人教a版数学必修1教案

2024-08-18 版权声明 我要投稿

人教a版数学必修1教案(精选11篇)

人教a版数学必修1教案 篇1

教学重点:对数的概念,对数式与指数式的相互转化 教学难点:对数概念的理解. 教学过程: 引入课题

(对数的起源)价绍对数产生的历史背景与概念的形成过程,体会引入对数的必要性; 设计意图:激发学生学习对数的兴趣,培养对数学习的科学研究精神. 尝试解决本小节开始提出的问题. 新课教学

1.对数的概念

一般地,如果,那么数叫做以为底的对数(Logarithm),记作:

— 底数,— 真数,— 对数式

说明: 注意底数的限制,且;

注意对数的书写格式.

思考: 为什么对数的定义中要求底数,且;

是否是所有的实数都有对数呢?

设计意图:正确理解对数定义中底数的限制,为以后对数型函数定义域的确定作准备. 两个重要对数:

常用对数(common logarithm):以10为底的对数;

自然对数(natural logarithm):以无理数为底的对数的对数. 对数式与指数式的互化

对数式

指数式 对数底数 ←

→ 幂底数 对数

指数 真数

幂 例1.(教材P73例1)巩固练习:(教材P74练习1、2)

设计意图:熟练对数式与指数式的相互转化,加深理解对数概念. 说明:本例题和练习均让学生独立阅读思考完成,并指出对数式与指数式的互化中应注意哪些问题. 对数的性质(学生活动)

阅读教材P73例2,指出其中求的依据;

独立思考完成教材P74练习3、4,指出其中蕴含的结论 对数的性质

(1)负数和零没有对数;(2)1的对数是零:;(3)底数的对数是1:;(4)对数恒等式:;(5).

归纳小结,强化思想

引入对数的必要性;

指数与对数的关系;

对数的基本性质. 作业布置

教材P86习题2.2(A组)第1、2题,(B组)第1题. 课题:§2.2.1对数的运算性质 教学目的:(1)理解对数的运算性质;

(2)知道用换底公式能将一般对数转化成自然对数或常用对数;(3)通过阅读材料,了解对数的发现历史以及对简化运算的作用.

教学重点:对数的运算性质,用换底公式将一般对数转化成自然对数或常用对数 教学难点:对数的运算性质和换底公式的熟练运用. 教学过程: 引入课题 对数的定义:; 对数恒等式:; 新课教学

1.对数的运算性质

提出问题:

根据对数的定义及对数与指数的关系解答下列问题:

设,求;

设,试利用、表示·.

(学生独立思考完成解答,教师组织学生讨论评析,进行归纳总结概括得出对数的运算性质1,并引导学生仿此推导其余运算性质)

运算性质:

如果,且,,那么:

·+;

-;

(引导学生用自然语言叙述上面的三个运算性质)学生活动:

阅读教材P75例3、4,;

设计意图:在应用过程中进一步理解和掌握对数的运算性质.

完成教材P79练习1~3 设计意图:在练习中反馈学生对对数运算性质掌握的情况,巩固所学知识. 利用科学计算器求常用对数和自然对数的值

设计意图:学会利用计算器、计算机求常用对数值和自然对数值的方法.

思考:对于本小节开始的问题中,可否利用计算器求解的值?从而引入换底公式. 换底公式

(,且;,且;). 学生活动

根据对数的定义推导对数的换底公式.

设计意图:了解换底公式的推导过程与思想方法,深刻理解指数与对数的关系.

思考完成教材P76问题(即本小节开始提出的问题);

利用换底公式推导下面的结论

(1);

(2).

设计意图:进一步体会并熟练掌握换底公式的应用.

说明:利用换底公式解题时常常换成常用对数,但有时还要根据具体题目确定底数. 课堂练习

教材P79练习4 已知

试求:的值。(对换5与2,再试一试)

设,,试用、表示 归纳小结,强化思想

本节主要学习了对数的运算性质和换底公式的推导与应用,在教学中应用多给学生创造尝试、思考、交流、讨论、表达的机会,更应注重渗透转化的思想方法. 作业布置

基础题:教材P86习题2.2(A组)第3 ~5、11题; 提高题:

设,,试用、表示;

设,,试用、表示;

设、、为正数,且,求证:. 课外思考题: 设正整数、、(≤≤)和实数、、、满足:,求、、的值.

课题:§2.1.2对数函数

(一)教学任务:(1)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;

(2)能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;(3)通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生数形结合的思想方法,学会研究函数性质的方法. 教学重点:掌握对数函数的图象和性质.

教学难点:对数函数的定义,对数函数的图象和性质及应用.

教学过程: 引入课题 1.(知识方法准备)

学习指数函数时,对其性质研究了哪些内容,采取怎样的方法?

设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法——借助图象研究性质.

对数的定义及其对底数的限制. 设计意图:为讲解对数函数时对底数的限制做准备. 2.(引例)教材P81引例

处理建议:在教学时,可以让学生利用计算器填写下表: 碳14的含量P 0.5 0.3 0.1 0.01 0.001

生物死亡年数t

然后引导学生观察上表,体会“对每一个碳14的含量P的取值,通过对应关系,生物死亡年数t都有唯一的值与之对应,从而t是P的函数” .(进而引入对数函数的概念)新课教学

(一)对数函数的概念

1.定义:函数,且叫做对数函数(logarithmic function)其中是自变量,函数的定义域是(0,+∞).

注意: 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:,都不是对数函数,而只能称其为对数型函数.

对数函数对底数的限制:,且. 巩固练习:(教材P68例2、3)

(二)对数函数的图象和性质

问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗? 研究方法:画出函数的图象,结合图象研究函数的性质.

研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 探索研究:

在同一坐标系中画出下列对数函数的图象;(可用描点法,也可借助科学计算器或计算机)(1)

(2)

(3)

(4)

类比指数函数图象和性质的研究,研究对数函数的性质并填写如下表格:

图象特征 函数性质

函数图象都在y轴右侧

函数的定义域为(0,+∞)

图象关于原点和y轴不对称 非奇非偶函数

向y轴正负方向无限延伸 函数的值域为R

函数图象都过定点(1,1)

自左向右看,图象逐渐上升 自左向右看,图象逐渐下降 增函数 减函数

第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0

第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0

思考底数是如何影响函数的.(学生独立思考,师生共同总结)

规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.

(三)典型例题 例1.(教材P83例7). 解:(略)

说明:本例主要考察学生对对数函数定义中底数和定义域的限制,加深对对数函数的理解.

巩固练习:(教材P85练习2). 例2.(教材P83例8)解:(略)

说明:本例主要考察学生利用对数函数的单调性“比较两个数的大小”的方法,熟悉对数函数的性质,渗透应用函数的观点解决问题的思想方法. 注意:本例应着重强调利用对数函数的单调性比较两个对数值的大小的方法,规范解题格式. 巩固练习:(教材P85练习3). 例2.(教材P83例9)解:(略)

说明:本例主要考察学生对实际问题题意的理解,把具体的实际问题化归为数学问题. 注意:本例在教学中,还应特别启发学生用所获得的结果去解释实际现象. 巩固练习:(教材P86习题2.2 A组第6题). 归纳小结,强化思想

本小节的目的要求是掌握对数函数的概念、图象和性质.在理解对数函数的定义的基础上,掌握对数函数的图象和性质是本小节的重点. 作业布置

必做题:教材P86习题2.2(A组)第7、8、9、12题. 选做题:教材P86习题2.2(B组)第5题. 课题:§2.2.2对数函数

(二)教学任务:(1)进一步理解对数函数的图象和性质;

(2)熟练应用对数函数的图象和性质,解决一些综合问题;

(3)通过例题和练习的讲解与演练,培养学生分析问题和解决问题的能力. 教学重点:对数函数的图象和性质.

教学难点:对对数函数的性质的综合运用.

教学过程: 回顾与总结

函数的图象如图所示,回答下列问题.

(1)说明哪个函数对应于哪个图象,并解释为什么?

(2)函数与

且有什么关系?图象之间 又有什么特殊的关系?

(3)以的图象为基础,在同一坐标系中画出的图象.

(4)已知函数的图象,则底数之间的关系:

. 教 完成下表(对数函数且的图象和性质)

图 象

定义域

值域

性 质

根据对数函数的图象和性质填空.

已知函数,则当时,;当时,;当时,已知函数,则当时,;当时,;当时,当时,. 应用举例

比较大小:,且;,. 解:(略)

例2.已知恒为正数,求的取值范围. 解:(略)

[总结点评]:(由学生独立思考,师生共同归纳概括).

例3.求函数的定义域及值域.

解:(略)

注意:函数值域的求法.

例4.(1)函数在[2,4]上的最大值比最小值大1,求的值;当时,.当时,;

(2)求函数的最小值.

解:(略)

注意:利用函数单调性求函数最值的方法,复合函数最值的求法.

例5.(2003年上海高考题)已知函数,求函数的定义域,并讨论它的奇偶性和单调性.

解:(略)

注意:判断函数奇偶性和单调性的方法,规范判断函数奇偶性和单调性的步骤.

例6.求函数的单调区间. 解:(略)

注意:复合函数单调性的求法及规律:“同增异减”. 练习:求函数的单调区间. 作业布置 考试卷一套

课题:§2.2.2对数函数

(三)教学目标:

知识与技能

理解指数函数与对数函数的依赖关系,了解反函数的概念,加深对函数的模型化思想的理解.

过程与方法

通过作图,体会两种函数的单调性的异同.

情感、态度、价值观

对体会指数函数与对数函数内在的对称统一.

教学重点:

重点

难两种函数的内在联系,反函数的概念. 难点

反函数的概念.

教学程序与环节设计:

教学过程与操作设计: 环节

呈现教学材料 师生互动设计

材料一:

当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据些规律,人们获得了生物体碳14含量P与生物死亡年数t之间的关系.回答下列问题:

(1)求生物死亡t年后它机体内的碳14的含量P,并用函数的观点来解释P和t之间的关系,指出是我们所学过的何种函数?

(2)已知一生物体内碳14的残留量为P,试求该生物死亡的年数t,并用函数的观点来解释P和t之间的关系,指出是我们所学过的何种函数?(3)这两个函数有什么特殊的关系?

(4)用映射的观点来解释P和t之间的对应关系是何种对应关系?(5)由此你能获得怎样的启示?

生:独立思考完成,讨论展示并分析自己的结果.

师:引导学生分析归纳,总结概括得出结论:(1)P和t之间的对应关系是一一对应;(2)P关于t是指数函数;

t关于P是对数函数,它们的底数相同,所描述的都是碳14的衰变过程中,碳14含量P与死亡年数t之间的对应关系;

(3)本问题中的同底数的指数函数和对数函数,是描述同一种关系(碳14含量P与死亡年数t之间的对应关系)的不同数学模型.

材料二:

由对数函数的定义可知,对数函数是把指数函数中的自变量与因变量对调位置而得出的,在列表画的图象时,也是把指数函数的对应值表里的和的数值对换,而得到对数函数的对应值表,如下:

表一

环节

呈现教学材料 师生互动设计

„-3-2-1 0 1 2 3 „

„2 4 8 „

表二

„-3-2-1 0 1 2 3 „

„2 4 8 „

在同一坐标系中,用描点法画出图象. 生:仿照材料一分析:与的关系.

师:引导学生分析,讲评得出结论,进而引出反函数的概念.

组织探究

材料一:反函数的概念: 当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数. 由反函数的概念可知,同底数的指数函数和对数函数互为反函数.

材料二:以与为例研究互为反函数的两个函数的图象和性质有什么特殊的联系? 师:说明:

(1)互为反函数的两个函数是定义域、值域相互交换,对应法则互逆的两个函数;(2)由反函数的概念可知“单调函数一定有反函数”;

(3)互为反函数的两个函数是描述同一变化过程中两个变量关系的不同数学模型.

师:引导学生探索研究材料二.

生:分组讨论材料二,选出代表阐述各自的结论,师生共同评析归纳.

尝试练习

求下列函数的反函数:(1);

(2)生:独立完成.

巩固反思

从宏观性、关联性角度试着给指数函数、对数函数的定义、图象、性质作一小结.

作业反馈

求下列函数的反函数:2 3 4 5 7 9

环节

呈现教学材料 师生互动设计2 3 4 5 7 9 2.(1)试着举几个满足“对定义域内任意实数a、b,都有f(a·b)= f(a)+ f(b).”的函数实例,你能说出这些函数具有哪些共同性质吗?

(2)试着举几个满足“对定义域内任意实数a、b,都有f(a + b)= f(a)·f(b).”的函数实例,你能说出这些函数具有哪些共同性质吗?

答案: 1.互换、的数值. 2.略.

课外活动

我们知道,指数函数,且与对数函数,且互为反函数,那么,它们的图象有什么关系呢?运用所学的数学知识,探索下面几个问题,亲自发现其中的奥秘吧!

问题1 在同一平面直角坐标系中,画出指数函数及其反函数的图象,你能发现这两个函数的图象有什么特殊的对称性吗?

问题2 取图象上的几个点,说出它们关于直线的对称点的坐标,并判断它们是否在的图象上,为什么? 问题3 如果P0(x0,y0)在函数的图象上,那么P0关于直线的对称点在函数的图象上吗,为什么?

问题4 由上述探究过程可以得到什么结论? 问题5 上述结论对于指数函数,且及其反函数,且也成立吗?为什么? 结论:

人教a版数学必修1教案 篇2

教材是人们为从事教学活动而设计编制的主观性的精神产品, 是人类文化经验结构与学生个体身心结构之间的媒介和桥梁.教材作为学生直接作用的对象, 是促进学生发展的工具和手段.传统教材以传授知识为中心, 教材是“知识仓库”, 强调向学生详尽地传递学科知识, 主要是通过纯文本的方式, 向学生直接呈现事实、概念和原理.这样的教材强调的是教师的教, 很容易导致学生的学习主动性受到压抑, 对所学内容不感兴趣, 不能很好地理解所学的内容.以促进学生的全面发展为宗旨的新课程改革, 不仅重视教材的“知识仓库”功能, 更强调教材是促进学生发展的功能, 教材承载着学生的学和教师的教.

作为新课程改革物化的产物, 人教版高中数学新教材全面体现了新课程高中数学改革的理念和内容, 教材不仅仅是一个信息资源体, 更是一个引导师生教与学, 促进学生全面发展的媒介.新教材通过“思考”“探究”和插入语等特色栏目, 在内容的呈现上, 不拘泥于对数学概念、公式、定理和性质的陈述和解释, 而是注重促进学生学习方式的转变, 注重展现知识获得的过程和方法, 引导学生通过多种多样的主体参与活动, 使学生在独立思考、解决问题的过程中, 自主地获得知识, 自主地获得情感、态度和价值观的体验.本文就人教版高中数学新教材“思考”栏目的教学实践与认识, 谈谈一些体会和看法.

一、新教材“思考”栏目的类型

1.引入型“思考”

“良好的开端是成功的一半”, 新教材在某些章节的开端就设计了精妙的“思考”, 引入学习内容.引入型的“思考”, 可以在第一时间抓住学生的眼球, 引发好奇心, 激发求知欲, 诱导思维动机, 使其产生“愿知其详”的强烈愿望.例如, 在学习“三角函数的诱导公式”时, 新教材数学4是通过“思考”栏目如此引入的:“我们利用单位圆定义了三角函数, 而圆具有很好的对称性, 能否利用圆的这种对称性来研究三角函数的性质呢?例如, 能否从单位圆关于x轴、y轴、直线y=x的轴对称性以及关于原点的中心对称性等出发, 获得一些三角函数的性质呢?”从知识的产生来源入手设计“思考”, 激发了学生的学习兴趣和求知欲, 实现了教师被动教教材到学生主动学教材的转变.新教材的全部内容不再是仅仅呈现结论性知识, 还为展开教学活动以使师生互动产生知识提供范例和素材.

2.总结型“思考”

新教材设计了一些总结性的“思考”, 以问题的形式或者是提供一定的线索, 引导学生对学习内容进行系统整理.例如, 在学完三角函数的诱导公式一至四, 新教材设置了思考:“你能用简洁的语言概括一下公式一至四吗?它们的作用是什么?”在学习正弦函数的图像时, 新教材设置了思考:“在作出正弦函数的图像时, 应抓住哪些关键点?”在这些思考过程中, 使学生对自己的学习活动进行反思, 对知识和方法再认识, 充分调动了学生的学习主体性, 改变了传统的单一以听、记为主的学习方式, 增强了学生对知识的理解和认识.

3.提示型“思考”

教材呈现的知识包括人类实践活动经验和文化精神产物, 数学教材中的知识是人类一代代继承和发展下来的数学产物, 有些数学公式、概念和性质是经过了几代数学家的努力才获得的.新课程倡导多样化的学习方式, 强调学生的主体参与获得知识和方法, 但课堂的时间是有限的, 很多时候当然不能指望学生能在一堂课或两堂课上就能发现这些公式、性质和定理.为此, 新教材为一些新知识的获得通过“思考”栏目进行了提示.比如:“你能从正切函数的图像出发, 讨论它的性质吗?”“你能否从函数图像变换的角度出发, 利用函数y=sinx的图像得到函数y=1+sinx的图像吗?”这些提示为学习提供了方向, 起到了灯塔的作用.

4.拓展延伸型“思考”

引导学生对数学概念、公式、定理和性质等进行横向延伸和纵向推广, 促进了学生对数学知识本质的深刻理解.这样, 不仅纵向深化了所学的知识, 而且横向拓展了学生分析问题、解决问题的能力, 对于开阔学生的数学视野、培养学生的能力、提高学生的数学素养是大有帮助的.例如, “你认为上述求函数y=Asin (ωx+φ) , x∈R及函数y=Acos (ωx+φ) , x∈R周期的方法是否能推广到求一般周期函数的周期上去?即命题‘如果函数y=f (x) 的周期是T, 那么函数y=f (ωx) 的周期是Τω’是否成立?”“如果不用向量的方法, 你能证明上述关系吗?”“以上推导是否有不严谨之处?若有, 请作出补充.”“对于任意角α, 此等式成立吗?若成立, 你会用几种方法来证明?”等等.

二、新教材“思考”栏目在教学实践中的认识

首先, “思考”设计合理、科学.“思考”的科学性包括两个方面的含义:一方面是“思考”的设计, 无论是在形式表述上, 还是在内容安排上, 都符合数学学科的特点.表述的语言简练, 没有出现歧义的地方.表述的数学内容严谨, 符合数学的学科性.另一方面, 科学性体现在准确把握高中生的身心发展规律, 立足其认知和情感水平.教材所设计的问题, 难度适中, 既能激起学生的求知欲望, 又能使学生经过努力后有收获, 更进一步加深了学生对知识产生过程的体验, 增强了对公式、概念、性质和定理的理解与掌握.

其次, “思考”转变了学习方式.“思考”栏目使学生的学习不仅仅是记忆与模仿、不仅仅是死记硬背与机械训练, 而是注重激发学生学习的积极性和创造性, 使之真正成为学习的主体, 使学生在学习数学知识的过程中体会数学的创造性、培养自身的数学思维能力和创新能力.

最后, “思考”有利于教师的教学.新教材在重、难点的地方设置问题, 为能引发学生的思考回避了对问题答案的直接呈现, 这样的方式就有利于教师创造性地进行教学, 教师可以根据学生的思考情况, 充分重视作为教学资源的学生, 积极主动地开展教学活动.在这种情况下, 教师个人的知识和师生互动产生的新知识在整个课堂中占有很大比例, 学生在理解和构建教材内容意义的基础上, 获得知识与技能、过程与方法、情感态度与价值观的全面发展.另外, 教材运用了专家们的集体智慧, 在内容重、难点处提出了适当的思考问题, 这也有利于教师的教学不太偏离核心内容的主线.

三、教学建议

1.以学生为主体, 给予学生充分的思考时间

如前所述, 新教材在重、难点的地方设置问题, 引发学生思考, 并且在教材中不呈现问题的答案, 目的是给学生在学习过程中有思考过程.如:“你能用简洁的语言概括一下公式一至四吗?它们的作用是什么?”“能否从单位圆关于x轴、y轴、直线y=x的轴对称性以及关于原点的中心对称性等出发, 获得一些三角函数的性质呢?”很显然, 这些问题都是学习者必须经过的学习环节, 教师不要越位, 不要自问自答, 给学生充分的思考、探究、总结、回答时间, 让学生在思考中提高数学思维, 在顿悟中得到数学知识.

2.要深入钻研和理解教材的主旨, 对“思考”慎加减

引入型“思考”中的素材, 无论是涉及已学知识, 还是现实生活中的实例, 都是立足学生已有认知水平, 引发新问题的思考内容的延伸.不管是哪种类型的思考, 作为探究的前奏, 在各知识点中起到过渡与承上启下的作用.另一方面, 新教材引入“思考”栏目的目的之一就是要转变教学方式以适应新课标的教育教学要求.我们可以立足学生的认知水平, 为学生提供可思考探究的平台, 但不能过多加工, 以免画蛇添足造成偏离学习重点, 更不可在教学过程中为“赶时间”而把这个环节省略掉, 这样缺乏思考的不完整的学习过程也不会达到应有的教学效果.

3.对“思考”要有板书总结

研究表明, 板书对学生的思维具有较大的影响.新教材的部分知识, 通过设置表格、横线等, 让学生思考、自主探究得出结果然后填补上去的.另一方面, 鉴于学生的记忆特征与思维特征, 因此, 思考探究之后的板书总结, 把准确的知识暴露给学生, 是教学中不可忽略的一环.

参考文献

[1]毕华林.教材功能的转变与教师的教科书素养[J].山东师范大学学报 (人文社会科学版) , 2006 (1) .

人教a版数学必修1教案 篇3

一、教材功能与地位

本章是人教A版必修1第三章函数的应用,前两章已经学习了一些有关基本初等函数的知识,本章对函数知识进行应用,体会函数与方程、数学建模的思想。函数与方程的思想和函数贯穿于整个高中数学学习的始终,是高中数学的重要思想和支撑高中数学的主干知识。《普通高中课程标准》提出要发展学生的数学应用意识,而本章第一次提及数学建模,学生通过解决实际问题,感受数学建模的思想方法,认识数学在解决实际问题当中的威力,为今后进一步运用理论解决实际问题打下坚实基础。

二、内容安排

本章共4节:1.1方程的根与函数零点,1.2用二分法求方程的近似解,1.3几类不同增长的函数模型,1.4函数模型的应用实例。

本章主要围绕函数的应用展开,首先介绍了函数与方程的关系,方程的根是函数的零点,借助于函数的零点来确定方程的根,这是函数的应用之一。其次,生产和生活中的许多模型几乎都与基本初等函数有关,本章第二节就专门介绍函数模型及具体的实例。这样我们学习完前两章的理论知识,对理论知识进行了实际应用。

三、课程目标与学习目标

1、课程目标

学习知识是为了进一步学习其他知识或运用到现实生活中去,尤其数学的学习,如果只是学习理论知识而不去运用与实践,这就完全违背了数学的初衷。本章的学习是建立在前两章的基础之上,体会函数在现实生活中的应用,利用已经学习过的基本初等函数理论知识,很好的理解本章内容。

2、学习目标

《普通高中数学课程标准》中对本章的要求:

(1)结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程的联系。

(2)根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

(3)利用计算工具,比较指数函数、对数函数以及幂函数增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

(4)收集一些生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数)的实例,了解函数模型的广泛应用。

四、课时建议

本章需课时8课时,具体分配如下:

1、方程的根与函数零点(约1课时)

2、用二分法求方程的近似解(约2课时)

3、几类不同增长的函数模型(约2课时)

4、函数模型的应用实例(约2课时)

小结(约1课时)

五、教材内容分析及建议

本章章头有文字叙述和插图,文字部分引出本章学习内容。我们学习过函数概念、函数的性质、一次函数、二次函数、指数函数、对数函数等基本初等函数模型,它们可以刻画现实生活中事物的不同变化规律。本章通过一些实例感受建立函数模型的过程和方法,初步运用函数的思想解决现实生活中一些简单问题。另外,通过利用函数的图象和性质,用二分法求方程近似解的方法,从中体会函数与方程之间的联系。

1、函数与方程

教学重点:函数的零点与方程的根之间关系的确定,教学难点:用二分法求方程的近似解。

本节3课时,从函数的零点与方程的根出发得到它们间的关系,将方程根的确定转化为函数的零点,运用二分法求函数的零点也即方程的近似解。

(1)方程的根与函数的零点

本小节先由思考栏目提出问题,提出带有字母的抽象的一元二次方程的根与相对应的一元二次函数的图象间的关系。接着课本从具体的一元二次方程及其相应的二次函数(三种情形)出发,做出一元二次函数的图象,分析一元二方程的根与其相应的一元二次函数图象间的关系。一元二次方程的根是其对应的一元二次函数的图象与 轴交点的横坐标。回到思考栏目的问题,对于一般的一元二次方程 及其相应的二次函数 也成立。

为了将以上的结论推广到一般情形,教材给出了函数零点的概念,对于函数 ,使 的实数 叫做函数 的零点。由此,得到函数的零点,函数的图象与方程根之间的关系即方程 有实数根 函数 的图象与 轴有交点 函数 有零点。教材很自然的得出求方程 的实数根,就是确定函数 的零点。

探究栏目给出一个具体二次函数的图象,要探讨零点所在闭区间端点函数值的符号之间的关系。让学生任意画几个函数图象,观察图象得出结论即零点存在性定理。接着给出求函数零点个数的例子,借助于函数性质和零点存在性定理得出答案。

教材先提出一个一般问题,由特殊的函数运用数形结合、函数与方程的思想去研究问题,得出一元二次方程与其对应的一元二次函数图象间的关系,将它推广到一般的函数。不能用公式求根的方程可与函数联系起来,利用函数的图象和性质求方程的根,这是转化的思想。

(2)用二分法求方程的近似解

在上一小节教材给出了判断函数零点存在的方法,也就是方程的实数根的个数,本节用二分法求方程的近似解。思考栏目接着上节中的例子,提出如何根据函数的零点与相应方程的是跟的关系求方程 的根?接着,介绍二分法,逐步缩小零点所在区间,在已给定的精确度允许下,得到函数零点的近似值。给出求方程近似解的例子。

本节在无限逼近、数形结合、算法的思想下,运用迭代方法以零点存在性定理作为理论依据,逐步缩小零点存在的区间,最终得到函数零点的近似值。

函数与方程总共3课时,方程的根与函数的零点可用一节课完成,二分法教学内容可以安排两节课,第一节课重点放在二分法的发现及逼近的思想上,第二节课重点可以放在二分法的应用上,这样对教学目标的定位重点突出,并符合课程标准理念,培养了学生理性精神和能力,同时也有利于落实二分法的具体操作和应用。教材例1求方程 的零点的个数,可以由多种方法解答,法1按教材处理,法2思路跟法1一样,不需要用表格的形式分析 与 的变化关系,可用我们学过的函数的性质去分析函数的单调性,从而得出其零点个数。法3可将本题目转化为求方程 的零点个数,可转化为函数 和函数 两函数图象交点的个数问题。用二分法求方程近似解时,一定要让学生自己思考,然后师生共同分析,由于数值计算较为复杂,需要学生恰当的运用信息技术工具。例子解答完让学生再次尝试总结用二分法解决方程近似解的步骤。

2、函数模型及其应用

教学重点:结合函数图象解决实际问题,教学难点:数学建模的过程。

本节需要4课时。学习数学知识是为了更好的运用到实际生活中,本节介绍现实生活中常见的函数模型以及运用函数知识所要解决的具体实例。认识数学建模的过程,对于运用函数知识解决实际问题很有帮助。

(1)几类不同增长的函数模型

函数是描述客观世界变化规律的基本数学模型,面对实际问题,如何选择恰当的函数模型来刻画这是解决实际问题的关键。本小节给出两个实例,介绍如何恰当选取函数模型,解决实际问题。

例1投资问题,有三种投资方案,根据不同方案通过图表与图象分析哪个方案获益最大。例2某公司奖励模型的评定,三种模型,教材借助于计算机在同一直角坐标系中作出三个函数图象,通过分析图象得到符合公司要求的奖励模型。教材中介绍了不通过函数图象,可以运用我们学过的有关函数的性质解决此问题。教材根据例2中函数增长的快慢,提出对数函数 ,指数函数 与幂函数 在 上增长的差异的研究。通过研究具体的三个函数 的图象,通过观察栏目研究它们三个函数的增长情况。有探究的问题将以上结论推广到一般情形,即解决了对数函数 ,指数函数 与幂函数 在 上增长的差异,这一问题。

教材运用从特殊到一般的研究问题的思想,数形结合研究特殊函数的情形,进而推广到一般函数。

(2)函数模型的应用实例

教材引入本节内容,通过一些实例,让学生感受基本初等函数的广泛应用,体会解决实际问题中建立函数模型的过程。例3用到了分段函数,提高了学生读图的能力,使学生认识到分段函数是刻画现实问题的重要模型。例4给出了人口增长模型 其中 表示经过的时间, 表示 时的人口数, 表示人口的年平均增长率。此函数是指数型函数,在 上为增函数,让学生感受指数爆炸这一概念。这一例子告诉我们用已知的函数模型刻画实际问题时,由于实际问题的条件与得出已知模型的条件会有所不同,因此往往需要对模型进行修正。例5二次函数模型,二次函数模型是实际生活中最常用的模型之一,没有给出两变量间的关系,根据已知找出建模过程尤为重要。例6已知关于两变量的若干数据,寻找刻画这两变量的函数模型,从而对其他情形做出预测。其意图通过收集到的数据的特点,建立函数模型,解决实际问题。要注意用函数模型拟合两变量关系,这样的模型可能不同。本小节运用数学建模的思想,对实际问题进行分析,具体问题的解决运用所学的有关函数知识以数形结合的思想分析问题从而解决问题。

教材从两个方面展开函数应用,突出用数学解决问题,一是函数与其他数学知识的有机联系,这里集中研究的是从函数特征判定方程实数解的存在性及方程的近似解;二是函数与实际问题的联系,用函数解决实际问题,着眼于学生对数学应用的理解,引导学生应用数学知识解决实际问题,让学生经历自主探索、解决问题的过程,体会数学的应用价值,提高数学的应用能力。

本节共4课时几类不同增长的函数模型2课时,函数模型的应用实例2课时。教材例2学完之后,提出研究指数函数、对数函数、幂函数的增长差异,运用图和表两种方法比较三个函数的 , , 的增长差异。教师可以把 , 两个函数的增长速度的比较以“探究”形式留给学生,借助于计算器作出函数图像,从而得出三个函数增长的差异,进一步分析出 ,指数函数 与幂函数 在 上增长的差异。对于其他实例的处理都要体现学生倡导积极主动、勇于探索的学习方式。教材例6的处理除了由指数型函数模型拟合之外,引导学生用二次函数模型拟合,并比较哪种类型的模型拟合程度好。实例讲解完,师生共同总结运用函数知识解决实际问题的思路和具体步骤即数学建模的过程,并且一定要让学生有充足的时间联系巩固,让学生体会数学建模的过程,数学的应用价值。

六、习题分析

本章共两节内容即1.1函数与方程和1.2函数模型及其应用,教材中相应的配备了一定数量的例题、习题供学生学习和练习,由此巩固并形成技能和能力。

1、函数与方程这一节配备了课堂练习4道,习题共8道。4道练习中1道是根据函数的零点与方程的关系学生自己作图判断方程有无实根,1道是根据零点存在性定理借助计算机作图,判断零点所在大致区间。另外2道均是借助计算机或计算器运用二分法求方程在指定区间上的近似解(精确度已知)。习题中的8道题,其中6道是借助计算机或计算器运用二分法求方程在指定区间上的近似解(精确度已知),2道是对零点存在性定理的理解的题目,注意定理运用的条件和结论。教材这样配备练习、习题要求学生体会函数的零点与方程根之间的联系,理解零点存在性定理,能借助于计算器或计算机求具体方程给定精确度要求的近似解,熟练的归纳出二分法求解方程根的步骤,提高学生分析问题解决问题的能力。

2、函数模型及其应用中共有练习题7道,习题8道。练习中2道是有关指数函数模型的实际应用问题,1道是根据指数函数、对数函数、幂函数的图象比较它们的增长情况,3道是已知函数模型的实际应用问题,还有1道练习题是没有给出函数模型的实际应用问题,让学生通过对已知条件进行分析得出符合题意的函数模型,然后解决问题。习题中的8道题均是函数模型的应用问题,题型可分为两类三种,即已知函数模型的应用问题、未知函数模型的应用问题。未给出函数模型的应用问题可分为两种:仅仅用列表法给出两变量间的关系,给出已知条件的实际问题。其中,已知函数模型的应用问题共2道,用列表法给出两变量间的关系共3道,给出已知条件的实际问题共3道。教材练习、习题中函数模型的应用问题占绝大多数,由此应把教学重点放在运用函数知识,通过分析问题建立数学模型,解决实际问题上。教材通过编排练习、习题,使学生体验数学在解决实际问题中的作用,数学与日常生活及其他学科的联系,促进学生对数学的理解,形成数学应用意识,提高实践能力,体会数学建模的过程,感悟数学的价值,提高学习兴趣。

人教a版数学必修1教案 篇4

1. .着手做;从事;承担 vt./vi

2. 分析;分解 n.

3. .显然的;明显的 adj

4. 在……里面;在……范围之内 prep.

5. 农学;农业 n.

6. 重力;引力;地心吸力 n.

7. 好奇的;好求知的;爱打听隐私的 adj.

8. (学科)分科;树枝;支流;支线;分支结构 n.

9. 辩论;争论 vt/vi. n.

10. 浏览;细看;反复察看 vt.

11. 分界线;边界;界限 n.

12. 大学毕业生;毕业生 n.

13. 探索;调查;研究 n. vt./vi.

14. (病人等用的)轮椅 n.

15. 使丧失能力 vt.

16. 理论;学说;原理;推测 n.

17. 寻找;探索;追求 vt./vi.

18. 误解;误会 vt.

19. 科学(上)的;符合科学规律的 adj.

20. 观察;察觉到;遵守;庆祝(节日等)

21. 和……相配;和……相称;使较量 vt./vi.

22. (作)预言;(作)预测;预计 vi./vt.

23. 悲伤;不幸 n.

24. 罪;犯罪活动;不法行为 n.

25. 天文学家 n.

26. 显微镜 n.

27. 望远镜 n.

28. 天;天空;天国;上帝 n

29. 理解力强的;有才智的 adj.

30. 忍耐的;容忍的;有耐心的 adj.

31. 进行实验;进行试验 vi.

32. genius

33. inspiration

34. perspiration

35. quote

36. radioactivity

37. biologist

38. PhD

39. promising

40. incurable

41. engage

42. exploration

43. observation

44. geographer

二.词组归纳

1. make a difference产生差别,造成影响,起作用

2. within himself 在心中

3. be on fire for 热衷于;对…感兴趣

4.be similar to 与…相似

5. a promising graduate student一位有希望的研究生

6.give up one’s dreams and hopes 放弃梦想和憧憬

7.work on 致力于,从事于,忙于

8.go by(时间)过去;从旁边经过; (时机等)轻易放过” “依照,遵循” “凭……判断”

9. get engaged (to) 与某人订婚

10.go on with 继续

11.dream of 梦想

12.in the early 1970s在20世纪70 年代初期

13.make new discoveries (about) 在…有新发现

14.seek answers to questions寻找问题的答案

15.in a (practical) way 用实际的方法

16.according to 根据

17.on the other hand 在另一方面

18.turn out 结果是;证明是;原来是;生产出;关掉,熄灭;出席,在场

19.build a theory 创立理论

20.the causes and effects 前因后果

21.use up用光,用完

22. take measures 采取措施

23.the crime scene 犯罪现场

24.be satisfied with 对…满意

25.take a (closer) look at近距离观察

26.what if……倘使……将怎样

27.change from season to season随季节变化

28.the other way around用相反方式

29.be known as scientific pioneers 被认为是科学先驱

30.reach one’s goal 实现梦想

31. be descibed as……被叫做,称作

补充词组:

1. be curious about…对…感到好奇

be curious + wh-对……有兴趣;

2. be curious + to do 极想做…;

3. It is curious + that... ……是奇怪的 2. 与某人订婚 3. 结果是,证明是

4. seek to do sth. 设法、试图做谋事

5. be a match for 与 …相匹配

6. be engaged in sth. / doing sth. 忙于(做)某事

7. It turns out that……结果是;证明是;原来是

8. be patient with sb 对某人有耐心

9. give out 用完,耗尽,筋疲力尽(不用于被动)

10. run out (指供应品) 用完,耗尽(不用于被动)

11. wear out 用完,耗尽

12. run out of 用完,耗尽(供应品)

三.重要句型

1.It takes a very unusual mind to undertake analysis of the obvious.

分析明显存在的事物需要非凡的头脑

2. Nothing in life is to be feared. It is only to be understood.

生活中没有什么可怕的东西,只需要理解的东西。”

3. There is no doubt that…

4. Readers were pleased and surprised to find that a scientist could write about his work in a way that ordinary people could understand.

读者们感到惊喜的是,科学家竟能够以普通人理解的方式来阐述自己的理论。

5.There did not seem much point in working on my phD--- I did not expect to survive that long.

取得博士学位对我来说没有什么意义,我没有期望活那么久。

6.Nor did he let the disease stop him from living the kind of life he had always dreamt of. 他也没有让病魔阻止他过上他一直梦想的生活。

7.To explain what they have seen, they build a theory about the way in which things happen and the causes and effects.

为了解释看到的东西,他们创立理论,来阐述事情如何发生及其前因后果。

8. Scientists, on the other hand, Hawking writes, know that their job is never finished and that even the best theory can turn out to be wrong. 霍金写道,从另一方面讲,科学家知道,他们的工作是永无止境的,即便是最后的理论,都可能被证明是错误的。

9.People laughed at Zhang Heng when he first introduced his seismograph, and it was later that the world recognised his greatness.

张衡刚刚介绍他的地动仪的时候,别人取笑他,直到后来人们才承认他的伟大。

10. Perhaps the most important thing if we want to make a difference is to find something that we like to do and that we are good at.

我们如果想要有所作为,最重要的也许是从事自己愿意做,且善于做的事情。认识自我就要弄清自己的思路,明白自己的爱好。

11.Everyone has his or her special skills and interests, and only by discovering what we do best can we hope to reach our goals and truly make a difference.

人人都有自己的专长和兴趣,只 有发现自己的专长,我们才有希望达到自己的目标而真正有所作为。

12. It is not necessary to be a great scientist to make a difference, but there are things we can learn from the best minds in this world.

要有所作为,不一定非要成为大科学家,但是我们可以从世界上顶尖人物身上学到很多东西。

13. By asking why, how and what if, curious mind find new ideas and solutions

人教a版数学必修1教案 篇5

[使用章节] 数学②中1.1.7棱柱、棱锥、台和球的体积 [使用目的] 帮助学生通过操作、观察理解祖暅原理和它的两个推论。[操作说明] 祖暅原理的图形如图2118: ½ cm S½ØÃæ = 1.95 ƽ·½ cm S½ØÃæ = 1.95 ƽ·S½ØÃæ = 1.95 ƽ·½ cm

图2118 1.理解祖暅原理

图中按钮(见课件界面)的功能是:(1)“变位”:用此按钮说明几何体的形状可以改变,但是一定要满足夹在两平行平面间这一条件。

(2)“截面”、“0”和“度量”、“0”:这两组按钮中的前一个用于显示截面并

使截面运动,或显示截面面积的度量结果。后一个用于隐去截面或度量值。由此可以说明被夹几何体要满足的另一个条件:与夹着几何体的两平面平行的截面面积相等。(3)“调整”、“0”:此按钮用于显示、隐藏调整图形用的点或线,如需要调整高及底面时就要显示这些点或线。当各截面度量值稍有出入时,也可以微调高或底面进行修正。(4)“公理六”:此按钮用于恢复公理六的初始图形。

讲解:把每一个被夹的几何体的截面想象成很薄的同一种纸片,因为高度相同的截面(纸片)面积相等,所以摞成的几个几何体的重量和体积是应该相等的。这一结论在中学里不加证明而作为公理。

2.讲解由祖暅原理推出的两个结论:

(1)使用按钮“V柱”可以把祖暅原理的图形变化为关于柱体的图形。可以用截面按钮使截面运动而变化截面位置。不必度量就可以说明只要底面积相等,平行底的截面面积就相等(柱体性质),又由等高得出可以夹在两平行平面间。因此由公理六推出:等底等高的柱体等体积。

(2)使用按钮“V锥”可以类似底说明等底等高的锥体等体积,截面面积相等可以证明也可以用按钮“度量”验证。3.理解柱体体积公式

结合图说明对于任何一个柱体,都可以做出一个和它等底等高的长方体。(例如原柱体 底面积为100,我们可以取长方体底面边长为4和25或10和10等值,高与原柱体相同)。根据关于柱体体积的推论,可知柱体的体积与长方体一样,等于底面积与高的积即V柱= s h

人教a版数学必修1教案 篇6

1教案 新人教A版必修1 三维目标定向 〖知识与技能〗

理解函数的最大(小)值及其几何意义,会用函数的单调性求一些函数的最大(小)值。〖过程与方法〗

借助具体函数,体验函数最值概念的形成过程,领会数形结合的数学思想。〖情感、态度与价值观〗

渗透特殊到一般,具体到抽象、形成辩证的思维观点。教学重难点

函数最值的意义及求函数的最值。教学过程设计

一、引例

画出下列函数的草图,并根据图象解答下列问题:

(1)f(x)2x3;

(2)

f(x)x22x1。1)说出yf(x)的单调区间,以及在各单调区间上的单调性; 2)指出图象的最高点或最低点,并说明它能体现函数的什么特征?

y y o x o x

二、核心内容整合

1、函数的最大(小)值的概念

设函数yf(x)的定义域为I,如果存在实数M满足:

(1)对于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)M。

那么称M是函数yf(x)的最大值。学生类比给出函数最小值的概念:

设函数yf(x)的定义域为I,如果存在实数M满足:

(1)对于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)M。那么称M是函数yf(x)的最小值。

注意:

(1)函数最大(小)值首先应该是某一个函数值,即存在x0I,使得f(x0)M;

(2)函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的xI,都有f(x)M(f(x)M)。

2yaxbxc(a)的最值:

2、一元二次函数

b24acb2ya(x)2a4a;(1)配方:(2)图象:

(3)a > 0时,ymin4acb24acb2ymax4a。4a;a < 0时,二、例题分析示例

1、“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂。如果烟花距地面的高度h m与时间t s之间的关系为h(t)4.9t14.7t18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)?

〖知识提炼〗函数的最值与单调性的关系:

(1)f(x)在[a , b]上为增函数,则f(a)为最小值,f(b)为最大值;(2)f(x)在[a , b]上为减函数,则f(a)为最大值,f(b)为最小值。

2y例

3、已知函数2(x[2,6])x1,求函数的最大值和最小值。

分析:证明函数在给定区间上为减函数。

三、学习水平反馈:P36,练习5。补充练习:

2f(x)x4ax2在区间(– ∞,6] 内递减,则a的取值范围是()

1、函数(A)a ≥ 3

(B)a ≤ 3

(C)a ≥ – 3

(D)a ≤ – 3

22、在已知函数f(x)4xmx1在(,2]上递减,在(2,]上递增,则f(x)在[1,2]上的值域是____________。四、三维体系构建

1、函数的最大(小)值的含义。

2、利用函数单调性判断函数的最大(小)值的方法:(1)利用二次函数的性质(配方法)求函数的最大(小)值;(2)利用图象求函数的最大(小)值;

(3)利用函数单调性的判断函数的最大(小)值。

如果函数yf(x)在区间[a,b]上单调递增,则函数yf(x)在x = a处有最小值f(a),在x = b处有最大值f(b);

如果函数yf(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增,则函数yf(x)在x = b处有最小值f(b);

人教a版数学必修1教案 篇7

教学内容:梳理课文内容,体会文章的情感

教学目标:熟练掌握教材内容及梳理本单元在高考中出现的语言运用题

一、单元体制:本单元共三篇课文

《记念刘和珍君》《小狗包弟》《记梁任公先生的一次演讲》,这三篇文章从题目上看均属散文,散文是形散而神不散,神就是文章的情,形散而情聚,情感这条红线贯穿文章的始终。

1.学生有感情的朗读课文,概括文章大意,然后重点读《记念刘和珍君》的第2部分及第4部分,体会《记念刘和珍君》这篇文章当中的情感:

真的猛士 ,敢于直面惨淡的人生,敢于正视淋漓的鲜血。这是怎样的哀痛者和幸福者?然而造化又常常为庸人设计,以时间的流驶,来洗涤旧迹,仅使留下淡红的血色和微漠的悲哀。在这淡红的血色和微漠的悲哀中,又给人暂得偷生,维持着这似人非人的世界。我不知道这样的世界何时是一个尽头!

我在十八日早晨,才知道上午有群众向执政府请愿的事;下午便得到噩耗,说卫队居然开枪,死伤至数百人,而刘和珍君即在遇害者之列。但我对于这些传说,竟至于颇为怀疑。我向来是不惮以最坏的恶意,来推测中国人的,然而我还不料,也不信竟会下劣凶残到这地步。况且始终微笑着的和蔼的刘和珍君,更何至于无端在府门前喋血呢?

然而即日证明是事实了,作证的便是她自己的尸骸。还有一具,是杨德群君的。而且又证明着这不但是杀害,简直是虐杀,因为身体上还有棍棒的伤痕。

但段政府就有令,说她们是“暴徒”!

但接着就有流言,说她们是受人利用的。

惨象,已使我目不忍视了;流言,尤使我耳不忍闻。我还有什么话可说呢?我懂得衰亡民族之所以默无声息的缘由了。沉默呵,沉默呵!不在沉默中爆发,就在沉默中灭亡。

学生自主探究情感,老师根据学生探究的结果板书:

2.学生有感情的朗读小狗包弟,概括文章大意,然后探究情感,老师根据学生探究的结果板书:

3.学生有感情的自由朗读《记梁任公先生的一次演讲》,体会其中蕴含了什么思想情感,学生自主探究,交流,教师汇总:

二、链接高考:在考场中出现的与本单元相关的语言运用题

1. (教师投影,学生欣赏) 为刘和珍写一则颁奖词 (4分)

刘和珍———在黑暗的时代中,你没有沉论;在严酷的高压下,你没有沉默;在枪弹的攒射中,你依然前行。虑及民族存亡,你黯然泣下,为了国家复兴,你奋然前行。你如流星刹那间闪过,却爆发出夺目的光茫。

2.教师再投影课本中其他几个人物的颁奖词,学生欣赏

易水清寒,夺人心魄,因为它知道自己送走的是一个真正的英雄。你的勇气砥砺了你手中的匕首,你手中的匕首又将你的名字刻在了历史的丰碑上。太子丹的邀请只是你义无反顾的契机,真正让你勇者无惧的是你心中的信仰;为国为民,才是侠之大者! (荆轲)

千军万马,战火纷飞,你是未能加冕的帝王;爱恨情仇,尔虞我诈,你是未能立业的英雄。但你的霸气是许多帝王所不及的,你的豪情是许多英雄所缺少的。霸王不成霸业却一样名垂千古。 (项羽)

含垢忍辱,你用顽强之志铸就了史家之绝唱;废寝忘食,你用赤诚之心完成了无韵之离骚。一部《史记》,讲述着一个史学家应有的良知;一部《史记》,见证了一个史学家对历史的忠贞;一部《史记》,记载的不仅仅是历史,更是我们民族坚强不屈的精神。 (司马迁)

3.请同学们根据以上的几个人物颁奖词,思考:究竟应该怎样写颁奖词?颁奖词的写作

4.教师再读一则颁奖词,让学生猜写的是谁,进一步体会上面的写作方法

当命运的绳索无情地缚住了双臂,当别人的目光叹息生命的悲哀,他依然固执地为梦想插上翅膀,用双脚在琴键上写下了“相信自己”,那变幻的旋律,正是他努力飞翔的轨迹。 (刘伟)

三、作业:

人教a版数学必修1教案 篇8

高中语文新课程改革提出的“知识与技能,过程与方法、情感态度与价值观”三维目标的说法独具匠心,特别强调了教师对学生进行情感、态度、价值观的培育与引领,突出了以学生发展为本的思想,更有利于学生的全面发展,是教育领域的一场深层次的革命。

人教版高中语文课程标准实验教科书,坚持“守正出新”的编写理念。“守正”,就是坚持以马克思主义教育理论为指导,严格遵循高中语文教育的基本规律,注意继承我国高中语文教科书编制的优良传统和成功经验,适当考虑高中语文课程和教材改革的循序度和适用面。“出新”则是既注意了语文“工具性”与“人文性”紧密结合,又适应时代的发展,符合我国中学教育的实际,更适应当今高中学生的身心发展特点。

反思我国的教育,长期存在着追求知识与技能的唯一目标,在应试教育的压力之下,语文课堂成了标准零件的加工车间,教师单纯地传授知识,只重视作品的字、词、句、篇的分析,传授给学生一定技能以求得评价学生绝对量化的结果——分数,对“情感陶冶”则重视不够,未能充分阐发文章所表达的情和意,使教育的人文意义丧失殆尽。这必然带来教育的诸多缺憾,不利于中学生人格的健全发展。新教材的编写,笔者认为更突出了如下特点:

一、唤醒积极健康的情感

目前,中学生对社会的接触和了解越来越广泛,在一定程度上,社会上不良风气和不正确的思想意识对他们产生了一定的负面影响,有时甚至会超过学校正面教育的作用。面对这样的困境,尤其是在全面实施基础教育课程改革这一背景下,我们面临着新的机遇和更大的挑战。因此在中学语文教学中加强健康情感的渗透,让语文课堂成为学生精神的家园,已迫在眉睫。

作为语文老师,我们知道,阅读的对象不单指文章,还包括社会和人生,所以,阅读教学的实质就是塑造学生的灵魂和思想!

第一单元是现代新诗,篇目有毛泽东的《沁园春.长沙》、戴望舒的《雨巷》、徐志摩的《再别康桥》和艾青的《大堰河——我的保姆》。这里所选编的都是广为传诵的名篇佳作:《沁园春·长沙》中青年诗人的革命豪情,《雨巷》中对丁香姑娘的朦胧爱情,《再别康桥》中对母校的绵绵别情,《大堰河——我的保姆》中对“母亲”大堰河的赤子之情……教学时用“情”这根红线来贯穿,学生们会大有思想和情感的收获。别林斯基说:“情感是诗的天性中一个主要的活动因素,没有情感就没有诗人,也没有诗。”

这个单元中,有传统课文《沁园春 长沙》,这位伟人在诗中抒发的革命豪情,会让学生充分感受与理解,进而转化为一种崇高的人生理想;艾青的《大堰河——我的保姆》对这位普通中国农妇的描述和赞美,有象征主义和现实意义,引导学生发散联想,从而进行思想情感的教育。这些篇章都是对学生进行健康积极的人生观和审美观教育的好材料。

二、汲取民族文化的精华

第二单元关于文言文阅读的教学,作品中蕴涵的中华民族精神,为中学生形成一定的传统文化底蕴奠定基础:培养学生从历史发展的角度理解古代作品的内容价值,从中汲取民族智慧;用现代观念审视作品,评价其积极意义与历史局限。

《烛之武退秦师》中的烛之武,在国家危难面前,深明大义、义无反顾;在强秦面前,烛之武不卑不亢,睿智超群,能言善辩,聪慧机智。他的不计个人得失,处处为郑国安危着想的爱国主义精神,难能可贵,堪为楷模。

《荆轲刺秦王》中的易水送别,慷慨悲凉,动人心魄;忠义、刚直、果敢、机智的荆轲在国家多事之秋挺身而出,不避艰险的精神和气概令人扼腕叹惋,堪称“江湖侠骨”。

《鸿门宴》的过程曲折动人,极富戏剧性,人物形象更栩栩如生。文中的刘邦坚忍克己,胸怀大志,为了自己的宏图大业,他隐忍不发,甘居下坐。他善用人才,虚怀若谷,张良、樊哙等一批能臣勇士都对他忠心耿耿。他遇事冷静,当机立断,接受张良意见,笼络项伯。他能屈能伸,有勇有谋,给学生带来诸多感染。

三、引发深沉细腻的思索

第三单元是写人记事的散文,《记念刘和珍君》是鲁迅先生饱醮着热泪,用悲愤的笔调写下的一篇感人至深的散文,既有对爱国青年沉痛的悼念,又有对反动派愤怒的控诉,也有对觉醒的国民的呐喊。感情忧愤,爱憎鲜明,具有经典性人文性的特点。学生在学习前两个单元的基础上,掌握了鉴赏诗歌的技巧,鉴赏散文就较为容易,深入领会作者的思想感情,学会“披文以入情”,由“感”入“悟”的审美方法。文中描摹人物的音容笑貌,叙述人物的行为事迹,都融入了作者真挚的情感和深刻的感悟,对学生明辨是非,领悟时代精神和人生意义,有着重要的作用。

巴金的《小狗包弟》讲述了作者家中的一条可爱的小狗在“文革”中的悲惨遭遇,从一个侧面反映那个疯狂时代的惨无人道的现实;描写了小狗的悲惨遭遇留给作者心中永难磨灭的创痛,表达了深重的悲悯、歉疚和忏悔之情。(下转第12页)

(上接第7页)

这篇课文从一个侧面反映了十年动乱的社会现实,以及当时的人们普遍的命运穷困、人性扭曲的状况,由此而产生课文应有的认识教育作用,包括现在的高中生在内的所有中国人都不应该忘记那个年代;课文的价值还在于作者的深刻反省、自我拷问的警醒人心的力量,有助于学生形成高尚的人格和道德情操。巴金作为一个受害者站出来忏悔,这既是忏悔,是反思,是鞭挞,更是对生命的尊重,对反省历史的呼号,对光辉人性的呼唤。

梁实秋的《记梁任公先生的一次演讲》,偏重于记述讲演的过程,突出讲演者的形象。在那如火如荼的苦难岁月,梁任公重感情,轻名利,严于律己,坦诚待人。无论是做儿子、做丈夫、做学生,还是做父亲、做师长、做同事,他都能营造一个磁场,亮出一道风景。明镜似水,善解人意是他的常态,在某些关键时刻,则以大手笔写实爱的海洋,让海洋为宽容而定格,人间为之增色。在风云际会和星光灿烂的中国近代人才群体中,特别是在遐迩有知的重量级历史人物中,能在做人的问题上与梁启超比试者不多见。

四、激发灵魂深处的震撼

第四单元新闻报道,所选的三篇新闻的教育意义不可小觑。

《别了,“不列颠尼亚”》是众多关于香港回归的报道中最别致的一篇,作者没有写交接仪式现场多么庄严,也没有写欢庆回归的人们多么激动,而是选择了英方撤离这样一个角度,并且把末代港督乘英国皇家游艇“不列颠尼亚”号撤离香港这一事件放在一个历史的背景中,标志着长达150年的英国统治的终结,象征着英国殖民统治在香港的终结,中华民族的一段耻辱终告洗刷,从而突出了这一事件的历史意义,激发起学生的民族自豪感。

《奥斯维辛没有什么新闻》这篇消息是美国记者罗森塔尔战后访问奥斯维辛集中营博物馆之后采写的,成了新闻史上的佳作。

奥斯维辛集中营是纳粹德国在第二次世界大战期间建立的最大的集中营,被称为二战期间纳粹德国最大的“杀人工厂”,据统计报道有400万人在这里遭到了杀害。文中一些细节耐人寻味。比如,“在德国人撤退时炸毁的布热金卡毒气室和焚尸炉废墟上,雏菊花在怒放”。一边是戕害生命的毒气室和焚尸炉,一边是生机勃勃的生命,两种反差极大的事物摆在一起,这样的景象的确让人难忘。也许是讽刺,任纳粹刑罚多么残暴,终归阻止不了生命的进程;也许是控诉,生命的绽放是人世间最美好的事情,对生命的戕害是最恶劣的罪行。语文教师借此引导学生认识法西斯的暴行,激发学生热爱和平的美好情感。

《飞向太空的航程》这则通讯从“神舟5号”飞船发射成功写起,回顾了中国的载人航天史,字里行间充满了对民族发展进步的自豪感。中国载人航天的成功是中国科技史上的一个重大事件,每一个中国人都会感到自豪。课上,师生共同感受那个曾让十三亿人倍感自豪的经典时刻,在历史和现实的对照中,我们的喜悦和自豪显得更加凝重。

文章不是无情物,对中学生进行情感价值观教育,语文课不但有着义不容辞的义务,而且具备得天独厚的条件。我们语文教师应该乘着课程改革的东风,深入挖掘课文承载着的深厚的思想内涵,使语文课堂真正成为学生健康心灵的栖息地。

人教a版数学必修1教案 篇9

人教A版必修1

教学目标:

1.理解向量数乘的含义及向量数乘的运算律;

2.培养学生在学习向量数乘的过程中能够相互合作,在不断探求新知识中,培养学生抽象概括能力和逻辑思维能力.教学重点:

向量数乘的定义及几何意义.教学难点:

向量数乘的几何意义的理解.教学方法:

问题探究学习.教学过程:

一、情境引入

一条细绳横贯东西,一只蚂蚁在细绳上做匀速直线运动,若蚂蚁从O点向东方向一秒钟的位移对应的向量为a.a O A

二、学生活动

问题1 在图中作出同一方向上3秒钟的位移对应的向量,你能式子表示吗? 问题2 学生讨论3a是何种运算?3a是数量还是向量?(初步理解数与向量积的定义)

问题3 蚂蚁向西3秒钟的位移对应的向量又怎样表示?那a的大小和方向又如何确定?(学生继续探求向量数乘的含义,并能结合图形来继续对数乘进行探究)

三、建构数学 1.表述给出实数与向量的积的定义:

一般地,实数与向量a的积是一个向量,记作a,它的长度与方向规定如下:(1)|a||||a|;

(2)当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当a=0时,a=0;当0 时,a=0.

实数与向量a相乘,叫做向量的数乘.向量的加法、减法、数乘向量的综合运算叫向量的线性运算.2.对向量数乘理解的深入.问题4 当0 时,a=0;若a=0,0会有a=0吗?

问题5 实数有哪些运算律?能不能结合实数的运算律去探求向量数乘的运算律.(当给出几个实数的运算律之后,可以类比到向量进行以下运算律的验证).(1)(a)=()a;

(2)()a= a+a;

(3)(a+b)=a+b .

四、数学运用 1.例题.

例1 已知向量a和向量b,求作向量-2.5a和向量2a-3b.a b

例2 计算:

(1)3(a-b)-2(a+2b);

(2)2(2a+6b-3c)-3(-3a+4b-2c).课本思考:向量数乘与实数数乘有哪些相同点和不同点? 2.练习.(1)计算:

①3(-4a+5b);② 6(2a-4b)-(3a-2b).(2)如图,已知向量a,b,求作向量: ①-2a; ②-a+b;

a

b ③2a-b.(3)已知向量a=e1+2e2,b=3e1-5e2,求4a-3b(用e1,e2表示).(4)已知OA和OB是不共线的向量,APtABtR,试用OA和OB表示OP.1(5)已知非零向量a,求向量a的模.|a|

人教a版数学必修1教案 篇10

教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

型:新授课 教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;

(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

教学重点:集合的基本概念与表示方法;

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程:

一、引入课题

军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高

二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容

二、新课教学

(一)集合的有关概念

1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。4.关于集合的元素的特征

(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。(3)集合相等:构成两个集合的元素完全一样 5.元素与集合的关系;

(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作aA(或 a A)(举例)

6.常用数集及其记法

非负整数集(或自然数集),记作N 正整数集,记作N*或N+; 整数集,记作Z 有理数集,记作Q 实数集,记作R

(二)集合的表示方法

我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1)列举法:把集合中的元素一一列举出来,写在大括号内。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…; 例1.(课本例1)思考2,引入描述法

说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…; 例2.(课本例2)说明:(课本P5最后一段)思考3:(课本P6思考)

强调:描述法表示集合应注意集合的代表元素

{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(三)课堂练习(课本P6练习)

三、归纳小结

本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

四、作业布置

书面作业:习题1.1,第1-4题

人教a版数学必修1教案 篇11

课程标准的要求是:“简述辛亥革命的主要过程, 认识推翻君主专制制度、建立中华民国的历史意义。”笔者的理解是:“了解辛亥革命爆发的背景、过程;着重理解辛亥革命的积极意义。”

教科书关于本科有三目:武昌起义;中华民国成立;中国民主进程的丰碑。其中基于辛亥革命是20世纪中国的第一次历史巨变, 是中国近代化进程中的重要环节, 所以可以整合为:辛亥革命的酝酿;辛亥革命的爆发;辛亥革命的结果;辛亥革命的评价。通过学习, 学生感悟到中国人民反侵略求民主的艰难历程, 也让他们的多角度评价历史事件的意识也开始形成。

二、学情分析

高一学生还停留初中认知水平阶段, 再加上对历史科不重视, 于此教师需要对深层次的东西表象化, 形象化, 激发学生正在形成的独立性和批判性, 引导学生的理性思考, 从而满足他们学习的内在需求。

三、教材分析

本单元的主题是救亡图存。近代中国人民面对列强侵华, 进行了一系列反抗侵略、求民主的抗争与探索, 从而使中国逐步走向近代化的历程, 其中辛亥革命是中国近代化的里程碑。孙中山先生是20世纪中国走在时代前列的第一个伟人, 为中国的进步和发展做出了巨大的贡献。因此我们这节课的线索就是革命的发展历程及其评价。

教学重点:革命的背景, 多角度评价辛亥革命

教学难点:多角度评价辛亥革命

四、教学目标

1.知识与能力

(1) 识记清末新政和预备立宪, 革命思想的传播;革命团体的建立;中国同盟会;武昌起义, 中华民国成立;《临时约法》;袁世凯篡权。

(2) 理解辛亥革命的积极意义及局限性。

2.过程与方法

(1) 运用唯物史观和辩证史观分析、评价历史问题。

(2) 学会概括历史事件的能力

3.情感态度与价值观

(1) 学习孙中山越挫越勇的革命精神。

(2) 认识辛亥革命为中国的进步趋势打开了历史闸门。

五、教学过程

(一) 导入新课

播放剪辑视频《胡锦涛在纪念辛亥革命100周年上的讲话》

设计意图:学生认识辛亥革命是一次资产阶级民主革命, 是中国20世纪的第一次历史巨变, 明确20世纪三次巨变所处的地位, 增强学生宏观化历史的感觉, 以及学习革命先辈的爱国主义精神, 激发学生的历史责任感和使命感。

(二) 革命的酝酿

以表格为载体, 结合材料, 师生共同探究辛亥革命酝酿的背景。

设计意图:认识辛亥革命的酝酿是从资本主义经济发展到民族资产阶级的强大、从政治纲领的提出到组织的建立、从人民的斗争到武装起义, 一度前行。

(三) 革命的爆发

播放并展示有关武昌起义的视频和形势图和素材

设计意图:培养学生加深对武昌起义的印象, 更加直观地认识民主共和整体架构, 真切感受《临时约法》这第一部资产阶级民主宪法对民主共和的热切追求。

(四) 革命的结局

对于辛亥革命的结局有胜利说, 也有失败说。

成功说:辛亥革命推翻了清王朝, 结束了中国延续两千多年的封建帝制, 创立中华民国, 使民主共和观念深入人心。

失败说:辛亥革命没有改变中国社会的性质, 没有完成反帝反封建的任务。

设计意图:培养学生运用唯物史观和辩证史观评价历史事物, 从而多种角度思考辛亥革命的结局。

(五) 革命的评价

结合一些材料, 对运用多元史观评价辛亥革命的积极意义。如:

1.从革命史观看辛亥革命是中国历史上第一次完整意义上的伟大的资产阶级民主革命, 一方面推翻了清王朝封建统治, 结束了两千多年的封建君主专制制度;另一方面建立了中华民国, 颁布《中华民国临时约法》, 使民主共和观念深入人心。”孙中山是中国民主主义革命的伟大的先行者。

2.从整体史观看辛亥革命是亚洲觉醒的组成部分, 推动了世界 (首先是亚洲) 资产阶级革命的发展。孙中山是中国近代放眼看世界的伟大智者。

3.从文明史观看辛亥革命促进了中国农业文明向工业文明的转变, 在政治文明结束了封建帝制, 建立了共和国, 是具有重要意义的制度创新, 是政治文明的重大成果;民主共和的观念深入人心, 社会风俗习惯发生巨大变化, 在精神文明建设方面取得巨大成果;物质文明也取得重大成果, 它促进民族资本主义进一步发展。总之, 辛亥革命是中华文明发展史上的一个重要里程碑。孙中山在中华文明发展史上占有重要地位。

4.从社会史观看以剪发辫、废除跪拜礼和大人老爷等称号的移风易俗举措使得民国时期社会风尚为之一新。

5.从现代化史观看辛亥革命是一次深刻的近代化运动, 它促进了中国政治、经济、思想文化近代化。孙中山是中国近代化的先驱。

(六) 课堂延伸

结合中国近现代史, 评析材料中关于“革命与改良”的观点。

材料从七十年代末起, 我多次说, 应当对辛亥革命等等重新认识、研究、分析和评价, 应该理性地分析和了解革命方式的弊病, 包括它给社会带来的各种破坏。……确实有巨大的破坏力量, 它可以改变人们的存在方式, 但是, 以为革命可以解决一切问题, 确实是一种幼稚病。……调整和自我完善, 不是关门主义, 而是和世界沟通的调整和完善。它是对各种关系包括政治、经济、文化关系逐步进行改良。———李泽厚、刘再复《告别革命》

设计意图:培养学生逐渐形成探究历史问题的能力和实事求是的科学态度, 提高创新意识和实践能力。

六、教学反思

上一篇:促进农村生态文明建设取得成效下一篇:职称聘任管理实施办法