剂的共沉淀的过程中,如果反应没有惰性气体保护,初始得到的Mn(OH)2就很容易被氧化成Mn00H和Mn02,而Mn2+则能在碳酸根离子或草酸根离子中稳定存在。因此T.H.Cho工作组分别采用碳酸盐共沉淀法和草酸盐共沉淀法制备出正极材料LiNi1/3C01/3Mn1/302。
水热合成法:水热合成技术是指在高温高压的过饱和水溶液中进行化学合成的方法,属于湿化学法合成的一种。利用水热法合成的粉末一般结晶度高,并且通过优化合成条件可以不含有任何结晶水,且粉末的大小、均匀性、形状、成份可以得到严格的控制。水热合成省略了锻烧步骤和研磨的步骤,因此粉末的纯度高,晶体缺陷的密度降低。但是对于锂离子电池来说水热法并不是很好,当用水热法以CoOOH为前驱体合成LiCoO2时,研究表明在160℃的高压釜中反应48h,可以从混合物得到单相的Li CoO2,但其循环性能并不好,需要在高温下热处理,提高其结晶度后,LiCoO2的循环性能得以改善 其他方法:将镍、钴、锰、硝酸锂在氨基乙酸中于400℃点燃,燃烧产物碾碎后在空气中800℃加热4h,冷却后得到正极材料;将蒸馏水溶解的硝酸锂、镍钴锰盐通过喷雾干燥法制备得到正极材料;以镍钴锰盐为原料,柠檬酸为络合剂,配成溶液送入超声喷雾热分解装置,得到[Ni1/3Co1/3Mn1/3]O2前驱体,再将前驱体与锂盐混合高温烧结得到正极材料;
化学共沉淀法制备LiNi1/3Co1/3Mn1/3O2(方法与结论)
1、北京大学化工学院采用化学沉淀法制备出了LiXNi1/3Co1/3Mn1/3O2。即用去离子水将摩尔比为1:1:1的镍钴锰三氯化物配成1.5M的溶液,将三元氯化物溶液和碳酸氢铵溶液以固定的流速滴入装有40℃去离子水的烧杯中,高速搅拌后真空抽滤,用去离子水多次洗涤后120℃烘干得到前驱体。将前驱体与碳酸锂按照1.05:1混合并在马沸炉中1000℃煅烧12h,自然冷却后研磨筛分得到三元正极材料。
2、华南农业大学理学院采用共沉淀法合成了正极材料LiNi1/3Co1/3Mn1/3O2。镍、钴、锰三元共沉淀物前驱体的合成方法为控制结晶法。沉淀剂分别为LiOH、NaOH+NH3.H2O、NH4HCO3、Na2CO3和NH4HCO3+Na2CO3。按镍钴锰1:1:1称取硝酸镍、硝酸钴和硝酸锰配成适当浓度的混合溶液,将此混合溶液和适当浓度的沉淀剂通过流量计加入到反应釜中,控制搅拌速度、PH值和温度。所得沉淀用去离子水洗涤干燥后得到镍钴锰三元沉淀物前驱体Ni1/3Co1/3Mn1/3(OH)2或 Ni1/3Co1/3Mn1/3CO3。以n(Li):n(Ni1/3Co1/3Mn1/3)=1.05:1的比例将Li2CO3和前驱体球磨混合,将混合好的原料放入坩埚中并用一定大小的压力将混合物压紧,将坩埚放入程序控温箱式电阻炉内,在空气气氛下于480℃恒温若干小时,再以一定的升温速率升温至950℃,保温一定时间后缓慢降至室温,得到三元正极材料,将烧制好的样品粉碎、研磨并过400目筛备用。
结论:由不同沉淀剂所合成的LiNi1/ 3Co1/ 3Mn1/ 3O2 材料具有均具有α2NaFeO2 型层状结构。以不同沉淀剂合成的产物的形貌有较大差异,而且影响了产物LiNi1/ 3 Co1/ 3Mn1/ 3O2 正极材料的电化学性能。其中采用NH4HCO3 + Na2CO3 为沉淀剂所合成的LiNi1/ 3Co1/ 3Mn1/ 3O2 材料的电化学性能最好,首次放电比容量为190.29 mAh/ g ,20 次循环后放电容量还保持161.29 mAh/ g ,容量保持率为84.8 %。
3、湘潭大学化学院以NiSO4、CoSO4、MnSO4、NH3·H2O、LiOH 为原料,采用共沉淀和高温烧结法制备了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,并研究前体驱的制备中氨水用量对共沉淀的影响。结果表明,n(NH3·H2O):n(Ni2+-Co2+-Mn2+)=2.7:1 制备的前驱体,在900 ℃下煅烧10 h,制备的LiNi1/3Co1/3Mn1/3O2材料的结构与电化学性能较好,其首次放电容量达到187.5mAh·g-1,0.2C倍率50 次循环后容量仍为170.6 mAh·g-1,容量保持率为94.0 %。由不同前驱体制备的LiNi1/3Co1/3Mn1/3O2 正极材料中, 当按n(NH3·H2O):n(Ni2+-Co2+-Mn2+)的值为好。
4、Yoshio采用碳酸盐共沉淀法合成的球形LiNi1/3Co1/3Mn1/3O2,产品半径在5μm左右,在电压范围内2.8~4.5V放电容量达到186.7mAhg-1,不可逆容量损失仅为10.72%,且倍率性能好,以2.5C放电,容量为145 mAhg-1。
5、Sun和罗旭芳等采用氢氧化物共沉淀法,通过调整前驱体制备时的PH值、搅拌速度、络合剂的量,制备得到粒径为10μm、分布均一的类球形前驱体,与LiOH烧结后得到振实密度高达2.39g.cm-1的正极材料,比容量达到177 mAhg-1(2.8~4.5V),同时也具有较好的高温放电性能,在55℃放电比容量高达168 mAhg-1。
6、Ohzuku采用共沉淀法合成的Ni1/3Co1/3Mn1/3(OH)2前驱体与LiOH.H2O反应合成的LiNi1/3Co1/3Mn1/3O2具有较好的高温放电性能以及大电流放电性能,在33℃、55℃、75℃测得材料的放电比容量分别为205 mAhg-
1、210 mAhg-
1、225 mAhg-1;在55℃以20C放电容量达160 mAhg-1。在2.5~4.6V电压范围内,以18.3mA/g放电,其比容量高达200 mAhg-1,放电平台在3.75V左右,首次循环不可逆容量仅为20 mAhg-1。
7、Zhang等用有机溶剂共沉淀法制得粒径为10~40nm的LiNi1/3Co1/3Mn1/3O2,在50C、100C放电倍率下,经过10个循环其比容量为100 mAhg-1,即比功率为15000KW.g-1,满足绿色动力车的能源需求。
8、中科院青海盐湖研究所将一定量的Co(NO3)2²6H2O、Ni(CH3COO)2²4H20和Mn(CH3COO)2²4H20,按化学计量比溶于二次蒸馏水中,同时,向混合溶液中通人氩气;待盐完全溶解后,向混合溶液中滴加适量的草酸溶液,并用适量的NH3²H20调节溶液的pH值为8-9;过滤出的沉淀用蒸馏水洗涤多次至中性后50℃真空干燥,得到淡粉色的粉末。取一定量淡粉色物质与化学计量比的Li2CO3混合,在强力搅拌下分散于C2H5OH/H2O的混合溶剂中;待多元混合物于50℃真空干燥后,在空气中500℃预烧6 h;待预烧产物冷却至室温后压成片状,压片于700~1 000℃空气中焙烧12~24 h后冷却至室温后,充分研磨即得到三元正极材料LiMnl/3 Col/3 Nil/3 02。
结论:在制备三元正极材料LiCol/3 Nil/3 Mn1/3 02的过程中,利用氩气作
2.7:1
制备的前驱体Ni1/3Co1/3Mn1/3(OH)2,合成的正极材料LiNi1/3Co1/3Mn1/3O2的结构与性能较为保护气氛,采用共沉淀法制备得到的前驱体[Mnl/3 Nil/3 C01/3]C204²xH20中Co、Mn和Ni均为+2价,保证了前驱体中各离子的分散均匀性,并得到了分散均匀的三元沉淀;[Mnl/3Nil/3Co1/3]C204²xH20的TG/DSC分析表明,[Mnl/3 Nil/3 C01/3]C204²xH20中的x=2。[Mnl/3Nil/3C01/3]C204²xH20与碳酸锂的混合物在乙醇一水溶液中能得到分散均匀的前驱体;前驱体的TG/DSC以及XRD研究表明,LiCo1/3 Ni1/3 Mn1/302的合成温度大于600℃;且混合物在500℃预烧后于900℃煅烧12—24 h即可合成具有良好结晶三元正极材料。电池循环测试表明,900℃温度下合成的正极材料具有较高的首次充放电容量,首次放电效率达到94.3%;循环伏安扫描分析表明以此法(氩气保护草酸共沉淀,乙醇溶液分散,900℃空气中煅烧)合成的三元正极LiCol/3Ni1/3Mn1/302在4.5 V附近没有不可逆容量所造成的阳极峰,表明900℃温度下合成的正极材料在经过多次循环后仍具有较高的容量。
9、Hu将相等摩尔比的Ni、Co和Mn硝酸盐在室温下进行搅拌,然后加入适量的LiOH²H20,加入NH4OH作为螯合剂。共沉淀物通过过滤、洗涤、干燥后,将共沉淀氢氧化物先在500℃煅烧5 h,然后将LiOH²H20与经过煅烧后的产物CoNiMn04按照化学计量比进行混合球磨。先在450℃固相煅烧6h,然后再在900℃固相煅烧12 h。制备的材料的晶格参数a=0.2882nm,c=1.438 2nm。在3.0-4.5 V电压下,分别在0.1,0.5和1.0 C下充放电,其首次放电容量分别为189.54,168.37和167.59 mAh²g-1,50次循环后的容量保持率分别为92.59%,78.70%和62.51%。
采用氢氧化物共沉淀法制各正极材料前驱体,Mn不仅以Mn(OH)2的形式沉淀,部分还会被氧化为Mn3+和Mn4+,以MnOOH或Mn02的形式沉淀出来,因此,在前驱体制备过程中,可以使用惰性气体进行保护,防止Mn2+的氧化。
10、Cho以Na2C03为沉淀剂,制备了LiNil/3Col/3Mn1/302,在2.8—4.5 V电压下,在20mA²g-1电流密度下,材料的放电比容量为186.7mAh²g-1,循环30次后,材料的容量保持率为89.28%。在2.5 C(450 mA²g-1)条件下,首次放电比容量为144.79 mAh²g-1。通过对比研究,结果表明LiNil/3Col/3Mn1/302正极材料的晶体结构和电化学性能随着合成条件的变化而改变。
采用碳酸盐共沉淀法虽然能够解决Mn(OH)2在空气中易被氧化的问题,但在实际操作中碳酸盐与Ni、Co和Mn离子的沉淀不完全,限制了其在商业化生产中的应用,需要做进一步的研究以后,才能进入工业化的应用。
11、江南大学化工学院将摩尔比为1:1:l的Ni(NO3)2²6H20,Co(N03)2²6H20,Mn(CH3C00)2²4H20溶于去离子水中,配成2mol/L的溶液。将其缓慢滴加到连续搅拌的反应釜中。同时,将Na0H-Na2C03(摩尔比为1:1,NaOH浓度为1mol/L)溶液滴入反应釜中,小心调节搅拌器的转速以及两种溶液的滴加速度,以维持溶液的pH为11左右。当两种溶液滴加完成后,继续快速搅拌10h,并严格控制溶液的pH值。将沉淀过滤、洗涤、干燥,于5∞℃下分解5h。取出后加入过量5%的Li0H²H20,充分研磨均匀,放人马弗炉中分别以850℃、900℃、950℃的温度烧结10h,自然冷却至室温,研磨,再在前一温度的基础上烧结10h,制得最终产物。
结论:以Ni(N03)2²6H20,Co(N03)2²6H20,Mn(CH3COo)2²4H20,LiOH²H20为原料,采用Na0H—Na2C03共沉淀的方法,以850℃、900℃、950℃的温度,在空气中合成了具有完整的α-NaFe02结构的三元层状材料LiNi1/3C0l/3Mnl/302。测试结果表明,在相同的烧结制度下,900℃合成的材料初次放电容量达到169.4nAh/g,初次库仑效率达到83.2%,20次循环仍能保持其初始容量的96.3%,显示出良好的循环性能。有望作为优良的锂离子电池正极材料。
12、Shao-Kang Hu等将相等摩尔比的Ni、Co、Mn金属硝酸盐在室温下进行搅拌,然后加入适量的LiOH²H2O,NH4OH作为螯合剂加入。共沉淀物通过过滤、洗涤、干燥后,将共沉淀氢氧化物先在500℃进行5 h的煅烧,然后将LiOH²H2O与经过煅烧后的产物CoNiMnO4,按照化学计量比进行混合,球磨。LiNi1/3Co1/3Mn1/3O2材料的制备是通过在马弗炉中,450℃,固相煅烧6 h,900℃,固相煅烧12 h完成的。晶胞参数a=2.882Å,c=14.38Å。在3.0~4.5 V充放电电压范围,以0.1 C,0.5 C,1 C倍率充放电,首次放电容量分别为189.54 mAh²g-1,168.37 mAh²g-1,167.59mAh·g-1,50次循环以后的容量保持率分别为92.59%,78.70%,62.51%。
13、对于合成高密度前驱体Ni1/3Co1/3Mn1/3(OH)2的方法,根据相关文献的报道,作为络合剂的氨水是获得高密度前驱体的一个关键因素,选择过渡金属的醋酸盐,醋酸镍(Ni(CH3COO)2²4H2O),醋酸钴(Co(CH3COO)2²4H2O)和醋酸锰(Mn(CH3COO)2²4H2O)作为过渡金属离子原料,氢氧化锂(LiOH²H2O)为沉淀剂,氨水作为络合剂。实验路线为先将三种金属离子的醋酸盐按照相同的摩尔浓度混合均匀,然后加入沉淀剂进行共沉淀反应,再加入氨水作为络合剂,反应的终点通过加入氨水控制pH值来决定。实验在普通的空气气氛下进行,恒温水浴箱温度控制在55℃附近。我们对能够影响到最终共沉淀产物形貌和性能的参数,如:pH值,过渡金属浓度,沉淀剂浓度,络合剂浓度等因素进行了详细的研究。
pH值为10.5时,制备的前躯体颗粒大小适中,分布均匀,所得类球形颗粒形貌最规则,尺寸均一,直径在20μm左右;当pH值为9.5时,颗粒大小不一,其中有大颗粒,也有小颗粒,粒度分布不均匀,这些小颗粒可能是反应后期生成的富镍颗粒;随着pH值的逐渐增大,溶液的过饱和度增大,以成核为主导,晶粒长大变得困难,当pH值为11.5时,颗粒变小,球形度降低,颗粒间的分散性较差,此时晶粒尺寸较小,表面层离子的极化变形和重排使表面晶格畸变,有序性降低,在pH值较高时(pH值=11.5),液相共沉淀溶液为深褐色,溶液中晶粒的成核速度明显大于晶粒的成长速度,在碱性条件下,Mn(OH)2很容易和空气或者是反应溶液中的氧气发生反应生成MnO(OH),在整个共沉淀过程中,不断有这样的富锰小颗粒生成,这些小颗粒的径粒尺度在1.5~4.5μm,没有达到共沉淀的目的。当pH值继续增大时,会使晶核结构趋于无定形化,逐渐有絮状沉淀生成。
对于金属离子浓度的选择,当金属离子浓度为2.0mol²L得到的前躯体整体形貌规整,颗粒尺度接近,颗粒粒径在25μm附近所以认为金属离子浓度为2.0 mol²L-1是一个合适的选择。
当沉淀剂浓度较小,为2.0 mol²L-1时,存在部分大颗粒(颗粒粒径在40μm左右)和小颗粒(颗粒粒径在10μm左右),粒度分布不够均匀,并且振实密度偏低,经测试为1.21 g²cm-3,随着沉淀剂浓度的增加,这种情况逐渐改善,沉淀剂浓度在3.0 mol²L-1附近时,颗粒尺度相对接近,但是仍有细小颗粒的存在,当沉淀剂浓度增加到4.0 mol²L-1,得到的前躯体颗粒形貌规整,颗粒尺度接近,颗粒粒径在15μm附近,振实密度为1.56 g²cm-3。最后,当沉淀剂浓度在5.0 mol²L-1,颗粒明显变小,球形度降低,颗粒间的分散性较差。所以通过上述分析,认为沉淀剂浓度在4.0 mol²L-1附近的时候,制备的前躯体从颗粒尺度,整体形貌均符合要求。
由于Ni,Co,Mn三种金属阳离子与氨水的络合能力不同,强弱顺序为Ni2+>Co2+>Mn2+,所以当络合剂浓度过高时(4.5~6.0 mol²L-1),容易出现很多细小的颗粒,径粒在2~4.5μm,这些就是富镍小晶粒。造成不均匀沉淀。当络合剂浓度为3 mol²L-1时,三种阳离子的沉淀速度比较一致,在氨水的络合作用下,晶粒的生长速度大于成核速度,使晶粒有序生长,沉淀均匀,颗粒大小尺度接近。而过低的络合剂浓度同样不利于共沉淀产物的生成,当络合剂浓度较小的时候,络合反应时间增加,并且需要较大的反应容积,所以通过以上分析,选择相对较小的络合剂浓度(3 mol²L-1)来制备共沉淀前驱物。
当陈化时间较少时(4~6 h),生成物的颗粒尺寸大小不一,伴随有少量的细碎颗粒和结块现象,出现这种情况是由于,在较少的陈化时间条件下,虽然已经完成了晶粒成核的过程,但是对于陈化时间较短,对于晶粒的生长没有达到预想的效果。随着陈化时间的加长,当陈化时间达到8 h的时候,颗粒分散均匀,颗粒大小尺度接近,并且振实密度较高,为1.54 g²cm-3。当陈化时间进一步增加时,反应生成的共沉淀产物在溶液中的停留时间过长,颗粒间团聚现象严重,连结成无规则形态。所以本实验通过陈化试验结果分析,将最终的液相共沉淀产物陈化时间确定为8 h。
加料速度决定了两液相瞬间接触位置的离子浓度,使得局部饱和度不同,从而对晶体成核和生长速率产生影响,得到不同颗粒尺度和形貌的前躯体。当加料速度较快时,溶液过饱和度高,成核占主导地位,使得晶粒成长困难,此时若继续保持较快的加入速率,将导致生成大量的小晶体,严重的还可能生成无定形沉淀,这将严重影响到最终合成的锂离子电池正极材料的性能;当加料速度较慢时,晶粒的生长占主导地位,使得反应生成物在溶液中的停留时间增长,晶粒间团聚现象加重,容易导致形成无规则状态。本实验的加料速度控制在0.8~1 L/h。
在搅拌器的不断搅动下,反应物之间相互碰撞,接触并发生反应,使得生成的晶核逐渐长大,搅拌的速率直接决定着络和以及沉淀反应进行的效果,最终影响到制备出的前躯体的形貌和性能。在液相共沉淀反应体系中,搅拌的主要目的是使饱和溶液和加入料溶液均匀地混合,进而完成结晶反应。本实验在液相共沉淀反应过程中,搅拌速率控制在300 r/m左右。
采用三段式固相反应的方法,三个温度点分别为480℃,620℃和840℃(及以上),使LiOH²H2O可以更好的熔融和分解,并且使Li2O充分渗透到前驱体中去,反应物之间充分接触,制备出的正极材料结晶度较高,晶体结构更加规整。
最终固相煅烧温度为840℃时,晶体结构完整,颗粒形貌规整,电化学性能优良,首次充放电容量分别为165.80 mAh²g-1和154.50 mAh²g-1,经过20次充放电循环后的容量保持率为91.91%。
在随着固相反应时间逐渐增长的过程中(8 h~14h),I003/I104的比值先增大,然后有所减小(固相温度为14 h),(102)/(006)和(108)/(110)两对峰分裂逐渐明显,衍射峰也逐渐变得尖锐,当固相反应时间为8 h时,所制备的LiNil/3Co1/3Mnl/3O2正极材料由于高温固相反应时间较短,材料未能形成良好的层状结构,材料中阳离子的无序度较高,出现阳离子混排的情况比较明显,同时晶体结晶度也较差。随着固相反应时间的增加,层状特性逐渐明显,晶体中阳离子扩散的更为均匀。当煅烧时间达到12 h时,I003/I104值显著增大,(102)/(006)和(108)/(110)两对峰分裂明显,衍射峰尖锐,表明此时所得正极材料晶体中阳离子分散更为均匀,晶体层内紧密收缩,层状特性趋于完美。
随着固相反应时间的增加,颗粒的团聚显现明显减弱,在煅烧时间为12 h时,颗粒尺寸一致,形貌规整,清晰。在固相反应时间相对较少的8 h和10 h中,颗粒尺寸变化明显,并且伴随着团聚现象,在固相反应时间为14 h时,颗粒尺寸有所增大。固相合成时间较短时,合成的样品颗粒球形度较差,不利于形成类球型形貌。
研究了在固定煅烧温度(840℃),不同煅烧时间制备LiNi1/3Co1/3Mn1/3O2正极材料。在840℃,分别恒温保持8 h,10 h,12 h和14 h,制备4种不同样品。分别对4种样品进行形貌,晶体结构以及充放电性能测试,试验结果表明合成LiNi1/3Co1/3Mn1/3O2材料时,高温煅烧时间为12 h是最合适的,此条件下制得的样品形貌规则,首次放电容量为154.50 mAh²g-1,容量保持率高,经过20次充放电循环后保持率为91.91%。
为了弥补Li元素在锻烧时的损失和优化材料的电化学性能,研究了不同Li/(Ni+Co+Mn)摩尔配比对LiNi1/3Co1/3Mn1/3O2性能的影响,实验结果表明,随着Li/(Ni+Co+Mn)摩尔配比的增加,晶体结构逐渐完整,首次放电容量增大,当Li/(Ni+Co+Mn)摩尔配比为1.12/1时,合成LiNi1/3Co1/3Mn1/3O2正极材料具有颗粒形貌规则,尺寸大小一致,I003/I104的值为1.988,说明阳离子混排程度低,电化学性能表现优异,经过20次充放电循环后放电容量为142.00 mAh²g-1。
在2.8~4.6 V电压范围内,扫描速度为0.1 mV²S-1的循环伏安曲线。LiNi1/3Co1/3Mn1/3O2电极材料都出现了两对明显的反应峰,分别对应电极材料在充电和放电过程中的氧化还原过程,氧化峰和还原峰基本对称,并且没有其它的峰出现,说明该材料的可逆性较好。Mn在这里为非电化学活性物质,不参与电化学反应,在锂脱嵌的过程起着支撑和稳定电极材料结构的作用。在CV曲线中,3.9/3.7 V左右出现一对氧化还原峰对应着充放电过程中的Ni2+/Ni4+的氧化还原反应。
锂离子电池电极材料的交流阻抗Nyquist图谱主要由三部分组成:一是在高频区的第一个半圆弧,是由于电解液和电极表面的极化反应形成的SEI膜阻抗,二是位于中频区的第二个半圆弧,此半圆弧为电化学阻抗,三是位于低频区的一条斜率近似为45°的斜线,斜线反应的是Li+离子扩散引起的Warburg阻抗。伴随着锂离子电池充放电循环次数的增加,SEI膜阻抗变化不大,但是电化学阻抗明显增大,这是锂离子电池电极在循环过程中容量衰减的主要原因。
14、前驱体的制备:将NiSO4、CoSO4、MnSO4以摩尔比Ni:Co:Mn=1:l:l配成一定浓度的混合溶液,与相同摩尔浓度的Na2CO3和氨水的混合溶液按照一定的流量加入到温度恒定、搅拌剧烈的共沉淀反应釜中,反应一定时间得到 Nil/3Col/3Mnl/3CO3沉淀。本研究所采用的是连续进料连续出料的方式,通过控制产物的反应时间来控制产物的粒度。用抽滤机对产品进行液固分离,得到的产物再用去离子水洗涤三次以洗净产物中的SO42-,并用BaCl2检验。洗净后的Ni1/3Col/3Mnl/3CO3在80℃下干燥。通过控制反应条件可得到流动性好、粒径分布集中、振实密度高的前驱体供后续的合成工艺使用。
球形正极材料LiNil/3Co1/3Mn1/3O2的制备:合成工艺一:将球形Nil/3Col/3Mn1/3CO3氧化分解,所得氧化物按Li与氧化物中总金属为一定的摩尔比配入锂源,在一定温度下锻烧,随炉冷却得到球形LiNi1/3Co1/3Mn1/302。在该工艺过程中分别研究不同的氧化温度对氧化物形貌的影响,合成温度对 LiNi1/3Col/3Mn1/3O2的结构、物理性能、电化学性能的影响,以确定最佳的氧化温度和合成的温度;合成工艺二:直接将球形Ni1/2Col/3Mn1/3C03按与合成工艺(一)相同的配比配入碳酸锂,先在低温下恒温一段时间,然后在工艺一得出的最佳的合成温度下高温处理,随炉冷却得到球形LiNi1/3Co1/3Mn1/302。
比较通过两种不同的合成工艺得到的球形LiNil/3Co1/3Mn1/302的物理和电化学性能,得出最佳的合成工艺。
将NiS04²7H2O、CoSO4²7H2O、MnSO4²2H20按摩尔比为l:l:l配成总浓度为 1.0mol.L-1,的溶液,与 1.0mol.L-1的Na2CO3按反应计量比并流加入到搅拌的反应釜中,同时加入一定量的氨水,维持反应体系中NH3为2.4g²L-1,反应釜中以2.4g²L-1的稀氨水作底液。反应釜搅拌电机的转速为500r²min-1,在55℃下反应一定时间得到球形Nil/3Col/3Mnl/3CO3。
Nil/3Co1/3Mn1/3CO3的预处理:根据预处理温度对氧化物的金属总量及对氧化物的密度的影响,恒温时间为5小时,预处理温度应在500℃以上才能保证前驱体的分解完全,不影响配料的均匀性,但预处理温度过高影响到球形LiNi1/3C1/3Mn1/3O2的化学反应活性,同时合成温度太高会导致不同球形颗粒之间的粘结,从而破坏材料的球形度,所以氧化过程在低温下进行较为合适。处理得到的球形颗粒呈多孔状,在合成球形LiNi1/3Co1/3Mn1/302时利于熔融碳酸铿在颗粒内的部的迁移,使反应更加充分。此外在合成LiNi1/3Co1/3Mn1/302时,必须经过高温处理,而在后续合成工艺中同样可以增加材料的振实密度,所以氧化过程中最合适的处理温度为500℃。
评定三元材料好坏的方法因素(各种检测方法总结)
1、性能测试
循环性能测试:
测试循环一定次数后容量保持率的大小;容量大小;容
量衰减程度;
倍率性能测试:
以一定倍率放电,看平均电压及容量保持率。平均电压
越高越好。
高低温性能测试:在低温、常温、高温下电压降的多少,容量保持率多少。
电压降越小越好,荷电保持能力测试:满电态,常温搁置(天),之后进行放电容量测试,放
到一定电压后看容量保持率。
快速充放电能力测试:以不同倍率充电,看不同倍率充电容量与最小倍率
充电容量的比值;看恒流容量与充电容量的比值,都是越大越好。
安全性能测试:过冲:满电态电池以一定电流过冲到一定电压,继续恒压
充电电池不燃不爆。看电池初始温度和最高温度,计算温升多少。
短路测试:电池负极端放气阀打开,看有烟冒出还是起火,正极端放气阀的变化,最高温度是多少,有无造成起火爆炸。
针刺:
首次充放电曲线:首次充电比容量;首次放电比容量;首次充放电效率;
循环-伏安测试:一般采用三电极体系,金属锂片作为参比电极,通过循
环伏安曲线,可以得到在设定的电压范围内,电极极化电流随电极电位的变化而发生的化学反应;通过不同的氧化还原峰的位置和强度,可以分析该电极所进行的反应类型和电化学机理;根据在固定电位的重复扫描可以判断测试材料的可逆性;4.5 V附近没有出现由于不可逆容量造成的阳极峰。除了充放电过程中对称的氧化还原峰有无其他峰出现。氧化还原峰对称说明充放电过程中结构稳定。
交流阻抗EIS测试:交流阻抗(EIS)测试是通过对特定状态下,对被测体
系施加一个小振幅的正弦波电位(或者电流)扰动信号,通过研究相应的响应信号与扰动信号之间的关系以及充放电循环过程中的阻抗特性变化,进行的一种电极过程动力学测试方法。锂离子电池电极材料的交流阻抗Nyquist图谱主要由三部分组成:一是在高频区的第一个半圆弧,是由于电解液和电极表面的极化反应形成的SEI膜阻抗,二是位于中频区的第二个半圆弧,此半圆弧为电化学阻抗,三是位于低频区的一条斜率近似为45°的斜线,斜线反应的是Li+离子扩散引起的Warburg阻抗。
2、XRD分析:
由峰的强度与峰的位置确定为六方晶系,R3m空间群,层
状α—NaFeO2结构;衍射峰尖锐说明结晶程度高;看有
无杂质峰;(006)/(102)及(108)/(110)峰明显分开说明层状结构明显;I(003)/I(104)比值越大,大于1.2,阳离子有序程度越高;R值(I(006)+I(102)/I(101))越小,晶体结构越有序;
3、SEM分析:
产物形貌是否粘结,是否为球形,是否团聚,颗粒大小是
否均匀,是否均匀分散,颗粒大小适中,表面是否粗糙,排列是否紧密,4、成分分析:
采用ICP-AES元素分析方法测定合成样品中各金属元素的含量是否与理论值一致。
5、热重差热分析:即TG-DTA分析。在升温过程中测试样品晶型结构的转变、材料自身熔融、吸附等物理变化;脱去结晶水、材料受热分解、在空气气氛中氧化还原等化学变化;以此确定合理的高温固相反应的温度和升温控制程序;差示扫描量热分析(DSC)是在程序控制温度下,测量物质和参比物之间一种技术。DSC的主要特点是试样和参比物分别具有独立的加热器和传感器,整个仪器由两个控制系统进行监控,其中一个控制温度,使试样在同样的温度下升温或降温,另一个用于补偿试样和参比物的温度始终保持相同,这样就可以从补偿的功率直接求出单位时间内的烩变,即热流率dH/ dt,单位为mJ.s-l,DSC记录的是热流率随温度或时间的曲线,称为DSC曲线。
6、粒径分析:将样品在0.2bar的压力中分散后,采用德国新帕泰克公司的激光粒度测定仪对材料的粒度进行表征。其原理是依据不同大小的颗粒对入射激光产生不同的强度的散射光,再将不同强度的散射光经一定的光学模型的数学程序进行处理,以测定材料的颗粒大小与分布。测试结果一般用中径粒径D50表示平均粒径。H表示峰高,反应颗粒分布集中情况,常用H和(D90一D10)表示产物的集中度。
7、振实密度的测定:用振实密度测试仪测试材料的振实密度。将物料过150目筛后取100g粉末置于200ml量筒中,量筒放到振实密度测试仪上进行测试。振幅为2cm,频率为150次.min-1,震动3000次后,测量物料体积,重量与体积之比即为振实密度。
影响三元材料品质的原因
1、电池拥有良好循环性能主要源于LiNi1/3Co1/3Mn1/3O2中Mn的价态为+4价,Ni为+2价,Co为+3价,在充放电过程中,Mn-O键长变化很小,保持不变的MO6八面体可以在电化学过程中起到支撑结构的作用,从而保证了在循环过程中不致由于结构大幅劣化导致电池性能的不断衰降。
2、采用薄电极,缩短Li+ 由电极内部扩散至电极表面以及电子由电极内部扩散至集流体的距离,大幅减小了Li+ 在电极中的传导电阻,使得电池内阻大幅降低,降低了电池倍率放电时的电压降,同时保证了倍率放电时可以放出更多的容量,使得LiNi1/3Co1/3Mn1/3O2 三元材料优异的倍率放电性能得以进一步体现。
3、在低温(-30 ℃)放电时,电压均下降较多,这主要是由于在低温情况下Li+ 运动及传导能力严重减弱,造成电池内阻大幅上升,从而导致电池放电压降较大,而高温状态下,Li+ 热运动能力及离子扩散都得以增强,使得可以参与反应的Li+ 数量有所增加,同时也在一定程度上降低了电池内阻,使电池放电压降减小,从而使电池表现出高于常温状态的放电能力。
4、电池荷电保持能力通常由多方面因素影响,其中电极表面的缺陷、电极边缘毛刺、隔膜厚度、电解液组成以及电池制备环境及过程控制等因素均可能造成电池荷电保持能力的下降;而对于电极材料自身而言,通常锂离子电池正极材料多选用过渡金属氧化物,在满电态状态下,金属元素位于较高价态,具有较强的氧化能力,极有可能与电解液、电极表面膜发生反应,这也是电池自放电较大的重要原因之一。
5、快速充放电时,随着充电倍率增加,电极极化增大,因此恒流段容量逐渐减小,而充电容量自2 C 起至5 C,呈现出缓慢增加的趋势,则主要是由于电池大倍率充电,使得电池温度增加,从而促进了充电时电极反应的进行。
6、大粒径的材料在高温和高氧化态下具有更好的稳定性能。
7、由于电池的比能量高,且电解液大多为有机易燃物等,当电池热量产生速度大于散热速度时,就有可能出现安全性问题。
8、锂离子电池在滥用的条件下有可能产生使铝集流体熔化的高温(>700℃),从而导致电池出现冒烟、着火、爆炸、乃至人员受伤等情况。
9、锂离子电池由于采用有机电解质体系,有机溶剂是碳氢化合物,在4.6V左右易发生氧化,并且溶剂易燃,若出现泄漏等情况,会引起电池着火,甚至燃烧、爆炸;
10、锂离子电池过充电反应会使正极材料结构发生变化而使材料具有很强的氧化作用,使电解液中溶剂发生强烈氧化,并且这种作用是不可逆的,反应引发的热量如果积累会存在引发热失控的危险。
11、美国Argonne国家实验室的Jun Liu研究了富锂的三元系材料作为功率型动力电池的性能,认为这种电池容量的衰减是由于碳负极表面SEI膜的不稳定引起,因此他们分别使用碳酸乙烯(VEC,vinylethylene carbonate),双草酸硼酸锂(LiBOB)和二氟草酸硼酸锂(LiODFB,Lithium oxalyl difluoro borate)作为添加剂,改善了电池SEI膜的稳定性,有效延长了电池寿命。
12、Mn(OH)2 在碱性条件下很容易被氧化为+ 3 价,甚至被氧化为Mn3O4。
13、由于M(OH)2 ,MCO3(M = Ni、Co、Mn)的溶度积常数(Ksp)较小,且沉淀反应速度快,按通常方法只能得到很细的颗粒,其沉淀易呈现胶体状,不利于杂质离子的洗去,从而对以后烧成材料的性能有所影响。为了降低晶核的形成速率,在沉淀时常常要加入一定浓度的氨水, 使金属离子与NH3 形成配合物[ Ni1/ 3 Co1/ 3 Mn1/ 3(NH3)n ](OH)2 或[Ni1/ 3Co1/ 3Mn1/ 3(NH3)n ]CO3 ,有利于减小瞬时沉淀物浓度Q ,促进晶粒的增长。但NH+4 浓度过大时,比如用NH4HCO3 又存在沉淀反应和配位反应的竞争。以致于配位能力较强的Ni2 +、Co2 + 沉淀不完全,难以得到所设计的计量比的前驱体,从而影响其电化学性能。所以同时也要调节一定的pH 值来控制沉淀溶解度。
14、合成温度为900℃的材料具有最好的循环性能,温度越高,越有利于层状结构的形成,并且会减少Ni2+与Li+的混排,减少Ni2+在3a位的存在,这样就使得在脱锂过程中由于Ni被氧化为Ni3+或Ni4+而导致的结构塌陷减弱,材料的容量损失下降,循环性能得以提高。温度过高也会导致锂的挥发和氧的缺失,形成新的物相,造成层状结构的不完善。
15、PH值:由于在空气气氛下,锰离子对pH值的变化比较敏感,容易发生氧化反应,生成三价或四价的化合物,导致制备出的产物纯度降低。
pH值为10.5时,制备的前躯体颗粒大小适中,分布均匀,所得类球形颗粒形貌最规则,尺寸均一,直径在20μm左右;
随着pH值的逐渐增大,溶液的过饱和度增大,以成核为主导,晶粒长大变得困难,当pH值为11.5时,颗粒变小,球形度降低,颗粒间的分散性较差,此时晶粒尺寸较小,表面层离子的极化变形和重排使表面晶格畸变,有序性降低,在碱性条件下,Mn(OH)2很容易和空气或者是反应溶液中的氧气发生反应生成MnO(OH),在整个共沉淀过程中,不断有这样的富锰小颗粒生成,这些小颗粒的径粒尺度在1.5~4.5μm,没有达到共沉淀的目的。当pH值继续增大时,会使晶核结构趋于无定形化,逐渐有絮状沉淀生成。
当pH值为9.5时,颗粒大小不一,其中有大颗粒,也有小颗粒,粒度分布不均匀,这些小颗粒可能是反应后期生成的富镍颗粒;
16、金属离子浓度:对于金属离子浓度的选择,当金属离子浓度为2.0mol²L-1得到的前躯体整体形貌规整,颗粒尺度接近,颗粒粒径在25μm附近所以认为金属离子浓度为2.0 mol²L-1是一个合适的选择。
17、沉淀剂浓度:在4.0 mol²L-1附近的时候,制备的前躯体从颗粒尺度,整体形貌均符合要求。
18、络合剂浓度:由于Ni,Co,Mn三种金属阳离子与氨水的络合能力不同,强弱顺序为Ni2+>Co2+>Mn2+,所以当络合剂浓度过高时(4.5~6.0 mol²L-1),容易出现很多细小的颗粒,径粒在2~4.5μm,这些就是富镍小晶粒。造成不均匀沉淀。当络合剂浓度为3 mol²L-1时,三种阳离子的沉淀速度比较一致,在氨水的络合作用下,晶粒的生长速度大于成核速度,使晶粒有序生长,沉淀均匀,颗粒大小尺度接近。而过低的络合剂浓度同样不利于共沉淀产物的生成,当络合剂浓度较小的时候,络合反应时间增加,并且需要较大的反应容积,所以通过以上分析,选择相对较小的络合剂浓度(3 mol²L-1)来制备共沉淀前驱物。
19、陈化时间:当陈化时间较少时(4~6 h),生成物的颗粒尺寸大小不一,伴随有少量的细碎颗粒和结块现象,出现这种情况是由于,在较少的陈化时间条件下,虽然已经完成了晶粒成核的过程,但是对于陈化时间较短,对于晶粒的生长没有达到预想的效果。随着陈化时间的加长,当陈化时间达到8 h的时候,颗粒分散均匀,颗粒大小尺度接近,并且振实密度较高,为1.54 g²cm-3。当陈化时间进一步增加时,反应生成的共沉淀产物在溶液中的停留时间过长,颗粒间团聚现象严重,连结成无规则形态。所以本实验通过陈化试验结果分析,将最终的液相共沉淀产物陈化时间确定为8 h。
20、加料速度:加料速度决定了两液相瞬间接触位置的离子浓度,使得局部饱和度不同,从而对晶体成核和生长速率产生影响,得到不同颗粒尺度和形貌的前躯体。当加料速度较快时,溶液过饱和度高,成核占主导地位,使得晶粒成长困难,此时若继续保持较快的加入速率,将导致生成大量的小晶体,严重的还可能生成无定形沉淀,这将严重影响到最终合成的锂离子电池正极材料的性能;当加料速度较慢时,晶粒的生长占主导地位,使得反应生成物在溶液中的停留时间增长,晶粒间团聚现象加重,容易导致形成无规则状态。本实验的加料速度控制在0.8~1 L/h。
21、搅拌速率:在搅拌器的不断搅动下,反应物之间相互碰撞,接触并发生反应,使得生成的晶核逐渐长大,搅拌的速率直接决定着络和以及沉淀反应进行的效果,最终影响到制备出的前躯体的形貌和性能。在液相共沉淀反应体系中,搅拌的主要目的是使饱和溶液和加入料溶液均匀地混合,进而完成结晶反应。本实验在液相共沉淀反应过程中,搅拌速率控制在300 r/m左右。
22、高温煅烧步骤:由TG-DTA曲线确定,T1:混合物水分蒸发、结晶水消失、前驱体分解、锂盐熔融分解总过程的最高温度;T2:锂盐充分渗透到前驱体中,反应物之间充分接触,期间由于锂盐挥发重量会稍有下降,到重量不变的温度点;T3:产物晶格重组需要较大的活化能,以及提高结晶度,所以最终的煅烧温度应该高于T2。
23、固相反应温度T3:合成温度太低离子的扩散受阻,晶格的重组难以完成。但是当合成温度太高、合成时间太长又会导致晶体的分解和晶格结构的畸变,同时加剧锂的挥发,很容易生成缺锂化合物,并且容易发生金属离子混排现象。从XRD、SEM及电化学性能确定最终固相煅烧温度为840℃。
24、固相反应时间:当固相反应时间为8 h时,所制备的LiNil/3Co1/3Mnl/3O2正极材料由于高温固相反应时间较短,材料未能形成良好的层状结构,材料中阳离子的无序度较高,出现阳离子混排的情况比较明显,同时晶体结晶度也较差。随着固相反应时间的增加,层状特性逐渐明显,晶体中阳离子扩散的更为均匀。当煅烧时间达到12 h时,I003/I104值显著增大,(102)/(006)和(108)/(110)两对峰分裂明显,衍射峰尖锐,表明此时所得正极材料晶体中阳离子分散更为均匀,晶体层内紧密收缩,层状特性趋于完美。
25、固相反应前不同Li/(Ni+Co+Mn)摩尔配比变化对LiNil/3Co1/3Mnl/3O2 的影响:
在通过高温固相反应制备LiNi1/3Co1/3Mn1/3O2正极材料时,由于最终的热处理温度较高,并且合成时间较长,此时金属锂的挥发严重,容易造成制备出的材料锂缺陷,使材料性能恶化,所以采用在高温固相反应时,适量的提高Li/(Ni+Co+Mn)摩尔配比来弥补锂的挥发。
材料的振实密度随着Li/(Ni+Co+Mn)摩尔配比的增加而增大。随着Li/(Ni+Co+Mn)摩尔配比的增加,晶体结构逐渐完整,首次放电容量增大,当Li/(Ni+Co+Mn)摩尔配比为1.12/1时,合成LiNi1/3Co1/3Mn1/3O2正极材料具有颗粒形貌规则,尺寸大小一致,I003/I104的值为1.988,说明阳离子混排程度低,电化学性能表现优异,经过20次充放电循环后放电容量为142.00 mAh²g-1。
26、适度提高Ni,Mn含量,有助于晶体形成良好的层状有序结构。但Co含量的增加,使得层状材料的整体稳定性得到提高,但是放电容量相对较低。
27、沉淀剂的选择:Ni、Co、Mn三种元素的核外电子排布式及晶体结构,物理化学性质都很相似,其草酸盐、碳酸盐和氢氧化物的结构相同,溶度积接近。因此可用液相共沉淀法制备晶型发育完全,粒径分布均匀、振实密度高、流动性良好同时Ni、Co、Mn能在原子级水平混合的锂离子电池正极材料 LiNil/3Col/3Mn1/3O2的前驱体。从Ni、Co、Mn的草酸盐、碳酸盐和氢氧化物25℃的溶度积可知合成Nil/3Co1/3Mn1/3C204、Ni1/3Co1/3Mnl/3CO3和Ni1/3Col/3Mnl/3(OH)2都是可行的,但是在合成Ni1/3Col/3Mnl/3(OH)2时反应条件较苛刻,因为钻锰的氢氧化物在碱性条件下在空气中就氧化成氧化钻和二氧化锰,氧化钻和二氧化锰由于溶度积非常小,易于形成金红石型结构的颗粒,阻碍了Ni1/3Col/3Mnl/3(OH)2颗粒的生长。因此Nil/3Co1/3Mn1/3(OH)2在制备过程中必须防止其氧化,才能制备出粒度大小合适的高振实密度高球形度产物,在制备过程中添加强还原剂之外,还必须用惰性气体保护,所以制备球形Nil/3Co1/3Mn1/3(OH)2对反应设备要求较高。用草酸铵做为沉淀剂的探索性实验表明,反应10分钟就可以得到10微米以上的颗粒,沉淀时间较短,不易控制产物的形貌和粒径,同时草酸铵的溶解度小,在工业化生产中,不利于提高产能。此外草酸铵的成本相对较高,母液中的草酸根离子对环境污染严重。而制备Nil/3Col/3Mnl/3CO3前驱体,所用的沉淀剂为工业级的碳酸钠,来源较广且价格便宜,Ni1/3Co1 /3Mnl/3CO3在碱性条件下不氧化,容易生长成球形产物,产物的粒径容易控制,通过优化条件合成的球形Ni1/3Col/3Mnl/3CO3的振实密度能达到 2.0gcm-3,和镍钻锰的氢氧化物前驱体相近,所以从制备条件的可操作性、制备的设备、原料的成本以及产业化等方面考虑,用碳酸钠合成球形Nil/3Co1/3Mnl/3CO3相对最合适。
28、共沉淀法制备镍钻锰复合碳酸盐的热力学分析:化学共沉淀过程是一个成核与晶体生长竞争的过程,粒度大小就是受到两过程的相互消长的影响。Ni、Co、Mn的溶度积很小易于成核,沉淀过程易生成细小颗粒,造成固液分离和洗涤困难,很难得到物理性能和后续加工性能很好的产品,因此在沉淀过程中,加入氨水作辅助络合剂,控制体系中Ni2+、Co2+和Mn2+的浓度,以控制结晶过程中成核速度和晶体生长速度,前驱体制备的化学反应式 l/3Ni2++l/3Co2++l/3Mn2++Co32-=Ni1/3Co1/3Mn1/3Co3↓。
29、以Na2CO3作沉淀剂,得到成分均匀的碳酸盐共沉淀物的最佳pH值为8.0左右。在此pH值的条件下,各种离子在溶液中的损失量最小。
30、影响化学共沉淀过程的动力学因素:溶液中结晶生长过程的动力学方程式:
I一成核速率;R-经t时刻转化为固相的溶质;v一晶体生长速率;t一时间;p一结晶物质的密度;成核速率增大时,不利于晶体生长。共沉淀过程中晶体的成核速度经验公式:
I一成核速率;k一比例常数。Σs-1一液固表面张力;p一结晶物质的密度;M一结晶物质的摩尔质量;T一绝对温度;S/s。一过饱和度;表明增大过饱和度S/So利于提高成核速度I,由于成核速度的增加,晶体生长速度小于成核速度,产物的平均粒径就会变小。温度升高,原子迁移加剧利于成核,但对于那些溶解度随温度的升高而增大的物质,温度升高不利于成核,即利于晶体生长。液相沉淀反应为扩散控制,在共沉淀过程中要得到颗粒分布均匀,形貌好的晶体除控制好沉淀过程中成核和生长速度外还应加强体系的传质传热,另外还有反应时间。微小颗粒的溶解度比大颗粒大,即正常饱和溶液条件下不能结晶,只有在溶液过饱和时才能形成晶核。
31、加料方式:常用的加料方式有三种:(1)将液中Ni2+、Co2+和Mn2+的混合溶液加入到沉淀剂溶液中;(2)将沉淀剂加入到Ni2+、Co2+和Mn2+的混合溶液中;(3)沉淀剂溶液与Ni2+、Co2+和Mn2+混合溶液并流加入;前两种加料方式比并流加料容易操作。加料方式可以控制沉淀过饱和度,单向加料往往是一种物质大量过量,反应初期主要是成核,到中后期,随着浓度的降低,过饱和度下降,晶体趋向于生长,晶体的成核和生长是分开的两个阶段,所以产物的粒度和结晶形貌不易控制。并流加料却能够保证反应体系的稳定,成核和晶体生长为一个同时进行的过程,容易得到粒径和形貌稳定的产物。
32、时间:晶体的转化率与时间的3次方成正比,反应时间越长,晶体的转化率越高,粒径小的晶体的溶解度大于粒径大的晶体,因而时间越长晶体粒度越大。反应初期,成核较少且颗粒小,可供晶体生长的界面较小,晶体生长缓慢;当反应进行到一定程度时,一方面原有晶核已获不同程度长大,另一方面许多新的晶核生成,界面面积增大则晶体长得越快。反应结束后有一段时间的陈化不仅可以让溶液中残余离子得以充分反应,而且可让刚生成的小晶核溶解,在大颗粒表面重新结晶析出,可让产物粒径分布更集中。反应时间在10小时以内产物的粒径D50变化很大,而在10小时以上时粒径变化较小。原因是在材料的颗粒长大过程中材料的比表面积是不断减小,其表面吸附力随着颗粒的长大而减小,新生的晶核首先会吸附在具有更大的表面吸附力的小粒径颗粒的表面进行生长,所以颗粒的生长趋势随其粒径增加反而变小。
33、温度:成核速率与温度的exp(T-3)成正比,随着温度的升高,成核速率越小,因为较高的温度,不仅加强了溶液内部的传质传热,而且能够加快晶体表面的离子迁移,加快晶体的生长速度。同时 Ni13Co1/3Mn1/3CO3和的溶解度随温度的升高而增大,所以升高温度利于晶体生长.55±2℃
34、Ni2+、Co2+和M2+混合盐溶液的浓度:其它条件相同的情况下,随着反应物的浓度的增加,产物的平均粒径减小,原因是浓度增加,单位体积中沉淀离子的增多,造成晶体的过饱和度增加,增大过饱和度S/S0利于提高成核速度。因为晶体的生长和成核是一个相互竞争的过程,增加了过饱和度从而增加了成核速度及减缓了晶体的生长,因此可通过控制反应物的浓度对体系中的过饱和度进行调节以控制晶体的生长。2.0mol.L-1
35、PH值:pH值太高,相应的沉淀离子浓度增加,晶体趋向成核,产物的粒径较小,因此可通过控制反应体系的pH值得到粒径大小合适的产物。
36、搅拌强度:流体的传质对反应的速度影响非常大,强烈搅拌能减少加料过程中对体系产生的局部过饱和而引起的大量成核,同时搅拌加强了反应离子在体系中的传质,使其得以充分扩散,搅拌强度越大,单位时间内有更多的反应物达到晶体的表面结晶。同时许多小颗粒在剧烈搅拌下由于溶解度比大颗粒溶解度大而溶解而在大颗粒表面重新结晶析出,因而制备出来的产物粒径分布好,晶体发育完全。当体系中搅拌强度增加一定程度,作用于颗粒上的机械能大于产物的晶粒在大颗粒表面生长的能量时,晶粒则趋向于表面能更大的小颗粒的表面生长,即搅拌即阻碍了产物的大颗粒生长,所以转转为 900rmin-1,产物的中径粒径反而比 800rmin-1下得到的产物的粒径小.500r.min-1合适。
37、络合剂浓度:由于氨与镍钻锰金属离子形成稳定的络合离子,而该络合离子在沉淀剂CO32-在一定浓度下能释放出金属离子,生成沉淀,所以加入络合剂NH3.H2O可以控制产物的形貌和粒径.络合剂的最佳浓度为2.4g²L-1.38、优化前驱体的合成条件:合成前驱体的最佳合成条件:2.0mol.L-1的镍钻的金属盐溶液与 2.0mol.L-1的碳酸钠溶液并流加入到搅拌速度为500r²min-1的反应釜中,同时加入氨水,反应釜中以浓度为2.4g²L-1,氨水作为底液,整个反应过程中保持温度在55士2℃,氨水浓度为2.4g²L-1,反应时间为5小时。
39、预处理温度:根据预处理温度对氧化物的金属总量及对氧化物的密度的影响,恒温时间为5小时,预处理温度应在500℃以上才能保证前驱体的分解完全,不影响配料的均匀性,但预处理温度过高影响到球形LiNi1/3C1/3Mn1/3O2的化学反应活性,同时合成温度太高会导致不同球形颗粒之间的粘结,从而破坏材料的球形度,所以氧化过程在低温下进行较为合适。处理得到的球形颗粒呈多孔状,在合成LiNi1/3C1/3Mn1/3O2时利于熔融碳酸锂在颗粒内的部的迁移,使反应更加充分。此外在合成LiNi1/3C1/3Mn1/3O2时,必须经过高温处理,而在后续合成工艺中同样可以增加材料的振实密度,所以氧化过程中最合适的处理温度为500℃5h。40、锂源的选择:就锂源而言以LiN03为锂源合成的材料具有较好的可逆容量,因为硝酸锂具有较低的熔点,在较低的温度下(264℃)可熔化成液相,增大原料颗粒之间的接触,促进离子扩散加快反应速度。但是LiNO3分解产物中含有大量的有毒气体NOx,对环境污染严重,且LiNO3中结晶水含量不稳定,极易随环境而改变,因此在配料时对原料的配比难以掌握,所以硝酸锂不宜用作锂源。Li0H也具有较低的熔点(450℃),虽然也含有结晶水,但相对而言,LiOH.H2O的结晶水稳定,原料配比容易控制。但氢氧化锂为晶状颗粒,结晶度大且颗粒较粗,混料时不容易均匀混合,影响配料的均匀性,因此氢氧化锂在大规模工业生产中也不宜用作锂源。Li2CO3虽然熔点较高,但它不含结晶水,性能比较稳定,容易精确控制原料的配比得到符合化学组成的正极材料,一般在较高温度下才能得到晶形比较完整、结晶度较好的正极材料,此时温度早已超过了Li2CO3的熔点,此外Li2CO3可以根据要求预粉碎到一定的颗粒直径,易实现材料的均匀混合,同时Li2CO3分解仅产生二氧化碳气体,不会对环境构成污染且价格最低。因此在本实验中选用Li2CO3做为合成LiNi1/3Co1/3Mn1/3O2的锂源。
41、煅烧温度:温度对材料性能的影响很大,温度过高,容易生成缺氧型化合物,材料的晶粒变大,比表面积变小,不利于锂离子在材料中的脱出和嵌入;温度过低,反应不完全,容易生成无定型材料,材料的结晶性能不好,且易含有杂相,对材料的电化学性能影响也较大。
A、预处理后的前驱体与锂盐混合煅烧温度:结晶度高,粒径分布均匀,一次颗粒较大的纯相材料的电化学性能和加工性能都比较好,提高烧结温度可以提高一次颗粒的尺寸,但是会减小材料的比表面积,随着材料的比表面积减小,材料与电解液的接触面积也会相应地减小,也就直接影响材料的充放电性能,所以只有当烧结温度适中,才能使材料的加工性和电化学性能达到最佳状态。温度升高对产物的松比装密度影响不大,而对产物的振实密度影响较大。温度升高,一方面促使产物中的一次颗粒生长得粗大、致密,提高振实密度。另外原料中许多未成球的团聚小颗粒也由于固相反应而重新生长成结构致密的产物。温度条件实验可以确定最佳的合成温度为920℃12h。
B、碳酸盐直接与锂盐混合煅烧温度:用球形Nil/3Co1/3 /3Mn1/3CO3与碳酸锂混合,在500℃下恒温5小时,然后在900度下恒温12小时,得到的球形 LiNil/3Co1/3 /3Mn1/302,在2.7一4.3v电压范围内,0.2C倍率下表现出150mAh.g-1,循环性能较好。用前驱体直接合成的LiNil/3Co1/3 /3Mn1/302相对前驱体经过预处理合成的,材料的综合性能稍差。
三元材料的修饰改性:
原因:锂离子(r=0.76)与镍离子(r=0.69)半径相近,在LiNi1/3Co1/3Mn1/3O2中存在阳离子混排现象,锂层中镍离子浓度越大,锂在层状结构中的脱嵌越难,导致电化学性能变差。
掺杂元素:
Mg---当镁取代部分的Ni或Co时,会导致容量的减少,循环性能变差;取代部分Mn时,材料的比容量、循环性能、在高氧化态下的热稳定性都得到提高。
Al、Ti---参杂量小于1/20的Al,材料的结构没有改变,放电容量保持率得到提高,随参杂量的增加,参数a有轻微的变小,参杂量大于1/16时,容量保持率明显下降。Al取代部分Co会升高放电电压平台,提高材料在4.3V下的热稳定性;Ti同样可提高材料在4.3V下的热稳定性;
Mo6+---部分取代Mn,增加了材料中活性元素Ni的含量,可提高放电比容量和材料的循环性能;
Fe----部分取代Co后,Ni和Fe能被同时氧化,提高容量,可以减少阳离子混排现象;
Cr----在充电过程中与Ni同时被氧化,材料得到较高的首次放电比容量,还能提高材料颗粒的大小、库伦效率、循环性能、允许大电流放电;Cr量为0.015时的正极材料电化学性能最佳;
F---参杂会导致过渡金属的价态变化,引起一个复杂的晶格常数的变化,促进合成材料的颗粒在合成过程中增大,提高结晶度和振实密度,并且能改善正极材料的界面,避免与电解液接触发生分解反应,增强了对电解质中HF的抗腐蚀能力,提高正极材料的循环性能;另外F掺杂还可促进材料烧结,使该材料粒径通过粉碎分级控制成为可能,有利于该材料电极的制备。Al和F、Mg和F的参杂可提高材料的结构的稳定性、可逆比容量、循环性能,并提高材料的振实密度,从而提高电池的能量密度;
Si----材料在充放电过程中没有阻抗的增加,具有更好的大电流充放电能力;
Zn----一方面利用Zn在充放电过程中不变价的特点来稳定材料结构,另一方面,由于Zn的价态较低,掺杂可提高Mn的价态,使材料中Mn3+尽量向结构稳定的Mn4+转变。掺杂改性:
对于采用金属元素掺杂,能对LiNi1/3Co1/3Mn1/3O2的晶格结构起到一定的支撑和稳定作用,并且有效抑制晶胞结构在充放电过程中的相变和塌陷,以达到提高材料的安全、循环性能和放电平台的目的。
1、球形Li(Ni1/3Co1/3Mn1/3)1-xZnxO2的合成
将CoSO4.7H2O、NiSO4.7H2O、MnSO4.H2O按金属摩尔比1:1;1混合溶液,同时按Zn:(Ni+Co+Mn)=0.03:097配入ZnSO4.7H2O,配成总浓度为2.0molL-1的溶液,与2.0 molL-1的Na2CO3按反应计量比加入到转速为500rmin-1的反应釜中,同时加入一定量的氨水,在55℃下反应一定时间得球形(Ni1/3Co1/3Mn1/3)1-xZnxCO3。所的产物用去离子水洗涤3次,在80℃下烘干,得到碳酸盐前驱体。将球形(Ni1/3Co1/3Mn1/3)1-xZnxCO3在一定温度下氧化,按Li与氧化物过渡金属一定的配比配入碳酸锂,在920℃反应,随炉冷却得到Li(Ni1/3Co1/3Mn1/3)1-xZnxO2。
Zn掺杂能明显改善LiNi1/3Co1/3Mn1/3O2的循环性能,但掺杂过多却恶化材料的循环性能,当掺入量为0.05时出现四氧化三钴相,恶化导电性,所以交换电流密度变小,材料的充放电容量下降。此外,掺杂Zn元素使LiNi1/3Co1/3Mn1/3O2得电阻增加。掺杂Zn在改善循环性能的同时降低了材料的容量,原因一方面是Zn2+没有变价,部分取代了有容量的镍钴锰元素,因此材料充放电过程中比容量会降低,另一方面,参入Zn2+,提高了材料中LiNi1/3Co1/3Mn1/3O2的化合价,使Mn3+氧化成Mn4+更加完全,相应的也降低了材料的容量。
2、Zr、La的掺杂:
将三元混合材料前驱体Ni1/3Co1/3Mn1/3(OH)2和LiOH.H2O均匀混合,再分别单独加入二氧化锆(ZrO2)、氧化镧(La2O3),并且按照不同的摩尔比例混合,将混合物首先进行预烧结,然后在840℃进行12h的高温煅烧,最终合成Li[Ni1/3Co1/3Mn1/3]xM1-xO2,(M=Zr、La,x=0.99)材料。掺杂后所制备的材料容量有所下降,但对于提高材料的循环性能有一定的效果。
包覆改性:
ZrO2、TiO2和Al2O3氧化物的包覆能阻止充放电过程中阻抗变大,提高材料的循环性能,其中 ZrO2的包覆引发材料表面阻抗增大幅度最小,Al2O3的包覆不会降低初始放电容量。
1、采用非均匀成核法对LiNi1/3Co1/3Mn1/3O2进行表面包覆氧化铝
采用非均匀成核法在LiNi1/3Co1/3Mn1/3O2表面包覆氧化铝的前驱体Al(OH)3,关键在于控制好溶液中铝离子浓度,使该浓度处于Al(OH)3发生均匀成核所需要的铝离子浓度的临界值和发生非均匀成核所需要的铝离子浓度的临界值之间。使得LiNi1/3Co1/3Mn1/3O2颗粒成为成核基体,促使Al(OH)3晶核在被包覆颗粒表面生长。在LiNi1/3Co1/3Mn1/3O2表面包覆好Al2O3后,过滤烘干后,在一定温度下进行热处理,得到表面包覆纳米氧化铝的球形LiNi1/3Co1/3Mn1/3O2。
操作:为了使Al(OH)3与LiNi1/3Co1/3Mn1/3O2有更好的相容性,生成的Al(OH)3颗粒能在球形LiNi1/3Co1/3Mn1/3O2均匀成核,先对LiNi1/3Co1/3Mn1/3O2进行预处理。再根据包覆物Al2O3的含量相对于LiNi1/3Co1/3Mn1/3O2的质量分数为0.5%分别称取所需的Al(NO3)3.9H2O分析纯和LiNi1/3Co1/3Mn1/3O2,用去离子水分别配成0.02molL-1的Al(NO3)3溶液和50gL-1的LiNi1/3Co1/3Mn1/3O
2悬浊液,Al(NO3)
3溶液与LiNi1/3Co1/3Mn1/3O2悬浊液在剧烈的搅拌下混合均匀。用0.5molL-1的氨水把PH值调节到9.0,反应过程控制氨水的流量,反应时间4h,陈化2h后过滤,用去离子水洗涤3次,100℃下恒温5h,得到包覆Al(OH)3的LiNi1/3Co1/3Mn1/3O2。再将其500℃下恒温10h,即得到表面包覆Al2O3的球形LiNi1/3Co1/3Mn1/3O2。
2、Li(Ni-Co-Mn)O2的包覆改性:
碳包覆:主要是采用有机物为碳源,高温裂解生成碳而均匀的包覆于材料表面。由于有机物高的裂解温度(600℃~900℃),高温下产生的碳容易将三元材料中的镍钴锂还原,因此很少应用于三元材料的改性。
含铝氧化物包覆改性:无定型结构的Al2O3 在Li[Li0.05Ni0.4Co0.15Mn0.4]O2 颗粒表面形成了均一的薄层(大约5nm),结果表明,当采用LiPF6 电解液时,Al2O3 包覆层越薄,材料的容量越高,薄的Al2O3 包覆层对Li+在电极和电解液界面间的嵌入反应并不产生干扰。此外由于Al2O3 纳米包覆层的存在,材料的倍率性能和高温性能均优于未包覆材料,这是由于Al2O3 包覆层的存在抑制了循环过程中电解液所产生的HF 对三元材料的腐蚀,因此减少了活性材料的分解,从而降低了电池的阻抗,改善了材料的电化学性能。
Li2ZrO3 的包覆改性:Li2ZrO3在非水电解质中比较稳定并且具有化学惰性,非常适合作为包覆层来保护电极材料,并且Li2ZrO3为含锂化合物,用它做包覆材料不会阻碍锂离子在充放电过程中的扩散。Ni等人采用浸渍法合成了Li2ZrO3包覆LiNi0.4Co0.2Mn0.4O2三元材料,结果表明,Li2ZrO3包覆改善了LiNi0.4Co0.2Mn0.4O2三元材料颗粒的表面性能,减少了电极材料与电解液的副反应,而且有效的降低了Li+与Ni2+的混合占位现象。因此其充放电性能与循环性能,尤其是在高温下50°C,得到了很大的改善。
虽然采用不同的物质对 Li[Ni-Co-Mn]O2 三元材料进行包覆改性后,电池的充放电容量提高程度不一,但是其循环性能却都得到了大大的改善,尤其是在高温高倍率下,多次循环后电池的容量衰减明显减少。这是由于在使用LiPF6 电解液时,包覆层的存在抑制了循环过程中HF 对电极材料的腐蚀,减少了电解液与电极材料的副反应,阻止了Ni2+,Co3+,Mn4+金属离子的溶解,从而降低了电池的阻抗,大大改善了材料的电化学性能。
3、Lil/3C01/3Mnl/302表面包覆修饰改性:
利用喷雾干燥法,制备出了LiNi1/3Co1/3Mnl/302正极材料,将其与Zr(OC3H7)4共同放入丙醇中,在80--90℃进行搅拌,直到获得透明胶体。将最终的前驱体在450℃焙烧5 h,最终制备出表面包覆Zr02的LiNil/3C01/3Mnl/302正极材料。Zr没有掺杂到LiNiI/3C01/3Mn1/302体相中,而是完全分布在LiNi1/3Co1/3Mnl/302材料的表面上。通过恒流充放电的测试,在充电截止电压为4.5V时,表面包覆Zr02的正极材料在比容量和循环稳定性上比未包覆的正极材料有所提高,并且还发现包覆Zr02可以抑制在充放电循环过程中的极化现象,表面包覆的Zr02阻止了活性物质和电解液的直接接触,从而减少了电解液在循环过程中的分解。
4、包覆TiO:
1 实验部分
1.1 主要原料
三元乙丙橡胶(EPDM,EPT4045),工业级,日本三井石化公司;可膨胀石墨(EG,DL80),工业级,青岛市天和石墨有限公司;马来酸酐接枝三元乙丙橡胶(EPDM-g-MAH)CMG9802,工业级,上海日之升新技术发展有限公司;橡胶配合剂(硬脂酸、ZnO、RD、DBPMH)等皆为市售产品。
1.2 试样制备
1.2.1 EG的制备
适量可膨胀石墨置于耐高温坩埚中,用高功率微波炉(QW-5KW型,广州科威微波能有限公司),于1000℃高温进行微波膨化处理,充分膨化后得到蠕虫状EG。
1.2.2 EG的改性处理
适量EG、硬脂酸加入乙醇中制成一定浓度的悬浮分散液,用超声波发生器(DG-2000型,杭州市德嘉电子有限公司)超声处理后,抽滤并用乙醇反复洗涤,滤饼真空干燥后适当研磨,得到改性处理的EG。
1.2.3 EPDM/EG复合材料的制备
采用双辊炼胶机(SK-160B型,上海第一橡胶机械厂),辊筒适当加热后用窄辊距将生胶多次薄通以形成连续的包辊胶,之后放宽辊距加料混炼;依次加入EG、EPDM-g-MAH、ZnO、硬脂酸、RD等进行混炼得到混炼胶Ⅰ,混炼时辊温会升高至约100℃;混炼胶Ⅰ自然冷却后加入DPBMH等混炼均匀后薄通下片,得到混炼胶Ⅱ;混炼胶Ⅱ在平板硫化机(QLB-D型,上海第一橡胶机械厂)上经165℃×20MPa×40min硫化后得到复合材料板材。
1.3 结构表征与性能测试
用JSM-5900型扫描电镜观察EG及其复合材料微观结构(制样:EG试样为将其均匀覆盖于载玻片,用乙醇稀释后喷金;复合材料试样为经液氮冷冻脆断的板材,断面喷金);用DX-1000型X射线衍射仪分析EG改性处理前后以及复合材料中EG晶体结构的差异;用Nicolet MX-1E型红外光谱仪分析高分子链与EG表面官能团相互作用引起的高分子链变化(制样:将EG及其复合材料处理所得粉末与kBr干粉混合研磨后压制成薄片);用自制透气仪以N2为气源参照GB/T7755-1987测试EPDM/EG复合材料透气系数[6];用XY-1型橡胶硬度计测试其硬度;用Instron1196万能试验机测试其拉伸强度与扯断伸长率。
2 结果与讨论
2.1 EG及其复合材料的微观形貌
可膨胀石墨、EG改性处理前后以及复合材料的SEM照片如图1所示。以可膨胀石墨为原料制备EG的原理是:高温状况下石墨层间化合物分解,产生沿石墨层间C轴方向的足以克服其层间范德华力的推力,使其沿C轴方向高倍膨胀形成EG。图1(a)显示可膨胀石墨具有片状形貌特征。图1(b)~图1(d)表明:疏松多孔的蠕虫状EG由许多纳米石墨薄片连接而成,彼此之间存在大小不一的微细孔隙,形成网络状结构,孔隙尺寸约几十nm~几十μm。有研究[7,8]表明:EG具有四级孔结构,一级孔为表面V型开放孔;二级孔为亚片层间柳叶型孔,横向相互贯通;三级孔为亚片层内多边形孔,取向无规,呈互相连通的网络状;四级孔为nm尺度的微孔且数量极少;故图1(b)~图1(d)中所示微孔主要以二级孔和三级孔为主。EG内部的大量孔隙为聚合物分子提供了插层空间。
为避免EG在复合过程中的破碎和团聚,达到良好分散状态,本研究在对EG超声处理的同时,采用硬脂酸对其进行表面修饰,得到改性处理的EG。由图1(e)、图1(f)可知:通过改性处理,借助超声剥离作用,EG进一步剥离产生大量纳米级厚度(约几十nm)的石墨薄片,相互剥离又相连不断的石墨薄片组成网络形态,聚合物分子的插层空间得以进一步拓展。图1(g)显示了复合材料断面在某一试场下的图象,具有一定代表性;在橡胶基体中存在多组近似呈平行排列的石墨片层,厚度与间距均为纳米级;石墨片层存在轻微的弯曲和变形现象。SEM结果初步表明,聚合物分子插层进入石墨片层间隙,但由于SEM本身的局限性以及试样断面的不平整性,造成图像不够清晰;下一步拟将试样经冷冻超薄切片后,利用TEM分析其微观结构,以期得到更为理想的结果。
2.2 EG及其复合材料的XRD分析
EG及其复合材料的XRD谱图如图2所示。石墨晶体结构与蒙脱土等层状硅酸盐不同,其六方晶体(001)晶面完全解理,XRD谱图上不出现(001)衍射峰,故无法将(001)衍射峰位置和强度的变化作为插层复合的判据;但(002)晶面衍射峰强度的变化可作为石墨片层剥离的证据之一,(002)衍射峰强度大小反映了石墨晶体单元叠层的多少,强度减小证明单元叠层减少,表明石墨片层发生剥离[9]。由图2可知:微波膨化与超声处理促进了石墨片层剥离,表现为石墨晶体(002)衍射峰强度减小;EPDM/EG复合后石墨晶体(002)衍射峰强度进一步减小,证明聚合物分子插入使得石墨片层进一步剥离;图2(a)~(c)中石墨(002)衍射峰位置略有变化,对应层间距依次为3.3548Å、3.3583Å、3.3688Å;说明石墨膨化后层间化合物分解,气化推力使石墨晶片间距增加,而晶格中低分子物挥发使石墨晶片内的碳层间距有所回复,故石墨(002)晶面层间距基本不变;层间距的细微变化或可归结为超声剥离与熔融插层的影响。另外,结合EG微观结构分析还可知:聚合物分子对石墨的插层应是插入石墨晶片之间的间隙(即石墨片层间隙),而非插入石墨晶片内的晶面间隙(即碳层间隙),故石墨晶片内仍保持石墨原有的晶体结构。
2.3 EG及其复合材料的FTIR分析
EG及其复合材料的FTIR谱图如图3所示。图3(a)中特征峰包括:3440cm-1处为O-H伸缩振动峰,2930cm-1、2858cm-1处为C-H不对称和对称伸缩振动峰,1590cm-1处为C骨架振动吸收峰;图3(b)中特征峰包括:3446cm-1处为O-H伸缩振动峰,2915cm-1、2847cm-1处为C-H不对称和对称伸缩振动峰,1699cm-1处为C=O伸缩振动峰,1575cm-1处为C骨架振动吸收峰;图3(c)中特征峰包括:3304cm-1处为O-H伸缩振动峰,2922cm-1、2850cm-1处为C-H不对称和对称伸缩振动峰,1637cm-1处为C=O伸缩振动峰,1536cm-1处为C骨架振动吸收峰,718cm-1处为-CH2-面内摇摆振动峰。结果显示:高含量的碳对红外光线的吸收大大衰减了其它基团的信息;图3(b)中2915cm-1、2847cm-1处C-H不对称和对称伸缩振动吸收峰的加强以及1699cm-1处C=O伸缩振动吸收峰的出现反映了EG表面吸附了硬脂酸分子;图3(c)中1637cm-1处C=O伸缩振动峰以及1536cm-1处C骨架振动吸收峰位置和强度的变化,反映了EG与聚合物之间发生了较强的相互作用。
2.4 EPDM/EG复合材料的气体阻隔性能与力学性能研究
EG用量对EPDM/EG复合材料透气系数、硬度、拉伸性能的影响分别如图4~图6所示。由图4可知,EPDM中加入5%~10%的EG即可显著降低透气系数至EPDM基材的35%;达到15%填充比后下降趋势明显放缓。
由图5可知,复合材料硬度随EG用量增加近似呈线性增长。由图6可知,EPDM中加入5%~10%的EG即可显著提高其拉伸强度和扯断伸长率;EG用量达15%后,随用量增大聚集体数目增多,晶层界面剪切应力提高,导致拉伸强度上升趋缓;EG用量在5%~10%之间,扯断伸长率达最大值;若继续增加用量则呈现下降趋势。橡胶拉伸强度与扯断伸长率与基材类别、交联密度以及填料的粒径、表面活性、用量、分散状态等因素有关。橡胶的二维结构层补强理论[10]可以解释上述扯断伸长率的变化趋势;而复合材料中两相之间较强的相互作用、石墨片层的良好分散及其高径厚比,保证了复合材料拉伸强度的提高。综合分析上述结果还可知,单纯EG用量的增加,对复合材料气体阻隔性能和力学性能的提高程度是有限的;性能得以进一步提高的关键在于:提高聚合物分子与石墨晶片的插层与剥离效果以及实现纳米级尺度上石墨网络形态的固定与保持。
3 结 论
以EPDM为基材,以EG为补强、密封功能填料,采用熔融插层复合技术,通过石墨微波膨化、超声剥离、表面修饰、橡胶配方设计以及复合工艺优化,制备密封用EPDM/EG复合材料,着重提高其气体阻隔性能。研究结果表明:微波膨化得到的EG呈疏松多孔的蠕虫状,其微孔以二级孔和三级孔为主;超声改性处理使EG进一步剥离产生大量纳米石墨薄片,其相互剥离又相连不断进而形成网络形态;EPDM/EG复合后石墨晶体(002)衍射峰强度锐减,而层间距基本不变,表明聚合物分子插入使得石墨片层进一步剥离,其插层位置是石墨片层间隙而非碳层间隙;插层复合后橡胶密封材料气体阻隔性能显著提高,4%的EG用量即可显著降低EPDM的透气系数至40%;复合材料中两相之间较强的相互作用、石墨片层的良好分散及其极高的径厚比,是其相关性能得以提高的原因所在。
参考文献
[1]徐国财.张立德著.纳米复合材料[M].北京:化学工业出版社,2002.3.
[2]Pan Y X,Yu Z Z,Ou Y C.Preparation and properties of nylon6/graphite nanocomposite[J].Polym Acta sinica,2001,1:42-47.
[3]王小萍,朱立新,贾德民.橡胶纳米复合材料研究进展[J].合成橡胶工业,2004,7:62-65.
[4]Chen X M,Shen J W,Huang W Y.Novel electrically conduc-tive polypropylene/graphite nanocomposites[J].J Mater SciLett,2002,21:213-214.
[5]Chen G H,Wu D J,Weng W G.Preparation of polystyrene/graphite conductive nanocomposites via intercalation polymeri-zation[J].PolymInt,2001,50:980-985.
[6]GB/T7755-1987.[S]硫化橡胶透气性的测定-恒容法.
[7]周伟,董建,兆恒.膨胀石墨结构的研究[J].炭素技术,2000(4):26-30.
[8]吴翠玲,翁文桂,陈国华.膨胀石墨的多层次结构[J].华侨大学学报,2003(4):147-150.
[9]李侃社,王琪.磨盘碾磨制备PP/石墨导电复合材料的研究[J].中国塑料,2002(4):25-29.
构建安全校园
-----------------三元村小学安全教育活动总结
为了响应我校市教育局安全教育日活动精神,在开展“我安全
我健康 我快乐”活动中,坚持预防为主、防治结合、加强教育、群防群治的原则,通过安全教育、标语宣传增强学生的安全意识和自我防护能力;通过齐抓共管,营造全校教职员工关心和支持学校安全工作的局面,从而切实保障师生安全和财产不受损失,维护学校正常的教育教学秩序。
一、建立组织 明确责任
为进一步做好安全教育工作,切实加强对安全教育工作的领导,学校把安全工作列入重要议事日程,学校安全工作领导小组通力合作,分工明确。学校首先成立了以校长苏亚峰为组长,武亚峰为副组长,各班班主任成员的领导小组。明确了校长负总责,副组长主抓,班主任和任课教师为直接为责任人。学校与班主任签订安全责任书、师德承诺书,明确各自的职责。学校与学生家长签订了安全责任书,明确了家长应做的工作和应负的责任。将安全教育工作作为对教职员工考核的重要内容,实行一票否决制度。做到职责明确,责任到人。
二、制度保障 措施到位
不断完善学校安全保卫工作规章制度。建立健全定期检查和日常防范相结合的安全管理制度,以及学生管理、保安值班、巡逻等规章制度。严禁学生参加商业性庆典活动,严禁组织学生从事不符合国家有关规定的危险性工作,严禁教师个人利用假期(日)私自带学生外出。对涉及学校安全保卫的各项工作,都要做到有章可循,违章必究,不留盲点,不出漏洞。学校并从人力、财力、制度上进行落实,采取“人防、物防、技防”并重的方针,确保安全工作的实施。学校成立了校园治安室,加强了校门口的治安力量,严禁校外车辆未经同意私自进校。加强学生出入管理,实行学生到校零报告制度,对迟到学生实行登记。学生临时确需外出,首先由班主任与其家长取得联系,否则学生不得外出。为了确保学生的交通安全,我校加大了护送学生放学路队的力度,学校领导保安和值周老师每天上下午放学都要组织路队,站在大路两边严把过往的车辆,保证学生安安全全、平平安安回家。现在,我校学生的放学路队统一整队,秩序井然,教师、小组长护送路队认真负责,学校领导坚守岗位,尽职尽责,可以说放学路队已成为我校的一大亮点,赢得了家长的广泛好评。
三、加强教育 注重实效
我校规定每学期第一个月为安全教育月,每月第一周为安全教育周,每周一为安全教育日。充分利用安全教育课、班会、队会、升旗仪式、板报等多种途径,通过讲解、演示和训练,对学生开展安全预防教育,使学生接受比较系统的防溺水、防交通事故、防触电、防食物中毒、防病、防体育运动伤害、防火、防盗、防震、防骗、防煤气中毒等安全知识和技能教育。我校根据实际情况还制定了安全事故应急预案,根据应急预案要求,我校与消防队联系进行了突发火灾事故演练,全校学生在校领导和老师的引导下,用毛巾捂住口、鼻,弯着腰、低着头从不同的楼道有秩序地逃离“火灾”现场,并迅速跑到空旷的操场集中。全校学生在2分20秒的时间内全部安全逃离现场。通过火灾逃生演练,提高全体学生的消防意识、自我保护意识以及在火灾中的逃生技巧。
四、加强检查 及时整改
俗话说,防重于治。我校经常开展常规检查,做好学校安全工作,关键是要防范于未然。每学期开学以后,学校把安全教育工作作为重点检查内容之一。我校实行定期检查和日常防范相结合的安全管理制度,每月对学校每个角落进行地毯式的大检查,发现隐患,及时整改,特别是教室的门窗、学校围墙、电路的布置、学校重点部位(电脑室,实验室,运动场,教室)等定期检查,对较旧的电气设备、电线、灭火设施等进行更换,杜绝隐患。
五、齐抓共管 群防群治
通过整治,有力地提升了师生的安全防护意识,为师生人身安全提供了有力保障。近段时间来,在创建“我安全
我健康
我快乐”活动中,我校能取得一些成绩,一方面是在于校内各职能部门配合和广大师生积极参与,另一方面与上级领导和社会各界的关心、支持是分不开的。今后,我们将进一步改进工作方法,不断探索和拓宽创建“平安校园”的新路子,使我校安全工作更上一层楼。
三元村小学
2015年3月30日
安全教育活动总结
三元村小学 2015.3.30
“我安全我健康我快乐”
安全教育活动材料
【简拼】:sybf
【解释】:术数家计算甲子的方法。清 黄宗羲 《七怪》:“形法,理之显者也;方位,理之晦者也。三变而为三元白法。方位,一定不易者也;三元白法,随时改换者也。其法即历书所载一白、二黑、三碧、四緑、五黄、六白、七赤、八白、九紫。六十年为一元,三元凡一百
【顺接】:法不传六 法不容情 法不徇情 法不治众 法不责众 法不阿贵 法出一门 法出多门
【顺接】:别无它法 不公不法 不及之法 不变之法 不拘文法 不足为法 春秋笔法 大可师法
【逆接】:不壹而三 倒四颠三 鼎足而三 隔二偏三 观隅反三 接二连三 径一周三 举一反三
——记优秀中共三元区林业局党委先进事迹
走进三元,就像进入了绿色的海洋,处处荡漾着生机与活力。
近年来,三元区林业局党委以“绿化山川、美化家园、为民兴林、造福子孙”为己任,秉承“情系绿荫共建高原现代林业”的品牌理念,紧紧围绕天然林保护、退耕还林、重点公益林等林业重点工程建设,使全区生态环境建设呈现出健康、稳定、和谐发展的良好态势。
通过全体林业人的不懈努力,三元区林业工作结出了累累硕果,先后多次获国家、部级先进集体和先进个人奖项。2010年,全区林业总产值达到18.9100亿元,同比增长16.2%。三元区林业局先后荣获全省先进基层党组织、全省林业工作先进集体,并在全省率先实现连续23年无森林火灾目标,走在了全国前列。今年来,1人荣获全市林业工作先进个人,1人荣获省五一劳动奖章。积极推动林业发展和新农村建设,确保实现三元林业工作走在全省、全市前列。
强化自身建设,力创“新型”机关
三元区林业局党委以“学赶先进、争当先锋,建设生态文明,共筑秀美山川”为载体,全力抓好林业各项工作,谋求林业更好更快发展,尤阿生书记是这样说的,更是这样做的。
通过“承诺、践诺、评诺”制度建立,以创建省级文明单位为动力,开展创建“文明窗口”、“文明所站”活动,率先推行“准二十四小时”服务;首先推行“一站式”服务;主动推行“第一时间”服务,提高了林业行业管理和服务水平,受到了林农业主的赞誉,优质服务已成为三元林业的一张“名片”。
2010年12月底,三元区林权登记发证面积83.6601万亩,发证率85.08%,共办理林权变更登记19个宗地,发放林权证17本,面积1314亩。共接木材运输证、植物检疫证、林地征占用报批等共4812件,办结件4812件,办结率达100%。
目前全区共有各类林业合作经济组织27个,拥有会员10604人,辐射带动农户13234户。有序开展林权抵押贷款,解决广大林农贷款难的问题,截止目前,全区已办理林权证抵押贷款18笔,抵押林木面积6084亩,涉及贷款金额1308万元。
全区实施“一卡通”兑付现已完成31个村,占有改革任务村的100%,按照要求全面完成生态公益林管护机制改革任务。今年已发放护林员管护费、村级监管费71万元,其中护林员管护费54万元,村级监管费17万元,全区生态公益林个人所有者补偿费共127万元。
区林业局投资50多万元在莘口镇高山村增设毛竹示范基地350亩,进一步扩大示范成果;继续坚持示范基地适当补助相当于50元的肥料,新建竹山蓄水池补助1000元/个等鼓励措施。
据统计,2010年提前70天完成全年竹业总产值2.7亿元,竹业经济总量明显增加;新建“两高一优”丰产竹林5336亩,占任务的106.7%,竹林质量明显提高;新建竹山道路建设65.5公里、竹山水池502立方米,分别占任务的109.2%和100.4%。
2010年,区森林公安分局全力组织开展了“春季行动”、“2010严打整治行动”和“攻势3号”等5次专项行动,高频度打击破坏森林资源违法行为,共受理各类林业案件183起,收缴非法木材1232立方米,挽回经济损失134.31万元。
去年向社会发出调查问卷60份,就林业系统在依法公正执法、廉政勤政、工作作风、办事效率等几方面的情况征求社会和群众意见, 收回调查问卷59份,收回意见和建议1条,群众满意率达100%。
坚持每季度定期召开矛盾纠纷调处工作例会和每月15日局领导接访制度,对排查出来的信访突出问题和重大矛盾纠纷。一年来,严格按照新出台的依法处理信访事项“路线图”的要求,共受理信访件10件,办结率100%。
发挥队伍作用,构筑精品工程
在林业工作中,县林业局党委将发挥党员先锋模范作用与推动林业工程建设有机结合起来,在全区林业建设中始终充当排头兵和主力军。
为了壮大林业产业结构调整和发展方式转变,区林业局党委非常重视引导先锋木业、盛隆木业等23家500万元以上规模企业争创品牌,争取新增省级名牌企业1家,省级著名商标1件;充分发挥林博会等招商平台,实现林业工业规模以上产值13亿元。
草珊瑚系列产品开发项目作为2011年乃至“十二五”期间的招商引资重点,积极出台政策对来三元投资草珊瑚产业的企业予以更多的税收、用地等优惠;在
开展专项招商的同时,利用好辖区内汇天药业、三真药业等技术资源优势,继续探讨与厦门中药厂的后续合作,进行草珊瑚茶、饮料系列保健产品开发及研究,从根本上解决林业增效、林农增收的问题。
目前,三元区林业局正与市质量技术监督局合作组织申报材料,争取明年完成国家级“三元草珊瑚”地理标志保护产品申报工作。继续抓好草珊瑚种植技术、经济效益等宣传推广的模式,动员和鼓励各乡镇和广大林农积极参与,扩大种植规模,力争2~3年内协助厦门中药厂申请国家GAP认证并成为全国首个人工草珊瑚GAP基地。
2011年计划新增草珊瑚种植面积3000亩,全区辐射推广种植草珊瑚面积已达到19200亩;建设苗木培育基地300亩,年培育苗木1000多万株,可供人工种植草珊瑚面积10000亩;并启动了国家级“三元草珊瑚”地理标志保护产品申报工作。
去年,投资1300多万元的曹源隧道口至格氏栲景区道路按二级公路标准拓宽改造工程全面动工,预计2011年底可基本竣工。森林旅游环境正在优化,投入70多万元,对格氏栲景区部分游步道进行木栈化改造,对现有两座旅游公厕按三星级标准进行提升改造,并全面更新、规范景区内部道路、景点标识系统;海峡两岸林业博览园建设项目现已完成一期280亩征地任务。
2010年5月,三元区森林防火指挥部办公室曾永东同志被省总工会授予“省五一劳动奖章”;白叶坑林业国有采育场半专业扑火队被市总工会授予“工人先锋号”荣誉称号。突出文明成果共享,完成2个采育场生活用水改造的办实事项目;慰问生活困难职工67人;支助特困大学生2名;组织干部职工为玉树地震灾区捐款12330元,为三明特大洪灾捐款11640元。
这些成绩的取得,与三元区林业局党委的凝聚力,开拓创新和勇于奉献的精神是分不开的,更重要的一点就是林业局党委始终以全心全意为人民服务为宗旨,认真贯彻执行党的路线、方针、政策,从而推动了林业工作的快速发展。
加强党员管理,夯实党建基础
三元区林业局党委及所属12个党支部253名党员参加学习宣传贯彻胡锦涛总书记在闽考察时的重要讲话精神,围绕十七大和十七届四中、五中全会精神、进一步深化党建168机制,深入开展“创先争优”活动,结合实际建立了机关党政人才和专业技术人才信息库,并完成了党建示范点、贫困党员、优秀党支部和
支部书记等信息表册建档工作。
大力推进学习党组织建设,以争创“党员先锋岗”、“推广168党建工作机制 开展亮岗履职”和“创先争优”等活动为载体,在2010年组织实施的“168”党建工作机制中,实行全员履职,设置了森林资源培育岗、林业管理服务岗、森林资源保护岗等9个岗位,签订“亮岗履职承诺书”79份。
据统计,2010年,新入学参加硕士学历教育7人,原在校参加学历教育15人。今年8月,局党委选派2名选手参加演讲比赛,1人获一等奖,1人获优秀奖。局领导班子及基层单位、股室主要负责人53人已缴纳党风廉政建设保证金 17900 元。共发展新党员35名,举办党员培训班6期,完成培训600多人次。
2010年.区林业局积极响应三元区委提出的“联一帮二带三”主题实践活动,投入人力、物力,协助做好挂点村、社区换届选举工作。结合实际在忠山村指定一名党委委员专门负责,组建工作班子联系忠山村党支部工作,帮助争创“五好党支部”和“区级先进基层党组织”。
区林业局机关党支部主动与忠山村党支部结对帮扶,每3位党员帮扶1户生活困难党员,明确了结对对象、联系党员、帮扶措施和完成时限等,采取慰问、送项目、送资金、送技术等形式,帮助他们尽早脱离贫困。
建立区楼源国有林业采育场和忠山村“场村”共建关系,培育发展毛竹丰产示范片100亩,辐射带动忠山村2000多亩竹山;区吉口国有林业采育场扶持资金1万元,协助推介忠山十八寨古民居旅游宣传;帮助红印山社区改善办公设备和部分基础设施。
在创先争优活动中,林业局党委将活动的开展做为促进林业工作发展的有力抓手,先后开展了庆“七一”爬山和林业生产观摩、苗圃育苗观摩、厂区和庭院绿化观摩等活动,通过活动的开展,积极引导各党支部和广大党员干部立足岗位和林业工作实际,干一流工作,创一流佳绩,在“比、学、赶、超”中争当先锋。
今年7月,还表彰了三元区楼源国有林业采育场党支部等4个先进党支部,三元区吉口国有林业采育场党支部等4个开展“三元要发展 党员应先行”和“争当模范党员 建设温馨支部”双主题实践活动先进单位,黄亮等38名优秀共产党员,张莉等11名优秀党务工作者等在党的建设方面涌现的先进集体和先进个人。
21世纪初,Ohzuku等[1]首次合成了LiNi1/3Co1/3Mn1/3O2材料,Liu等[2]报道了结构式为LiNi1-x-yCoxMnyO2(0<x<0.5,0<y<0.5)的三元正极材料。Li[Ni,Co,Mn]O2具有典型的六方晶系a-NaFeO2层状结构(空间群R-3m)。镍钴锰系列三元材料综合了正极材料如钴酸锂、锰酸锂以及磷酸铁锂的优点,并在一定程度上弥补其不足。成为具有比容量高、循环性能稳定、成本较低、安全性较好的材料,被认为是取代钴酸锂的理想正极材料。
1 三元材料NCA的结构和特性
LiNi0.8Co0.15Al0.05O2有着与LiNi1/3Co1/3Mn1/3O2类似的a-NaFeO2单相层状结构。其中Li+位于层状结构的3a位置,O2-位于6c位置,过渡金属离子和Al3+位于层状结构的3b位置。在三元材料层状结构中,Ni、Co和Al分别以2+、3+和3+价态存在。Ni是材料的主要活性物质之一,在充放电过程中,Ni2+和Ni4+发生相互转换。通过引入Ni可提高材料的容量,但Ni含量也不是越高越好,因为Ni2+半径和Li+半径相差不大,容易发生3b位置的Ni2+和3a位置的Li+混排现象,导致材料的充放电容量降低。Co也是材料的主要活性物质之一,能很好地稳定材料的层状结构。同时Co3+的掺入能够抑制Ni2+进入Li+的3a位置,便于材料深度放电,从而提高了材料的放电容量。LiNi0.8Co0.15Al0.05O2材料的理论比容量为279mAh/g。此外,Co、Al的复合掺杂能促进Ni2+的氧化,减少3a位Ni2+含量,抑制材料晶体结构从H2到H3的不可逆相变,从而提高材料本身的循环稳定性。
受益于三元协同效应,LiNi0.8Co0.15Al0.05O2正极材料综合了LiNiO2和LiCoO2诸多优点,性能比任一材料优越。而且,该材料又具有价格较低和环境友好的优势。
2 三元材料LiNi0.8Co0.15Al0.05O2的制备
正极材料微观结构的改善和宏观性能的提高与制备方法密不可分,不同的制备方法导致所制备的材料在结构、粒子形貌、比表面积和电化学性能等方面有很大的差别。目前用于三元材料制备的方法主要有固相合成法、溶胶-凝胶法、共沉淀法、喷雾干燥法等。
2.1 固相合成法
高温固相法合成的一般过程都是先将锂盐与过渡金属化合物按目标产物的比例称重,然后通过球磨等方式混合均匀,最后将混合物放在高温下煅烧即可形成目标产物。固相法虽然具有操作简单的优点,但材料的高温煅烧时间较长,能耗高。此外,当合成二元或更多元体系混合物时,机械混合往往不能使多种反应物混合均匀,难以得到符合化学计量比的纯净物,容易引入NiO等杂质相,导致晶体结构存在缺陷,电化学性能不好。所以,在NCA的制备中很少有人采用这种方法。
2.2 溶胶-凝胶法
溶胶-凝胶先将较低黏度的金属离子和具有络合作用的有机物进行混合,制成均匀的溶胶,溶胶经缓慢聚合使之形成凝胶,将其进行成型和干燥,最后进行锻烧即可得到微米甚至是纳米级的成品。
Han等[3]在140℃下将Li(CH3COO)·2H2O、(CH3CO2)2Ni·4H2O、(CH3CO2)2Co·4H2O和Al(NO3)3混合在滴加有丙烯酸的蒸馏水中制成溶胶。然后在800℃下煅烧得到LiNi0.8Co0.2-xAlxO2粉体材料。结果表明:不管含Al(x≤0.05)的多少,该粉体都是单相层状化合物。此外,发现随着Al的增加材料的初始放电容量减少,但充放电性能却变好了。胡晨等[4]对LiNiO2的派生物LiNixCo1-xM0.05O2(M=Al、Mn和Ti)的性能进行了研究。文章采用溶胶凝胶法-高温固相法合成了LiNixCo1-xM0.05O2,粉末颗粒细小,粒径约为0.3~0.5μm。在电流密度为1.0mA/cm2充放电压范围为3.0~4.3V进行充放电测试,结果表明,材料LiNi0.7Co0.25M0.05O2的初始容量较高LiNixCo1-xM0.05O2的循环性能比较好。Hwang等[5]将NiSO4·6H2O和CoSO4·7H2O的水溶液以及Al(OH)x的溶胶在连续搅拌釜中混合,pH=8~9时,反应几周得到前躯体Ni0.8Co0.15Al0.05(OH)2,然后将前躯体和LiOH在750℃下煅烧20h即可得到粉体材料。实验测得,该材料的放电容量为175mAh/g,初始放电效率为90%,此外,材料在pH=12时,具有较好的循环性能。
2.3 化学共沉淀法
共沉淀-高温固相法是先通过共沉淀控制结晶的方法合成前驱体,将前驱体和锂源混合均匀高温煅烧即制得目标产物镍钴铝酸锂材料。共沉淀法属于原子水平的混合,操作简单,能够通过控制条件得到不同的形貌与粒径。而且,共沉淀法具有合成温度低、产物组分分布均匀、重现性好等优点。
谢娇娜等[6]采用碳酸盐共沉淀法合成正极材料前驱体Ni0.8Co0.0.2-xAlx(OH)2(x=0.05、0.10和0.15)。然后,将前驱体材料与LiOH·H2O混合进行煅烧,得到a-NaFeO2层状结构的球形正极材料LiNio.8Co0.02-xAlxO2。Liu等[7]将Ni、Co、Al的硫酸盐、NaOH、NH4OH以及Na2S2O8加入到反应釜中,反应得到前躯体Ni0.8Co0.15Al0.05(OH)2。然后,将前躯体和LiOH·H2O研磨混匀,在700℃煅烧即可得到LiNi0.8Co0.15Al0.05O2。结果表明,该材料具有很好的电化学性质:初始比容量达到193.5mAh/g。在2.8~4.3V,0.2C充放电规则下,经50次充放电,材料的容量保持率可以达到95.1%。陈勃涛[8]采用共沉淀法合成Ni0.8Co0.15Al0.05(OH)2前驱体。该材料的振实密度最高可达2.20g/cm3。材料在0.5mA/cm2,3.0~4.3V下进行充放电测试,首轮放电比容量为179.7mAh/g;循环50次,容量保持率为89.5%。研究还表明虽然Al的掺入使材料的首次库仑效率和充放电比容量有所降低,但却提高了材料的循环性能。
2.4 喷雾干燥法
喷雾干燥法是将已经液化的物料,进行雾化、造粒、干燥、分解等工艺处理,经煅烧即可得到电极材料成品,可以通过控制物料的液化过程和喷雾分解工艺过程来控制材料的形貌。
Ju等[9]以Ni、Co和Al的硝酸盐为原料,柠檬酸和乙二醇为螯合剂,N,N-二甲基甲酰胺为干燥控制化学添加剂,900℃下制得Ni-Co-Al-O前躯体。然后,将前躯体和LiOH在800℃下煅烧得到LiNi0.8Co0.15Al0.05O2粉体。测试表明:材料具有球形形貌,平均尺寸为1.1μm。初始放电容量达到200mAh/g。
2.5 其他方法
刘万民等[10]以控制结晶-加压氧化法制备了锂离子电池正极材料LiNi0.8Co0.15Al0.05O2,该材料同时具备良好的倍率性能和高温性能。在0.2C,2.8~4.3V充放电规则下,材料的首次放电比容量在190.0mAh/g以上;循环50次,容量保持率在90.2%左右。周新东等[11]釆用二次沉淀法合成出正极材料镍钴铝氧的前驱体,具体地:先将镍、钴过渡金属溶液与沉淀剂、络合剂混合进行沉淀,合成二元氢氧化物。然后,将二元氧氧化物沉淀经过过滤、洗涤后再次倒入反应釜中;接着,缓慢滴加铝盐溶液和沉淀剂,进行二次沉淀即可得到目标产物的前驱体。实验表明,该法合成的成品材料的球型度高,振实密度高达3.02g/cm3,循环性能比较好。
3 三元材料的改性方法
LiNi0.8Co0.15Al0.05O2正极材料虽然有放电电压高、放电比容量大等优点,但是也存在倍率性能和循环性能较差的缺点。为了改善材料的电化学性质,需对材料进行改性处理。现在对材料改性的方法主要有表面包覆和离子掺杂两种。
3.1 离子掺杂
掺杂作为改善电极材料性能的一个重要手段,在正极材料的改性研究中被广泛采用。掺杂目的是使掺杂离子进入晶格,取代原材料中的部分离子,稳固原材料结构,提高材料结构在充放电过程中的稳定性;适当掺杂还能改善材料的循环性能;对材料的电导率和锂离子迁移速率也可产生有利影响。
Kondo等[12]用Mg2+取代Ni3+合成LiNi0.8-xCo0.15Al0.05MgxO2(x=0,0.05)。结果表明:材料的电化学性能增强。60℃时,LiNi0.75Co0.15Al0.05Mg0.05O2在2C下经过500次充放电后,容量保持仍可达到91%。而且,在充放电过程中阻抗的增加也减少了。Huang等[13]用Mg(NO3)2·6H2O和LiOH·H2O处理Ni0.8Co0.15Al0.05(OH)2,得到Mg2+掺杂的LiNi0.8Co0.15Al0.05O2材料。结果表明:掺杂提高了锂离子迁移活化能,抑制了晶体H2和H3间的相转移。
Kim[14]用共沉淀结合球磨法制得Fe掺杂的LiNi0.85Co0.10Al0.05O2。结果表明:掺杂材料的初始比容量为215mAh/g,比未经掺杂材料的要高。55℃时,未经Fe掺杂和经Fe掺杂材料锂离子扩散系数分别为4.5×10-17和4.0×10-17cm2/s,两值大体相当。但是,当温度提高时,经Fe掺杂的材料锂离子扩散系数更大。
Huang等[15]采用氧化包覆的方法合成了Mn掺杂的LiNi0.85Co0.1Al0.05O2。结果表明经Mn包覆后材料的容量保持性能提高,室温下,2C经200次循环,Mn包覆材料和纯样品的容量保持率分别为62.9%和50.9%,55℃下100次循环,容量保持率分别变为67.5%和49.3%。
3.2 表面包覆
表面包覆主要是用碳以及一些金属氧化物修饰三元材料表面,使材料与电解液机械分开,减少材料与电解液的副反应,抑制金属离子溶解,优化材料的循环性能。同时表面包覆还可以减少材料在反复充放电过程中材料结构的坍塌,对材料的循环性能是有益的。
Lee等[16]将Ni3(PO4)2与LiNi0.8Co0.15Al0.05O2球磨12h,干燥得到Ni3(PO4)2包覆LiNi0.8Co0.15Al0.05O2正极材料。结果表明:当包覆层为10~20nm时,锂离子在层中的嵌入与脱嵌更加稳定。材料在55℃,经100次循环,容量保持率为73%,而未包覆的材料该值仅为53%。主要原因是Ni3(PO4)2包覆层稳定了材料的电导率,减小了电极的极化程度。Liu等[17]用熔融盐的方法将LiCoO2包覆在LiNi0.8Co0.15Al0.05O2表面。结果表明:当LiCoO2的质量分数为3%时,电极材料表现出良好的电化学性质。其初始放电比容量为196.2mAh/g。在0.2C,2.8~4.3V的充放电规则下,经50次循环,材料的容量保持仍可达到98.7%。Ito等[18]用溶胶-凝胶法将Li2O-ZrO2(LZO)包覆在LiNi0.8Co0.15Al0.05O2表面。结果表明:包覆材料的电阻显著减小,约为未包覆材料电阻的四分之一。25℃时,100mAh的标准单电池经过100次循环,电池容量保持在80%。Huang等[19]制得无定形FePO4包覆的LiNi0.8Co0.15Al0.05O2材料。结果表明,包覆后的材料容量保持率比原材料大:2C下经100次循环容量保持率为88.3%,而未经包覆的材料是70.7%。此外,充放电过程中,经FePO4包覆的材料阻抗增加更小。Cho等[20]用TiO2包覆LiNi0.8Co0.15Al0.05O2。实验表明:60℃时,包覆后的材料,结构的稳定性和循环性能显著提高;充电电压超过4.2V时,只有少量NiO出现,意味着该过程中只放出很少的O2。
4 结语
LiNi0.8Co0.15Al0.05O2具有比容量高等很多优点,但也存在高温性能不好、循环性能较差的缺点。这主要是因为,在LiNi0.8Co0.15Al0.05O2材料中,锂离子半径(0.076nm)与镍离子(0.069nm)半径相近,容易发生阳离子混合重排现象,即部分镍离会进入锂离子层。所以,应深入分析电池的使用特点,通过优化镍钴铝元素比例,结合掺杂、包覆改性,开发合适的三元材料。这也是下一步的研究重点。
摘要:镍钴铝酸锂具有优异的电化学性能、较高的比容量、较低的生产成本,成为研究者和锂离子电池制造商关注和研究的对象。但是也存在一些问题:如阳离子混排、振实密度低、倍率性能和循环性能欠佳等,掺杂和表面包覆是改善正极材料电化学性能和热稳定性的重要途径。综述了近年来镍钴铝酸锂的研究进展,介绍了其结构和性能特点、材料的制备方法和电化学性能,重点阐述掺杂、包覆改性方面的研究状况,并展望该材料的应用研究前景。
【三元材料总结】推荐阅读:
三元桥“好习惯伴我成长”养成教育实施方案07-08
廉政文化总结材料06-11
新生入学材料总结06-20
设备管理总结材料06-30
社区工作年终总结材料07-18
工程材料学总结09-27
建筑材料学期学习总结06-01
材料力学期末复习总结07-06
校风校纪总结材料07-09
节水型社会总结材料07-14