高中生物学知识点总结(精选8篇)
必修(1)分子与细胞
第一章
走近细胞
第一节
从生物圈到细胞
一、相关概念、细胞:是生物体结构和功能的基本单位。除了病毒以外,所有生物都是由细胞构成的。
细胞是地球上最基本的生命系统
生命系统的结构层次:
细胞→组织→器官→系统→个体→种群→群落→生态系统→生物圈
二、病毒的相关知识:1、病毒是一类没有细胞结构的生物体。
主要特征:①、仅具有一种类型的核酸,DNA或RNA,没有含两种核酸的病毒;
②、结构简单,一般由核酸(DNA或RNA)和蛋白质外壳所构成。
③、专营细胞内寄生生活;
2、根据病毒所含核酸种类的不同分为DNA病毒和RNA病毒(常见的RNA病毒有:
SARS病毒、(HIV)[引起艾滋病(AIDS)]、烟草花叶病毒等。
第二节
细胞的多样性和统一性
一、细胞种类:根据细胞内有无以核膜为界限的细胞核,把细胞分为原核细胞和真核细胞
二、原核细胞和真核细胞的比较:(P8)
1、原核细胞:细胞较小,没有成形的细胞核;遗传物质(一个环状DNA分子)集中的区域称为拟核;没有染色体,DNA
不与蛋白质结合,;细胞器只有核糖体;有细胞壁(支原体除外),成分与真核细胞不同。
2、真核细胞:细胞较大,有核膜、有核仁、有成形的细胞核;有一定数目的染色体(DNA与蛋白质结合而成);
一般有多种细胞器(如线粒体、叶绿体,内质网等)。
3、原核生物:由原核细胞构成的生物。如:蓝藻(包括蓝球藻、颤藻和、念珠藻及发菜)、细菌(如硝化细菌、乳酸菌、大肠杆菌、肺炎双球菌)、放线菌、支原体等都属于原核生物。
4、真核生物:由真核细胞构成的生物。如动物(草履虫、变形虫)、植物、真菌(酵母菌、霉菌、磨菇等)等。
蓝藻是细胞内含有藻蓝素和叶绿素,是能进行光合作用的自养生物。细菌中的绝大多数种类是营腐生或寄生生活的异养生物,但也有硝化细菌等少数种类的细菌是自养型生物。(P9)
三、细胞学说的建立:
1、细胞学说的主要建立者:德国科学家施莱登和施旺
2、细胞学说的要点:(1)细胞是一个有机体,一切植物、动物都是由细胞发育而来(2)细胞是一个相对独立的单位(3)新细胞可以从老细胞中产生。
3、这一学说揭示了生物体结构的统一性,生物界的统一性;
第二章
组成细胞的分子
第一节
细胞中的元素和化合物
一、1、生物界与非生物界具有统一性:组成细胞的化学元素在非生物界都可以找到
2、生物界与非生物界存在差异性:组成生物体的化学元素在细胞内的含量与在非生物界中的含量明显不同
大量元素:C、O、H、N、S、P、Ca、Mg、K等;
微量元素:Fe、Mn、B、Zn、Cu、Mo;
二、最基本元素:C;
主要元素;C、O、H、N、S、P;(含量占细胞鲜重97%以上)
细胞含量最多4种元素(也称基本元素):C、O、H、N;
组成细胞的化合物:无机物(水和无机盐)和有机物(蛋白质、脂质、糖类和核酸)
三、在活细胞中含量最多的化合物是水V
;含量最多的有机物是蛋白质;占细胞鲜重比例最大的化学元素是O、占细胞干重比例最大的化学元素是C。
第二节
生命活动的主要承担者------蛋白质
一、相关概念:
氨
基
酸:蛋白质的基本组成单位,组成蛋白质的氨基酸约有20种。
脱水缩合:一个氨基酸分子的氨基(—NH2)与另一个氨基酸分子的羧基(—COOH)相连接,同时失去一分子水
肽
键:肽链中连接两个氨基酸分子的化学键(—NH—CO—)。)))
二
肽:由两个氨基酸分子缩合而成的化合物,只含有一个肽键。
多
肽:由三个或三个以上的氨基酸分子缩合而成的链状结构。
肽
链:多肽通常呈链状结构,叫肽链。
二、氨基酸分子通式:
三、氨基酸结构的特点:每种氨基酸分子至少含有一个氨基(—NH2)和一个羧基(—COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上;
R基的不同导致氨基酸的种类不同。四、蛋白质多样性的原因是:组成蛋白质的氨基酸种类、数目、排列顺序不同,多肽链空间结构千变万化。
五、蛋白质的主要功能(生命活动的主要承担者):
①
构成细胞和生物体的重要物质,如肌动蛋白;
②
催化作用:绝大多数的酶;
③
调节作用:一些激素如胰岛素、生长激素;
④
免疫作用:如抗体,抗原;
⑤
运输作用:如红细胞中的血红蛋白。细胞膜上的载体
六、有关计算:
①
肽键数
=
脱去水分子数
=
氨基酸数目
—
肽链数
②
至少含有的羧基(—COOH)或氨基数(—NH2)
=
肽链数
第三节
遗传信息的携带者------核酸
一、核酸的种类:脱氧核糖核酸(DNA)和核糖核酸(RNA)
二、核酸的作用:是细胞内携带遗传信息的物质,对于生物的遗传、变异和蛋白质的合成具有重要作用。
三、组成核酸的基本单位是:核苷酸,是由一分子磷酸、一分子五碳糖(DNA为脱氧核糖、RNA为核糖)和一分子含氮碱基组成;组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸。
四、DNA所含碱基有:ATGC
RNA所含碱基有:AUGC
五、核酸的分布:真核细胞的DNA主要分布在细胞核
中;线粒体、叶绿体内也含有少量的DNA;RNA主要分布在细胞质中。
第四节
细胞中的糖类和脂质
一、相关概念:
糖类:是生物体的主要能源物质;主要分为单糖、二糖和多糖等
二、糖类的比较:
分类
元素
常见种类
分布
主要功能
单糖
(是不能再水解的糖)
C
H
O
核糖
动植物
组成核酸
脱氧核糖
葡萄糖、果糖、半乳糖
重要能源物质
二糖
(是水解后能生成两分子单糖的糖)
蔗糖
植物
∕
麦芽糖
乳糖
动物
多糖
(是水解后能生成许多单糖的糖,基本组成单位都是葡萄糖)
淀粉
植物
植物贮能物质
纤维素
细胞壁主要成分
糖原(肝糖原、肌糖原)
动物
动物贮能物质
三、脂质的比较:
分类
常见种类
功能
脂质
脂肪
∕
1、主要储能物质2、保温3、减少摩擦,缓冲和减压
磷脂
∕
细胞膜的主要成分
固醇
胆固醇
性激素
维持生物第二性征,促进生殖器官发育
维生素D
有利于Ca、P吸收
第五节
细胞中的无机物
一、有关水的知识要点
存在形式
含量
功能
联系
水
自由水
约95%
1、良好溶剂
2、参与反应
3、运送养料
它们可相互转化;代谢旺盛时自由水含量增多,反之,含量减少。
结合水
约4.5%
细胞结构的重要组成成分
二、无机盐(绝大多数以离子形式存在)功能:
①、构成某些重要的化合物,如:叶绿素中含Mg、血红蛋白中含Fe等
②、维持生物体的生命活动(如动物缺钙会抽搐)
第三章
细胞的基本结构
第一节
细胞膜------系统的边界
一、细胞膜的成分:主要是脂质(主要是磷脂)和蛋白质,还有糖类
二、细胞膜的功能:P42
①、将细胞与外界环境分隔开
②、控制物质进出细胞
③、进行细胞间的信息交流
三、植物细胞还有细胞壁,主要成分是纤维素和果胶,对细胞有支持和保护作用
第二节
细胞器----系统内的分工合作
一、相关概念:
细
胞
质:细胞质主要包括细胞质基质和细胞器。
细胞质基质:细胞质内呈液态的部分是基质。是细胞进行新陈代谢的主要场所。
细
胞
器:细胞质中具有特定功能的各种亚细胞结构的总称。
二、细胞器的比较:
1、线粒体:(呈粒状、棒状,具有双层膜,普遍存在于动、植物细胞中,内有少量DNA和RNA,),线粒体是细胞进行有氧呼吸的主要场所,生命活动所需要的能量,大约95%来自线粒体,是细胞的“动力车间”
2、叶绿体:(呈扁平的椭球形或球形,具有双层膜,主要存在绿色植物叶肉细胞里),叶绿体是植物进行光合作用的细胞器,是植物细胞的“养料制造车间”和“能量转换站”,(含有叶绿素和类胡萝卜素,还有少量DNA和RNA,)。
3、核糖体:椭球形粒状小体,有些附着在内质网上,有些游离在细胞质基质中。是细胞内将氨基酸合成蛋白质的场所。
4、内质网:由膜结构连接而成的网状物。参与细胞内蛋白质合成和加工,以及脂质合成的“车间”
5、高尔基体:在植物细胞中与细胞壁的形成有关,在动物细胞与蛋白质(分泌蛋白)的加工、分类运输有关。
6、中心体:存在于动物细胞和低等植物细胞,与细胞的有丝分裂有关。
7、液泡:主要存在于成熟植物细胞中,液泡内有细胞液。化学成分:有机酸、生物碱、糖类、蛋白质、无机盐、色素等。有维持细胞形态、储存养料、调节细胞渗透吸水的作用。
8、溶酶体:有“消化车间”之称,内含多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌。
归纳:1、具有双层膜结构的细胞器:线粒体和叶绿体(细胞核具有双层膜但不是细胞器);无膜结构的细胞器是核糖体和中心体;其它细胞器(包括内质网、高尔基体、液泡、溶酶体)具有单层膜。(细胞膜具有单层膜也不属细胞器)
2、与能量转化有关并含有少量DNA和RNA的细胞器:线粒体和叶绿体。
3、含有色素的细胞器:叶绿体和液泡
三、分泌蛋白的合成和运输:
核糖体(合成肽链)→内质网(加工)→高尔基体(加工)→细胞膜→细胞外
与这一过程间接有关的细胞器还有线粒体(提供能量)
四、生物膜系统:P49
组成:包括细胞器膜、细胞膜和核膜等。
作用:(1)使细胞具有一个相对稳定的内部环境,并在细胞与外部环境进行物质运输、能量转换和信息传递的过程中起着决定性的作用。(2)广阔的膜面积为多种酶提供了大量的附着位点。(3)将细胞器分开,使细胞内同时进行的多种化学反应互不干扰,使生命活动高效、有序地进行。
第三节
细胞核----系统的控制中心
一、细胞核的功能:是遗传信息库,是细胞代谢和遗传的控制中心;
二、细胞核的结构:
1、染色质:主要由DNA和蛋白质组成,染色质和染色体是同一物质在细胞不同时期的两种存在状态。
2、核
膜:双层膜,把核内物质与细胞质分开。
3、核
仁:与核糖体的形成有关。4、核
孔:
第四章
细胞的物质输入和输出
第一节
物质跨膜运输的实例
一、渗透作用:水分子(溶剂分子)通过半透膜的扩散作用。
二、原生质层:细胞膜和液泡膜以及两层膜之间的细胞质。
三、发生渗透作用的条件:1、具有半透膜
2、半透膜两侧有浓度差
四、细胞的吸水和失水:
外界溶液浓度>细胞内溶液浓度→细胞失水
外界溶液浓度<细胞内溶液浓度→细胞吸水
第二节
生物膜的流动镶嵌模型
一、细胞膜结构:
磷脂
蛋白质
糖类
↓
↓
↓
磷脂双分子层
“镶嵌,贯穿蛋白”
糖被
二、1972年,桑格和尼克森提出生物膜的流动镶嵌模型。
结构特点:具有一定的流动性
细胞膜
(生物膜)
功能特点:选择透过性
第三节
物质跨膜运输的方式
一、自由扩散、协助扩散和主动运输的比较:
比较项目
运输方向
是否要载体
是否消耗能量
代表例子
自由扩散
高浓度→低浓度
不需要
不消耗
O2、CO2、H2O、乙醇、甘油等
协助扩散
高浓度→低浓度
需要
不消耗
葡萄糖进入红细胞等
主动运输
低浓度→高浓度
需要
消耗
葡萄糖、氨基酸、各种离子等
三、离子和小分子物质主要以被动运输(自由扩散、协助扩散)和主动运输的方式进出细胞;
大分子和颗粒物质进出细胞的主要方式是胞吞作用和胞吐作用。第五章细胞的能量供应和利用
第一节
降低化学反应活化能的酶
一、相关概念:
酶:是活细胞(来源)所产生的具有催化作用(功能:降低化学反应活化能,提高化学反应速率)的一类有机物。其中绝大多数是蛋白质,少数种类是RNA。
活
化
能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量。
二、酶的特性:
①、高效性:催化效率比无机催化剂高许多。
②、专一性:每种酶只能催化一种或一类化合物的化学反应。例如脂肪酶水解脂肪
③、酶需要较温和的作用条件:在最适宜的温度和pH下,酶的活性最高。温度过高、PH过高或过低会使酶变性;但低温只会使酶的活性降低,酶不会变性,当温度升高时酶的活性会逐渐恢复。
第二节
细胞的能量“通货”-----ATP
一、ATP的结构简式:ATP是三磷酸腺苷的英文缩写,结构简式:A-P~P~P,其中:“A”代表腺苷,“P”代表磷酸基团,“~”代表高能磷酸键,“-
”代表普通化学键。
ADP+Pi+能量
酶1
ATP
ATP
酶2
ADP+Pi+能量
这个过程储存的能量来自:动物中为呼吸作用转
这个过程释放能量,用于一切生命活动。
移的能量,植物中来自光合作用和呼吸作用。
注:在ATP
和
ADP转化过程中物质是可逆,能量是不可逆的第三节ATP的主要来源------细胞呼吸
一、相关概念:
1、细胞呼吸:指有机物在细胞内经过一系列的氧化分解,最终生成二氧化碳或其它产物,释放出能量并生成ATP的过程。根据是否有氧参与,分为:有氧呼吸和无氧呼吸
2、有氧呼吸:指细胞在有氧的参与下,通过多种酶的催化作用下,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放出大量能量,生成ATP的过程。
酶
3、无氧呼吸:一般是指细胞在缺氧的条件下,通过酶的催化作用,把葡萄糖等有机物分解为不彻底的氧化产物(酒精、CO2或乳酸),同时释放出少量能量的过程。
二、有氧呼吸的总反应式:
C6H12O6
+6H2O+
6O2
6CO2
+
12H2O
+
能量
酶
三、无氧呼吸的总反应式:
C6H12O6
2C2H5OH(酒精)+
2CO2
+
少量能量(植物,酵母菌等)
酶
或
C6H12O6
2C3H6O3(乳酸)+
少量能量(乳酸菌,人和动物,马铃薯块茎,甜菜的块根等)
四、有氧呼吸过程(主要在线粒体中进行):
场所
发生反应
产物
第一阶段
细胞质
基质
葡萄糖
酶
2丙酮酸
少量能量
[H]
+
+
丙酮酸、[H]、释放少量能量,形成少量ATP
第二阶段
线粒体
6CO2
6H2O
酶
2丙酮酸
少量能量
[H]
+
+
+
CO2、[H]、释放少量能量,形成少量ATP
第三阶段
H2O
酶
大量能量
[H]
+
+
线粒体
O2
生成H2O、释放大量能量,形成大量ATP
五、有氧呼吸与无氧呼吸的比较:
呼吸方式
有氧呼吸
无氧呼吸
不
同
点
场所
细胞质基质,线粒体基质、内膜
细胞质基质
条件
氧气、多种酶
无氧气参与、多种酶
物质变化
葡萄糖彻底分解,产生
CO2和H2O
葡萄糖分解不彻底,生成乳酸或酒精等
能量变化
释放大量能量(1161kJ被利用,其余以热能散失),形成大量ATP
释放少量能量,形成少量ATP
六、影响呼吸速率的外界因素:
1、温度:温度通过影响细胞内与呼吸作用有关的酶的活性来影响细胞的呼吸作用。温度过低或过高都会影响细胞正常的呼吸作用。在一定温度范围内,温度越低,细胞呼吸越弱;温度越高,细胞呼吸越强。
2、氧气:氧气充足,则无氧呼吸将受抑制;氧气不足,则有氧呼吸将会减弱或受抑制。
第四节
能量之源----光与光合作用
一、相关概念:
1、光合作用:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧气的过程
二、光合色素:叶绿素a,叶绿素b,胡萝卜素,叶黄素
三、光合作用的过程:
光
反
应
阶
段
条件
光、色素、酶
场所
光
酶
在类囊体的薄膜上
物质变化
水的分解:H2O
→
[H]
+
O2↑
ATP的生成:ADP
+
Pi
→
ATP
能量变化
光能→ATP中的活跃化学能
暗
反
应
阶
段
条件
酶、ATP、[H]
场所
酶
叶绿体基质
物质变化
酶
CO2的固定:CO2
+
C5
→
2C3
ATP
C3的还原:
C3
+
[H]
→
(CH2O)
能量变化
光能
ATP中的活跃化学能→(CH2O)中的稳定化学能
总反应式
叶绿体
CO2
+
H2O
O2
+
(CH2O)
四、影响光合作用的外界因素主要有:
1、光照强度:
2、温度:
3、二氧化碳浓度:
第六章
细胞的生命历程
一、细胞不能无限长大:1)细胞表面积与体积的关系限制了细胞的长大;
2)细胞太大,细胞核的负担就会过重。
二、细胞是以分裂的方式进行增殖。
真核细胞分裂方式包括有丝分裂、无丝分裂和减数分裂。有丝分裂:
1)细胞周期:连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止。包括分裂间期和分裂期。
2)分裂间期:时间____,完成DNA分子的复制和有关蛋白质的合成3)
分裂期:
前期:膜仁消失两体现中期:形定数晰赤道齐。后期:点裂体分向两极。末期:两体消失膜仁现。
植物细胞:在赤道板位置上出现细胞板,并由细胞板扩展形成细胞壁。
动物细胞:由细胞膜从细胞中部向内凹陷,把细胞缢裂成两部分。
三、细胞分化
细胞的分化:在个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程。
细胞分化的意义:生物界普遍存在的生命现象,是生物个体发育的基础。发生在个体发育的全过程,胚胎时期达到最大。细胞分化使多细胞生物体中的细胞趋向专门化,有利于提高各种生理功能的效率。
细胞分化的实质:基因的选择性表达
细胞全能性:指已经分化的细胞,仍然具有发育成完整个体的能力。
四、细胞衰老的特征:1)细胞内的水分减少,2)细胞内多种酶的活性降低3)色素会随着衰老而逐渐积累
4)细胞内呼吸速率减慢5)细胞膜通透性改变,五、细胞凋亡和细胞坏死
细胞的凋亡:由基因所决定的细胞自动结束生命的过程。也称细胞编程性死亡。实例:细胞的自然更新,被病原体感染细胞的清除,蝌蚪尾部消失等。
细胞坏死:种种不利因素影响下,由于细胞正常代谢活动受损或中断引起的细胞损伤和死亡。
六、癌细胞的特征:1)能够无限增殖;2)形态结构发生变化3)表面发生变化,糖蛋白减少,致癌因子:物理致癌因子,化学致癌因子和病毒致癌因子
病因:原癌基因和抑癌基因发生突变,导致正常细胞的生长和分裂失控而变成癌细胞。
必修(2)遗传与进化
第一章
遗传因子的发现
第一节孟德尔的豌豆杂交实验(一)
一、孟德尔一对相对性状的杂交实验
1、选择豌豆作为实验材料的优点:(1)豌豆是自花传粉植物,且是闭花授粉的植物;
(2)豌豆具有易于区分的性状。
2、实验过程(P-4)
3、对分离现象的解释(P-5)
4、对分离现象解释的验证:测交(P-7)
例:现有一株紫色豌豆,如何判断它是显性纯合子(AA)还是杂合子(Aa)?
二、相关概念
1、相对性状:同一种生物的同一种性状的不同表现类型。
2、显性性状与隐性性状
显性性状:具有相对性状的两个亲本杂交,F1表现出来的性状。
隐性性状:具有相对性状的两个亲本杂交,F1没有表现出来的性状。
性状分离:在杂种后代中出现不同于亲本性状的现象
2、显性基因与隐性基因
显性基因:控制显性性状的基因。用大写字母表示
隐性基因:控制隐性性状的基因。用小写字母表示
等位基因:位于一对同源染色体相同位置控制相对性状的基因。如D与d基因。
3、纯合子与杂合子
纯合子:由相同基因的配子结合成的合子发育成的个体(能稳定的遗传,自交后代不发生性状分离):分为显性纯合子(如AA的个体)和隐性纯合子(如aa的个体)
杂合子:由不同基因的配子结合成的合子发育成的个体(不能稳定的遗传,自交后代会发生性状分离)
4、表现型与基因型
表现型:指生物个体实际表现出来的性状。
基因型:与表现型有关的基因组成。(关系:基因型+环境=表现型)
5、杂交与自交
杂交:基因型不同的生物体间相互交配。
自交:基因型相同的生物体间相互交配。
测交:让F1与隐性纯合子杂交。(可用来测定F1的基因型,属于杂交)
三、基因分离定律的实质:
在减I分裂后期,等位基因随着同源染色体的分开而分离。
四、基因分离定律的两种基本题型:
l
正推类型:(亲代→子代)
亲代基因型
子代基因型及比例
子代表现型及比例
⑴
AA×AA
AA
全显
⑵
AA×Aa
AA
:
Aa=1
:
全显
⑶
AA×aa
Aa
全显
⑷
Aa×Aa
AA
:
Aa
:
aa=1
:
:
显:隐=3
:
⑸
Aa×aa
Aa
:
aa
=1
:
显:隐=1
:
⑹
aa×aa
aa
全隐
l
逆推类型:(子代→亲代)
亲代基因型
子代表现型及比例
⑴
至少有一方是AA
全显
⑵
aa×aa
全隐
⑶
Aa×Aa
显:隐=3
:
⑷
Aa×aa
显:隐=1
:
u
无中生有为隐性;有中生无为显性
五、孟德尔遗传实验的科学方法:
1)正确地选用试验材料;
2)分析方法科学;(单因子→多因子)
3)应用统计学方法对实验结果进行分析;
4)科学地设计了试验的程序。
第二节孟德尔的豌豆杂交实验(一)
一、基因自由组合定律的实质:
在减I分裂后期,非等位基因随着非同源染色体的自由组合而自由组合。
(注意:非等位基因要位于非同源染色体上才满足自由组合定律)
二、基因自由组合定律思路:“先分开、再组合”(即一对性状一对性状计算,然后再相乘)
如AaBb×AaBb
1)后代基因型种类:3×3=9种
2)表现型种类:2×2=4种
3)后代出现AABb的概率:1/4×1/2=1/8
4)后代出现显性显性(A_B_)的概率:3/4×3/4=9/16
三、基因自由组合定律的应用
第二章
基因和染色体的关系
第一节减数分裂和受精作用
一、相关概念:
1、减数分裂:进行有性生殖的生物,在产生成熟生殖细胞时,进行染色体数目减半的细胞分裂。在减数分裂过程中,染色体只复制一次,而细胞分裂两次。减数分裂的结果是,成熟生殖细胞中的染色体数目比原始生殖细胞减少一半。一个精原细胞减数分裂形成四个精细胞,一个卵原细胞形成一个卵细胞和三个极体。
2、同源染色体:形态和大小一般都相同,一条来自父方,一条来自母方。
3、联会:同源染色体两两配对的现象。
4、四分体:联会后的同源染色体含有四条染色单体。
二、精子(形成场所:睾丸)与卵细胞(形成场所:卵巢)的形成过程及特征
减Ⅰ的特征:同源染色体分开,分别移向细胞两极,非同源染色体自由组合减Ⅱ的特征:着丝点分裂,染色单体分开形成子染色体
第二节
基因在染色体上
一、萨顿的假说:基因在染色体上,因为基因和染色体行为存在着明显的平行关系。
二、一条染色体上一般含有多个基因,且这多个基因在染色体上呈线性排列;染色体是基因的主要载体,除此之外还有叶绿体和线粒体。第三节
伴性遗传
1、伴性遗传基因型的写法
先写出性染色体,男性XY,女性XX,再在性染色体的右上角写上基因
2、伴X隐性遗传的特点:
①
男性患者多于女性患者
②
隔代遗传,交叉遗传
③
母病子必病,女病父必病
3、家族系谱图中遗传病遗传方式的快速判断
无中生有为隐性→病女父或子正常为常隐
有中生无为显性→病男母或女正常为常显
附:常见遗传病类型(要记住):
伴X染色体隐性遗传病:色盲、血友病
伴X染色体显性遗传病:抗维生素D佝偻病
常染色体隐性:先天性聋哑、白化病
常染色体显性:多(并)指
第三章基因的本质
第一节DNA是主要的遗传物质
一、肺炎双球菌的转化实验
(一)格里菲思的体内转化实验
1、肺炎双球菌有两种类型类型:
l
S型细菌:有毒性
l
R型细菌:无毒性
2、实验过程(P-43)
3、实验证明:无毒性的R型活细菌与被加热杀死的有毒性的S型细菌混合后,转化为有毒性的S型活细菌。这种性状的转化是可以遗传的。推论(格里菲思):在第四组实验中,已经被加热杀死S型细菌中,必然含有某种促成这一转化的活性物质—“转化因子”。
(二)艾弗里的体外转化实验:
1、实验过程:(P-44)
2、实验证明:DNA才是R型细菌产生稳定遗传变化的物质。(即:DNA是遗传物质,蛋白质等不是遗传物质)
二、赫尔希和蔡斯噬菌体侵染细菌的实验
1、T2噬菌体机构和元素组成:
2、实验方法:同位素示踪法
3、实验结论:子代噬菌体的各种性状是通过亲代的DNA遗传的。(即:DNA是遗传物质)
四、小结:
细胞生物
(真核、原核)
非细胞生物
(病毒)
核酸
DNA和RNA
DNA
RNA
遗传物质
DNA
DNA
RNA
因为绝大多数生物的遗传物质是DNA,所以DNA是主要的遗传物质。
第二节
DNA的结构和DNA的复制:
一、DNA的结构
1、DNA的组成元素:C、H、O、N、P2、DNA的基本单位:脱氧核苷酸(4种)
3、DNA的结构:
①由两条、反向平行的脱氧核苷酸链盘旋成双螺旋结构。
②外侧:脱氧核糖和磷酸交替连接构成基本骨架。
内侧:由氢键相连的碱基对组成。
③碱基配对有一定规律:
A
=
T;G
≡
C。(碱基互补配对原则)
4、DNA的特性:
①多样性:碱基对的排列顺序是千变万化的。(排列种数:4n(n为碱基对对数)
②特异性:每个特定DNA分子的碱基排列顺序是特定的。
5、DNA的功能:携带遗传信息(DNA分子中碱基对的排列顺序代表遗传信息)。
6、与DNA有关的计算:在双链DNA分子中:①
A=T、G=C
②任意两个非互补的碱基之和相等;且等于全部碱基和的一半
二、DNA的复制
1、概念:以亲代DNA分子两条链为模板,合成子代DNA的过程2、时间:有丝分裂间期和减Ⅰ前的间期
3、场所:主要在细胞核
4、过程:(P-54)①解旋
②合成子链
③子、母链盘绕形成子代DNA分子
5、特点:
半保留复制,边解旋边复制
6、原则:碱基互补配对原则
7、条件:①模板:亲代DNA分子的两条链
②原料:4种游离的脱氧核糖核苷酸
③能量:ATP
④
酶:解旋酶、DNA聚合酶等
8、DNA能精确复制的原因:
①双螺旋结构为复制提供了精确的模板;②碱基互补配对原则保证复制能够准确进行。
9、意义:DNA分子复制,使遗传信息从亲代传递给子代,从而确保了遗传信息的连续性。
10、与DNA复制有关的计算:
复制出DNA数
=2n(n为复制次数),含亲代链的DNA数
=2
三、基因是有遗传效应的DNA片段
第四章基因的表达
1、转录:(1)概念:在细胞核中,以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。
(2)过程(P-63)
(3)条件:模板:DNA的一条链(模板链)
原料:4种核糖核苷酸
能量:ATP
酶:解旋酶、RNA聚合酶等
(4)原则:碱基互补配对原则(A—U、T—A、G—C、C—G)
2、翻译:
(1)概念:游离在细胞质中的各种氨基酸,以mRNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。(密码子:
mRNA上决定一个氨基酸的3个相邻的碱基,叫做一个“遗传密码子”。)
(2)过程:(P-64)
(3)条件:模板:mRNA
原料:氨基酸(20种)
能量:ATP
搬运工具:tRNA
场所:核糖体
(4)原则:碱基互补配对原则
(5)产物:多肽链
3、与基因表达有关的计算
基因中碱基数:mRNA分子中碱基数:氨基酸数
=
6:3:1
四、基因对性状的控制
1、中心法则
2、基因控制性状的方式:
(1)通过控制酶的合成来控制代谢过程,进而控制生物的性状;
(2)通过控制蛋白质结构直接控制生物的性状。
第五章
突变和基因重组
第一节
基因突变和基因重组
1、概念:是指DNA分子中碱基对的替换、增添和缺失,而引起基因结构的改变。
例如:镰刀型细胞贫血症
直接原因:组成血红蛋白的一条肽链上的氨基酸发生改变(谷氨酸→缬氨酸)
根本原因:控制合成血红蛋白的基因发生碱基对的替换。
2、原因:物理因素:X射线、激光等;化学因素:亚硝酸盐等;生物因素:病毒、细菌等。
3、特点:①普遍性
②不定向性
③随机性
④多害少利性
⑤低频性
4、时间:细胞分裂间期(DNA复制时期)
5、应用——诱变育种
①方法:用射线、激光、化学药品等处理生物。②原理:基因突变
③实例:高产青霉菌株的获得
④优缺点:加速育种进程,大幅度地改良某些性状,但有利变异个体少。
6、意义:①是生物变异的根本来源;②为生物的进化提供了原始材料;③是形成生物多样性的重要原因之一。
(二)基因重组
1、概念:是指生物体在进行有性生殖的过程中,控制不同性状的基因重新组合的过程。
2、种类:
①基因的自由组合:减数分裂(减Ⅰ后期)形成配子时,随着非同源染色体的自由组合,位于这些染色体上的非等位基因也自由组合。
②基因的交叉互换:减Ⅰ四分体时期,同源染色体上(非姐妹染色单体)之间等位基因的交换。结果是导致染色单体上基因的重组,组合的结果可能产生与亲代基因型不同的个体。
3、应用(育种):杂交育种
4、意义:①为生物的变异提供了丰富的来源;②为生物的进化提供材料;③是形成生物体多样性重要原因之一
第二节
染色体变异染色体变异及其应用
一、染色体结构变异:
实例:猫叫综合征(5号染色体部分缺失)
类型:缺失、重复、倒位、易位
二、染色体数目的变异
1、类型
l
个别染色体增加或减少:实例:21三体综合征(多1条21号染色体)
l
以染色体组的形式成倍增加或减少:实例:三倍体无子西瓜
2、染色体组:
(1)特点:①一个染色体组中无同源染色体,形态和功能各不相同;
②一个染色体组携带着控制生物生长的全部遗传信息。
(2)染色体组数的判断:
①
染色体组数
例1:以下各图中,各有几个染色体组?
答案:
(方法:细胞中染色体大小和形态有几个一样的就有几个染色体组)
②
染色体组数=
基因型中控制同一性状的基因个数
例2:以下基因型,所代表的生物染色体组数分别是多少?
(1)Aa(2)AaBb
(3)AAa(4)AaaBbb
(5)AAAaBBbb(6)ABCD
答案:
(方法:读音相同的字母有几个就有几个染色体组)
3、单倍体、二倍体和多倍体
单倍体:只要是由配子发育成的个体都叫单倍体。
二倍体和多倍体:受精卵发育成的个体,体细胞中含几个染色体组就叫几倍体,如含两个染色体组就叫二倍体,含三个染色体组就叫三倍体,以此类推。体细胞中含三个或三个以上染色体组的个体叫多倍体。
三、染色体变异在育种上的应用
1、多倍体育种:方法:用秋水仙素处理萌发的种子或幼苗。
(原理:能够抑制纺锤体的形成,导致染色体不分离,从而引起细胞内染色体数目加倍)
原理:染色体变异
实例:三倍体无子西瓜的培育;
优缺点:培育出的植物器官大,产量高,营养丰富,但结实率低,成熟迟。
2、单倍体育种:
过程:花粉(药)离体培养和人工诱导染色体加倍
原理:染色体变异
实例:
优点:明显缩短育种年限,后代都是纯合子,但技术较复杂。
第三节
人类遗传病
一、人类遗传病产生的原因:人类遗传病是由于遗传物质的改变而引起的人类疾病
三、人类遗传病类型
(一)单基因遗传病
1、概念:由一对等位基因控制的遗传病。
2、类型:
显性遗传病
伴X显:抗维生素D佝偻病
常显:多指、并指、软骨发育不全
隐性遗传病
伴X隐:色盲、血友病
常隐:先天性聋哑、白化病、镰刀型细胞贫血症、黑尿症、苯丙酮尿症
(二)多基因遗传病
1、概念:由多对等位基因控制的人类遗传病。
2、常见类型:腭裂、无脑儿、原发性高血压、青少年型糖尿病等。
(三)染色体异常遗传病(简称染色体病)
1、概念:染色体异常引起的遗传病。(包括数目异常和结构异常)
2、类型:
常染色体遗传病
结构异常:猫叫综合征
数目异常:21三体综合征(先天智力障碍)
性染色体遗传病:性腺发育不全综合征(XO型,患者缺少一条
X染色体)
四、遗传病的监测和预防
1、禁止近亲结婚:每个人都可能携带5-6个不同的隐性致病基因,在近亲结婚的情况下,双方从共同祖先那里继承同一种致病基因的机会大大增加。
2、遗传咨询:在一定的程度上能够有效的预防遗传病的产生和发展。
3、产前诊断:胎儿出生前,医生用专门的检测手段确定胎儿是否患某种遗传病或先天性疾病,产前诊断可以大大降低病儿的出生率。
五、实验:调查人群中的遗传病
方法和过程:选取群体中发病率较高的单基因遗传病,如红绿色盲、白化病、高度近视(600度以上)等。如调查遗传方式应选择患者家系调查;如调查发病率应选择广大人群随机调查。
第六章
从杂交育种到基因工程育种
一、杂交育种(见前面)
二、诱变育种(见前面)
三基因工程及其应用
1、原理:基因重组
2、过程:提取目的基因;目的基因与运载体结合;将目的基因导入受体细胞;目的基因的检测与鉴定
3、基因工程育种:
1)原理:基因重组
2)优点:克服远缘杂交杂交不亲和障碍,可以定向改造生物的性状。
第七章
生物的进化
第一节
生物进化理论的发展
一、拉马克的进化学说
1、理论要点:用进废退;获得性遗传
2、进步性:认为生物是进化的。
二、达尔文的自然选择学说
1、理论要点:自然选择(过度繁殖→生存斗争→遗传和变异→适者生存)
2、进步性:能够科学地解释生物进化的原因以及生物的多样性和适应性。
3、局限性:①不能科学地解释遗传和变异的本质;
②自然选择对可遗传的变异如何起作用不能作出科学的解释。
(对生物进化的解释仅局限于个体水平)
三、现代生物进化理论(以达尔文自然选择学说为核心)
种群是生物进化的基本单位(生物进化的实质是种群基因频率的改变)
要点
基因突变、基因重组、染色体变异产生生物进化的原材料
自然选择决定进化方向
隔离是物种形成的必要条件
突变和基因重组,自然选择和隔离是物种形成的三个基本环节。
1、基因频率的计算,如AA占46%,Aa占38%,则a的基因频率=_______
2、物种:指分布在一定的自然地域,具有一定的形态结构和生理功能特征,而且自然状态下能相互交配并能生殖出可育后代的一群生物个体。
3、隔离:
地理隔离:同种生物由于地理上的障碍而分成不同的种群,使得种群间不能发生交流的现象。
生殖隔离:指不同种群的个体不能自由交配或交配后产生不可育的后代。
3、物种的形成:
⑴物种形成的常见方式:地理隔离(长期)→生殖隔离
⑵物种形成的标志:生殖隔离
第二节
共同进化和生物多样性
一、生物进化的基本历程
1、生物是从单细胞到多细胞,从简单到复杂,从水生到陆生,从低级到高级进化而来的。
2、真核细胞出现后,出现了有丝分裂和减数分裂,从而出现了有性生殖,使由于基因重组产生的变异量大大增加,所以生物进化的速度大大加快。
二、共同进化与生物多样性的形成1、共同进化:不同物种之间,生物与无机环境之间在相互影响中不断进化和发展。
2、生物多样性包括:基因多样性、物种多样性和生态系统多样性三个层次。
必修(3)稳态与环境
第一章
人体的内环境与稳态
1、内环境
体液包括细胞内液(占2/3)和细胞外液。由细胞外液构成的液体环境就是内环境,由血浆、组织液和淋巴三部分组成。
2、组织液、淋巴的成分与含量与血浆相近,但又完全不相同,最主要的差别在于血浆中含有较多的蛋白质,而组织液淋巴中蛋白质含量较少。
3、内环境的理化性质:渗透压,酸碱度,温度等相对稳定
①血浆渗透压大小主要与无机盐、蛋白质含量有关;无机盐中Na+、Cl-
占优势
②正常人的血浆近中性,PH为7.35-7.45,与HCO3-、HPO42-
等离子有关;
③人的体温维持在370C
左右。
4、正常机体通过调节作用,使各个器官,系统协调活动,共同维持内环境的相对稳定状态叫做稳态。目前普遍认为,神经—体液—免疫调节网络是机体维持内环境稳态的主要调节机制。内环境稳态是机体进行正常生命活动的必要条件。
第二章
动物和人体生命活动的调节
1、神经调节的结构基础
1)神经调节的基本方式是反射,反射的结构基础是反射弧(感受器、传入神经、神经中枢、传出神经和效应器)
2)反射活动需要经过完整的反射弧来实现。
2、神经冲动的产生和传导
(1)兴奋在神经纤维上的传导过程
①静息状态时:电位(外正内负)②受到刺激时:电位(外负内正),兴奋在神经纤维上的传导特点:双向传导;传递形式:电信号
(2)突触的结构特点:一个突触包含突触前膜、突触间隙与突触后膜。突触前膜是轴突末端突触小体的膜,突触后膜一般是树突膜或者胞体膜。
(3)兴奋在神经元之间的单向传递
兴奋在神经元与神经元之间是通过神经递质来传递。突触前膜的突触小泡受到刺激,就会释放神经递质扩散通过突触间隙,然后与突触后膜上的特异性受体结合,引起另一个神经元的兴奋或抑制。
信号转换:电信号→化学信号→电信号;传递方向:单向传递(轴突→树突,轴突→胞体)
单向传递的原因:因为神经递质只存在于突触前膜的突触小泡中,只能由突触前膜释放,然后作用于突触后膜。
3、人脑的高级功能
言语区:人脑特有的高级功能。运动性失语症:当S区受到损伤时,病人能够看懂文字和听懂别人的谈话.但却不会讲话.也就是不能用词语表达自己的思想,(能看,能听,不会说);感觉性失语症:当H区受到损伤时,病人会讲话会书写,也能看懂文字,但却听不懂别人的谈话.(能看、能写、不会听)。
4、动物激素调节
(1)下丘脑是机体调节内分泌活动的枢纽。
(2)人体主要激素的作用:
内分泌腺
激素名称
化学本质
生理作用
下丘脑
抗利尿激素
肽和蛋白质类
促进肾小管和集合管对水分的重吸收
TRH
调节垂体合成和分泌促甲状腺激素
TSH
调节垂体合成和分泌促性腺激素
垂体
生长激素
促进生长,主要是蛋白质的合成和骨的生长
促甲状腺激素
促进甲状腺的生长发育,调节甲状腺激素
促性腺激素
促进性腺的生长发育,调节性激素的合成和分泌
甲状腺
甲状腺激素
氨基酸衍生物
促进新陈代谢和生长发育,提高神经系统兴奋性
肾上腺
肾上腺素
①促进肝糖原分解,参与糖代谢调节
②促进细胞代谢,增加产热,参与体温调节
睾丸
雄性激素
固醇
激发并维持雄性第二性征
卵巢
雌性激素
激发并维持雌性第二性征和正常性周期
胰
岛
B细胞
胰岛素
肽或蛋白质类
调节糖类代谢,降低血糖浓度
A细胞
胰高血糖素
促进肝糖原分解和非糖物质转化,升高血糖浓度
注:①肽类,蛋白质类激素易被胃肠道消化酶分解而破坏,一般采用注射方法,不宜口服
(3)激素调节的特点:a微量和高效;b通过体液运输;c作用于靶器官和靶细胞(激素一经靶细胞接受并起作用后就被灭活了)
5、神经调节与体液调节在维持稳态中的作用
体液调节:是指某些化学物质(如激素、CO2等)通过体液运输,对人和高等动物的生理活动所进行的调节。
(1)神经调节与体液调节的比较
比较项目
神经调节
体液调节
作用途径
反射弧
体液运输
反应速度
迅速
较缓慢
作用范围
准确、比较局限
较广泛
作用时间
短暂
比较长
(2)神经调节和体液调节的关系
一方面不少内分泌腺本身直接或间接地受中枢神经系统的调节,在这种情况下,体液调节可以看作神经调节的一个环节。
6、人体免疫系统在维持稳态中的作用
(1)免疫可分为非特异性免疫和特异性免疫,非特异性免疫包括人体的皮肤、黏膜等组成的第一道防线,以及体液中的杀菌物质和吞噬细胞等组成的第二道防线。特异性免疫主要是指由骨髓、胸腺、脾、淋巴结等免疫器官,淋巴细胞和吞噬细胞等免疫细胞,以及体液中的各种抗体和淋巴因子等免疫活性物质,共同组成人体的第三道防线——特异性免疫。免疫系统的功能:防卫功能、监控和清除功能
(2)在特异性免疫中发挥免疫作用的主要是淋巴细胞。它是由造血干细胞分化、发育而来的。部分细胞随血液进入胸腺发育成T细胞,部分细胞在骨髓发育成B细胞。
(3)抗原一般都是进入人体的外来物质,但自身的组织和细胞也可称为抗原,如癌细胞等。
(4)抗体是机体受抗原刺激,由浆细胞产生的,并能与该抗原发生特异性结合的具有免疫功能的球蛋白。抗体主要分布于血清,少数分布在组织液和外分泌液(如乳汁)中。
(5)体液免疫的过程:抗原进入机体后,大多数抗原经吞噬细胞的摄取和处理,然后将抗原呈递给T细胞,刺激T细胞产生淋巴因子。有的抗原可以直接刺激B细胞。B细胞接受抗原刺激后,在淋巴因子的作用下,开始进行一系列的增殖、分化,形成浆细胞和记忆细胞。(记忆细胞保持对抗原的记忆,一段时间后,相同的抗原再次进入机体,记忆细胞就迅速增殖、分化,形成大量浆细胞)浆细胞产生的抗体与相应的抗原特异性结合,发挥免疫效应。抗体与抗原结合,被吞噬细胞消化。
(6)细胞免疫的过程:刚开始与体液免疫的开始基本相同。不同的是T细胞接受抗原刺激后,开始进行一系列的增殖、分化,形成效应T细胞和记忆细胞。效应T细胞与被抗原入侵的宿主细胞密切接触,使靶细胞裂解死亡。使抗原失去寄生的基础,因而被吞噬消灭。
(7)在特异性免疫反应中,体液免疫和细胞免疫之间,既各自有其独特作用,又相互配合,共同发挥免疫效应。
(8)当免疫功能失调时,可引起疾病,如过敏反应和自身免疫病,免疫缺陷病。
过敏反应是指已免疫的机体在再次接受相同抗原的刺激时所发生的反应.其特点是发作迅速、反应强烈、消退较快;一般不会破坏组织细胞,有明显的遗传倾向和个体差异。
常见的自身免疫病有类风湿性关节炎和系统性红斑狼疮等。
免疫缺陷病,如HIV导致的免疫缺陷综合症(艾滋病)
(1)艾滋病的全称:获得性免疫缺陷综合症(AIDS),病原体:人类免疫缺陷病毒(HIV);
(2)艾滋病的发病机理、症状:
HIV攻击人体的免疫系统,特别是T淋巴细胞。艾滋病人的直接死因往往是由念珠菌、肺囊虫等多种病原体引起的严重感染或恶性肿瘤等疾病。
(3)艾滋病主要通过性传播、血液传播、母婴传播。
第三章、植物的激素调节
1、植物生长素的发现和作用
(1)胚芽鞘:生长素的产生部位在胚芽鞘的尖端;感受光刺激的部位是尖端,向光弯曲部位是尖端以下的部位。
向光性的原因:单侧光使生长素分布不均匀,向光一侧生长素含量多于背光一侧。
(2)植物激素:由植物体内产生,能从产生部位运送到作用部位,对植物生长发育有显著影响的微量有机物
(3)生长素的产生、运输和分布:
①产生:幼嫩的芽、叶、发育中的种子
②运输:极性运输,即从形态学的上端向形态学的下端运输,单向。运输方式是主动运输
③分布:植物体各个器官中都有分布,多数集中在生长旺盛的部位。
(4)生长素的生理作用:两重性:既能促进生长,又能抑制生长;既能促进发芽,又能抑制发芽;既能防止落花落果,也能疏花疏果。
生长素作用两重性表现的具体实例:①根的向地性;②顶端优势
顶端优势:植物的顶芽优先生长而侧芽受到抑制的现象。原因:由于顶芽产生的生长素向下运输,大量地积累在侧芽部位,使这里的生长素浓度过高,从而使侧芽的生长受到抑制的缘故。
解除方法为:摘掉顶芽。
顶端优势的原理在农业生产实践中应用的实例是棉花摘心。
补充:①不同浓度的生长素作用于同一器官,引起的生理作用功能不同,低浓度促进生长,高浓度抑制生长。
②同一浓度的生长素作用于不同器官上,引起的生理功能不同,原因:不同的器官对生长素的敏感性不同:根〉芽〉茎
4.生长素在农业生产实践中的应用
①促进果实发育(如无子番茄(黄瓜、辣椒等),在没有受粉的番茄雌蕊柱头上涂上一定浓度的生长素溶液可获得无子果实。);②促进扦插枝条生根(用一定浓度的生长素类似物处理枝条);③防止落花落果。
生长素类似物是人工合成的物质,具有与生长素相似的生理效应。(例如α-萘乙酸,2、4-D)
2、其他植物激素
激素种类
合成部位
作用
赤霉素(GA)
主要是未成熟的种子,幼根或幼芽
促进细胞伸长,从而引起植株增高
细胞分裂素
主要是根尖
促进细胞分裂
脱落酸
根冠,萎蔫的叶片
促进叶与果实的衰老与脱落
乙烯
植物的各个部位
促进果实成熟
第四章、种群和生物群落
1、种群的特征
(1)种群的概念:生活在同一区域的同一种生物。
基本特征:种群密度:种群在单位面积或单位体积中的个体数。
出生率,死亡率:单位时间里新出生的(死亡的)个体数目占该种群个体总数的比率。
迁入率和迁出率:单位时间内迁入或迁出的个体,占该种群个体总数的比率,分别称为迁入率或迁出率。
出生率和死亡率,迁入率和迁出率是决定种群数量变化的。
年龄组成:一个种群中各年龄期的个体数目的比例,分为增长型、稳定型和衰退型。可以预测种群密度的变化。
性别比例:种群中雌雄个体数目的比例。
(2)种群密度的调查方法
1)样方法——常用调查植物,昆虫卵密度,蚯蚓等
要求:随机取样
取样方法:五点取样法和等距取样法
2)标记重捕法——适用于调查活动能力强,活动范围大的动物
例:对某地麻雀的种群密度的调查中,第一次捕获了50只麻雀,把这些麻雀腿上套上标记环后放掉,数日后又捕获了40只,其中有标记环的10只,那么该地大约有麻雀200只
2、种群的数量变动及数字模型
(1)种群增长的“J”型曲线和“S”型曲线
“J”型曲线:在理想条件下种群数量增长的形式,以时间为横坐标,种群数量为纵坐标。
模型假设:在食物和空间条件充裕、气候适宜、没有敌害等条件下,种群的数量每年以一定的倍数增长,第二年的数量是第一年的λ倍
建立模型:t年后种群数量为:Nt=N
λt
特点:种群数量连续增长,增长率不变。
“S”型曲线:然界的资源和空间总是有限的,种群经过一段时间的增长后,数量趋于稳定的增长曲线。
环境容纳量(K值):在环境条件不受破坏的情况下,一定空间所能维持的种群最大数量。K值不是固定不变的。
特点:S型增长曲线渐进于K值,但不会超过K值即环境容纳量,有时在K值左右保持相对稳定,此时出生率与死亡率大致相等。种群数量在K/2时,种群的增长速率最大。
3、群落的结构特征
(1)群落的概念:同一时间内聚集在一定区域中各种生物种群的集合。
(2)群落的物种组成:群落的物种组成是区别不同群落的重要特征,不同群落的物种数目有差别,群落中物种数目的多少称为丰富度。
(3)种间关系
种间关系
概念
举例
捕食
一种生物以另一种生物作为食物。
老鹰捕食老鼠
竞争
两种或两种以上生物相互争夺资源和空间等
水稻和稗草
寄生
一种生物(寄生者)寄居于另一种生物(寄生)的体内或体表,摄取寄主的养分以维持生活。
人体内的蛔虫
互利共生
两种生物共同生物在一起,相互依存,彼此有利。
豆科植物与根瘤菌
(4)群落的空间结构
垂直结构:在垂直方向上物种分布,森林植物的分层与对光的利用有关,动物的分层与食物和栖息条件有关。
水平结构:在水平方向上物种分布,4、群落的演替
(1)群落演替的过程和主要类型
①初生演替:在一个从来没有被植物覆盖的地面,或者是原来存在过植被,但被彻底消灭了的地方发生的演替。例如在沙丘、火山岩、冰川泥上进行的演替。
演替的过程:裸岩阶段→地衣阶段→苔藓阶段→草本植物阶段→灌木阶段→森林阶段
②次生演替:在原有植被虽已不存在,但原有土壤条件基本保留,甚至还保留了植物的种子或其他繁殖体的地方发生的演替,如火灾过后的草原、过量砍伐的森林、弃耕的农田上进行的演替。
(2)人类活动对群落演替的影响
人类可以砍伐森林、填湖造地、捕杀动物,也可以封山育林治理沙漠、管理草原,甚至可以建立人工群落。人类活动往往使群落演替按照不同于自然演替的速度和方向进行。
第五章、生态系统及其稳定性
1、生态系统的结构
(1)生态系统的概念:由生物群落与它的无机环境相互作用形成的统一整体叫生态系统
生态系统的组成成分:非生物物质和能量(阳光、热能、水、空气、无机盐)、生产者(自养生物,主要是绿色植物)、消费者(动物)、分解者(主要是细菌和真菌)。
注意:生产者可以说是生态系统的基石,消费者的存在能够加快生态系统的物质循环,分解者能将动物的遗体和动物的排遗物分解成无机物。
食物链的组成成分:生产者与消费者
举例:
植物
蝗虫
青蛙
蛇
鹰
生产者
初级消费者
次级消费者
三级消费者
四级消费者
第一营养级
第二营养级
第三营养级
第四营养级
第五营养级
食物网:许多食物链彼此相互交错连接成的复杂营养结构,就是食物网。
食物链与食物网的作用:食物链和食物网是生态系统的营养结构,生态系统的物质循环和能量流动就是沿着这种渠道进行的。
2、生态系统的物质循环和能量流动的基本规律和应用
(1)生态系统的能量流动过程及特点
起点:从生产者固定太阳能开始。
渠道:沿食物链和食物网依次传递
去处:呼吸消耗,下一营养级同化,分解者分解。
生态系统的能量流动特点:单向流动(能量只能从前一营养级流向后一营养级,而不能反向流动);逐级递减,传递效率为10%~20%
(2)研究能量流动的实践意义
①可以帮助人们科学规划、设计人工生态系统,使能量得到最有效的利用。
②还可以帮助人们调整生态系统中的能量流动关系,使能量流向对人类最有益的部分。
(3)物质循环概念和特点:
①概念:组成生物体的C、H、O、N、P、S等元素,都不断地进行着从无机环境到生物群落,又从生物群落到无机环境的循环过程,这就是生态系统的物质循环。这里说的生态系统是指地球上最大的生态下系统——生物圈,其中的物质循环带有全球性,所以又叫生物地球化学循环。
②特点:无机环境中的物质可以被生物群落反复利用
(4)生态系统中的碳循环
大气中的CO2
燃烧
分解
作用
动物
植物
动植遗体及排泄物
化石燃料
碳循环:
①碳在无机环境中是以二氧化碳和碳酸盐的形式存在的。
②碳在无机环境与生物群落之间是以二氧化碳的形式进行循环的。
③生产者通过光合作用(少数是化能合成作用),把大气中的二氧化碳和水合成为糖类等有机物。生产者合成的含碳有机物被各级消费者所利用。生产者和消费者在生命活动过程中,通过呼吸作用,又把二氧化碳放回到大气中。生产者和消费者死后的尸体又被分解者所利用,分解后产生的二氧化碳也返回到大气中。
④温室效应
a原因:化学燃料大量燃烧,使大气中二氧化碳含量迅速增加。
b危害:导致气温升高,加快极地冰川的融化,导致海平面上升,进而对生物生存构成威胁。
c缓解措施:植树造林,开发新能源,减少化学燃料的燃烧。
3、生态系统中的信息传递
(1)生态系统的信息传递
①信息的种类物理信息、化学信息、行为信息
②信息传递的作用:生命活动的正常进行离不开信息的作用(如:蝙蝠的回声定位);生物的种群繁衍离不开信息的传递(如:植物开花需要光信息的刺激)信息还能调节生物的种间关系,以维持生态系统的稳定(如狼和兔子)。
4、生态系统的稳定性
(1)生态系统的稳定性:生态系统的所具有的保持或恢复自身结构和功能相对稳定的能力。具有的原因是:生态系统具有自我调节能力。负反馈调节在生态系统中普遍存在,是生态系统自我调节能力的基础。生态系统的自我调节能力是有限的。
抵抗力稳定性:生态系统抵抗外界干扰并使自身的结构与功能保持原状的能力。
恢复力稳定性:生态系统在受到外界干扰因素的破坏后恢复到原状的能力。
备注:生态系统的组分越多,食物网越复杂,其自我调节能力越强,抵抗力稳定性越高。
提高生态系统稳定性的措施:一方面要控制对生态系统干扰的程度,对生态系统的利用应该适度,不应该超过生态系统的自我调节能力;另一方面,对人类利用强度较大的生态系统,应实施相应的物质、能量投入,保证生态系统内部结构于功能的协调。
第六章、生态环境的保护
(1)全球性生态环境问题
全球性生态环境问题主要包括全球气候变化(温室效应)、水资源短缺、臭氧层破坏、酸雨、土壤荒漠化、海洋污染和生物多样性锐减。
(2)生物多样性保护的意义和措施
生物多样性:生物圈内所有的植物、动物和微生物,它们的全部基因及各种各样的生态系统。
生物多样性包括基因多样性、物种多样性、生态系统多样性
生物多样性的价值:
①直接使用价值:药用价值,工业原料,科研价值,美学价值。
②间接使用价值:生物多样性具有重要的生态功能。
③潜在使用价值:我们对大量野生生物的使用价值还未发现、未研究、未开发利用的部分。
(3)生物多样性的保护措施:
①就地保护:a、主要是建立自然保护区;b、保护对象主要有:有代表性的自然生态系统和珍稀濒危动植物的天然分布区;吉林长白山自然保护区--保护完整的温带森林生态系统。青海湖鸟岛自然保护区--保护斑头雁、棕头鸥等鸟类及它们的生存环境。
1.几例有经济价值的高中生物学知识
1.1无性繁殖———不许剑麻早开花。
原理:无性繁殖是指不经过两性生殖细胞的结合,由母体的一部分直接产生子代的繁殖方法。因能保持母本的优良特性、繁殖速度快,在农业、林业上常用植物营养器官的一部分和生殖器官一部分如花芽、花药、雌配子体等材料进行无性繁殖。在农业生产上,常用组织培养法离体繁殖,用此法繁育的苗木被称为无性繁殖苗。
问题:剑麻是一种龙舌兰科龙舌兰属的叶纤维作物,它的叶片内含丰富的纤维。剑麻纤维具有纤维长,色泽洁白,质地坚韧,富有弹性,拉力强,耐摩擦,耐酸碱,耐腐蚀,不易打滑等特点。因这些优点,剑麻纤维广泛应用于渔业、航海、工矿、运输、油田等领域,以及用于编织剑麻地毯、工艺品等生活用品上。美中不足的是,剑麻开花后植株就会死亡,在种植上,人们采取各种技术措施不让剑麻过早开花,提高它的使用年限。上世纪七十年代,主要运用剑麻的走茎(根)上长出的吸芽苗进行无性繁殖,但长到七八年后就出现老化现象,提前开花而结束生命,因为寿命短而影响产量。
应用:经专家研究发现,利用麻花上长出的珠芽进行繁殖,没有提前开花这一现象,但因珠芽少,不便于大规模繁殖。后来为了解决这一问题,在珠芽种植长出20~25片叶子的时候,用钻心技术快速培育种苗,即用特制铁制工具去掉麻心(顶芽),再破坏里面的生长点,植物的顶端优势就没有了,就会长出许多腋芽(芽苗),一株可以繁育出25株左右,繁殖速度快,大小规格较统一,便于同时移栽和管理。利用无性繁殖进行快速繁殖剑麻,栽培周期短,产量高,给种植户创造了可观的经济价值。
1.2光合作用———气饱的果菜更增产。
原理:植物光合作用需要二氧化碳做原料,如果适当提高其浓度就可增强光合作用强度,叶片积累更多的有机物,增产显著, 产量可增加10%~20%。碳酸钙与盐酸反应生成二氧化碳,二氧化碳可作气肥。
问题:空气中CO2浓度一般为300~400ppm,而植物对CO需求远远超过这个浓度,一般叶菜类为1000ppm,黄瓜为1500~1800ppm,而温室大 棚的CO2浓度比空气中的CO2更低,大棚内因CO2饥渴而严重影响果菜产量。
应用:在温室大棚内,用吊袋式二氧化碳气肥取得了良好效果。其做法就是利用袋装碳酸钙作为发生剂,用袋装盐酸作为催化剂,二者混合发生化学反应而慢慢释放出CO2。对瓜果类蔬菜,一般选在瓜果膨胀期,才开始使用,不宜过早或过迟,一旦使用就要用到采收结束,不宜中断。用量太少达不到效果,过多因营养生长过旺,只开花不坐果。这种方法,成本低,收效大。
1.3乙烯的应用———给菠萝计划生育。
原理:乙烯可以促进果实成熟,促进菠萝开花。等到菠萝长到35厘米以上超过30~40片子的时候, 就可用200ppm的乙烯利进行点花,可人为控制菠萝开花。如果在6小时内有下雨就要进行补点,超过6小时下再大的雨也没有关系。
问题:国内能种菠萝的地方不多,只有海南、广东、广西、福建等少数省区, 而广东湛江占了全国产量的五分之三。海南、广西、福建的菠萝每年只有3个月的采摘期,不能月月有果摘,使工厂无法保证足够的货源以供加工。
应用:湛江菠萝之所以能够有如此大的产量而且全年都能采收,原因就在于湛江人给菠萝实行了“计划生育”,使菠萝月月有果摘。他们采用人工催花的办法,将菠萝依序编排,人工控制花期,改变了菠萝每年2至4月开花、6至8月结果的自然习性,保证每个月有果摘。这样,工厂就会每天都有菠萝可以加工,不会像以前因为缺少菠萝歇厂而倒闭。
2.加大生物学知识普及力度,多引入应用实例
2.1学的人用不着,用的人想不到。
全中国高中生都在学生物学知识, 而能想到利用所学为农业、牧业、林业等服务的人很少,那是因为学到知识的人不愿从事这些行业, 而从事这些行业的人又得不到这些有用的知识,“所学”与“所用”两张皮。根据第五次全中国人口普查,农民受教育年限仅为7.33年,而提高一年受教育年限,需经过七年时间。真正需要生物学知识服务生产的农民大军,受教育程度偏低。
2.2教育的本真是为生活服务。
实际上,当一些生物学原理应用到生产实际时,其做法并不难,但往往十分有效,为什么这么简单的改变以前就没有人去做呢? 大概是因为传统的耕作模式已深入人心,僵化的思维严重妨碍了从业人的想象力和创造力。这也许要追究教育的本原问题,教育的本质应是为社会服务,为生活服务,而实际的教育可能背离了教育的本真。现在的教育把教育复杂化了,应当回归,复杂的问题简单化,简单就是一种境界。
2.3改变生物学知识的宣传方式,加大宣传力度。
目前,我国宣传生物学知识力度不够,宣传的方式单一。对高考而言,全国各省份生物学所占分值并不高,这与现代社会的发展趋势不符,媒体宣传的面过窄,仅限于收视率不高的某些媒体, 而收益面最广最急于得到信息的广大农民无从知晓,将来可能成为从事农业大军的广大学生远离媒体,造成了一边是经过花费大量时间和财力为代价而创新的技术搁置,一边是急需新技术提高质量和产量的“无知”,致使生物学知识的“供方”和“受方”存在“生殖隔离”。
2.4丰富教材素材,用“课外教材”教学。
1 原核生物的种类
这些知识点没有规律,只能死记硬背,我利用谐音编成一句滑稽可笑的话将它们记忆。放一只细篮子(放线菌、衣原体、支原体、细菌、蓝藻)。
2 支原体无细胞壁,衣原体有细胞壁
常见的原核生物中只有支原体没有细胞壁,但学生常将支原体和衣原体混淆,搞不清两者谁有谁无细胞壁。我就对他们说,“衣”原体就像穿了一层衣服,因此衣原体有细胞壁,支原体也就无细胞壁了。
3 常见的六种微量元素
可采用谐音记忆法,“铁锰碰新木桶”即“ Fe、Mn、B、Zn、Mo、Cu”六种微量元素。
4 人体必需的八种氨基酸
采用联想加谐音记忆法,“甲携来一本亮色书”即“甲硫氨酸、缬氨酸、赖氨酸、异亮氨酸、苯丙氨酸、亮氨酸、色氨酸、苏氨酸”。
5 氨基酸结构通式的特点
我的做法是:先从甲烷、乙酸、甘氨酸入手,再引入甲基、羧基、氨基。然后再将氨基酸的结构通式比喻成一个人:左手代表氨基,右手代表羧基,两条腿代表氢,躯干代表碳,头部代表R基。这样形象的比喻,学生就很容易记住氨基酸的结构通式。
6 氨基酸的“脱水缩合”
采用学生们“手拉手”模型来示范。二肽,由两个学生“手拉手”,手与手相拉的部分为肽键,游离出的左手和右手分别是氨基和羧基。依次类推,进而知道多肽的形成。并为后面总结,氨基酸的数目、肽键数目、脱去水分子数目与肽链之间关系的规律总结做到了很好地铺垫。轻松快乐的把难点简单化了。
7 对各种碱基的名称的记忆
我采取汉字谐音的方法进行记忆,记住两句话就可以了,即“仙鸟是漂亮的,胞兄是布丁”。其中“仙鸟”指的是腺嘌呤和鸟嘌呤,“漂亮”即嘌呤。“胞兄”指的是胞嘧啶和胸腺嘧啶,而“布丁”即嘧啶。这样学生就可以比较容易的进行联想记忆,既有趣又不容易出现记错、记混乱的现象。
8 四种碱基的英文符号和中文名称的一一对应关系
我在教学中采用了实物对应法来加强记忆。如腺嘌呤A,用多媒体展示一个线轴,上细下宽,线谐音(腺),形状像A,学生很兴奋。接着我又展示了另三种学生更为感兴趣的图片,形状像C的面包(胞嘧啶C),极像T的人胸部骨骼(胸腺嘧啶T),弯曲的鸟嘴(鸟嘌呤G),形象具体,学生一下就记住了。
9 DNA和RNA的分子结构
我把知识简化成有规律的几个字来帮助记忆,记住重点字词。如:DNA的分子结构可简化为“五四三二一”。“五”,即五种基本元素:一分子含氮的碱基(N);一分子的五碳糖(C、H、O);一分子的磷酸(P)。“四”,即四种基本单位,四种基本单位只是碱基不同(A、C、G、T),五碳糖(脱氧核糖)和磷酸相同。“三”,即每种单位上有三种基本物质:碱基、五碳糖、磷酸。“二”,即很多单位形成两条脱氧核苷酸链,成为一种(即所说的“一”)规则的双螺旋结构。RNA的分子结构则简化为“五四三 一 一”。
10 在突然减少二氧化碳的供给量或者在突然停止光照的情况下, 三碳化合物、五碳化合物、ATP含量会发生如何变化?
因为这个问题的分析有一定的难度,让学生很头疼,是个教学的难点。在教学中我总是首先引导学生:当突然减少二氧化碳的供给量的情况下,二氧化碳固定的过程因缺少原料而受阻,对五碳化合物的消耗量减少,生成的三碳化合物也减少,但光反应仍进行,有[H]和ATP,因而三碳化合物还原成五碳化合物的过程仍继续进行,所以三碳化合物含量下降,五碳化合物升高,至于ATP,由于光反应仍然进行,暗反应受阻,所以ATP含量升高。同样方式分析出突然停止光照时,三碳化合物升高,五碳化合物下降,ATP下降。
这样学生明白了来龙去脉,自然不头疼,但每次遇到这样的题还得先分析一大段,太浪费时间了,尤其是在高考中,理综是时间最紧张的,一定要提高做题效率,怎么办呢?我就引导学生找规律,在上述总结中发现:突然减少二氧化碳后三碳化合物和五碳化合物变化刚好相反,三碳化合物下降,五碳化合物则升高。突然停止光照后的三碳化合物和五碳化合物的变化也刚好相反,因此只要记得一组变化就可以把它全部记下了,记哪一组呢?学生们选择了光照,并编成了口诀:“停止(或减少)光照三碳升”,这样就不会忘了。每次碰到这样的题,只要想到“停止光照三碳升”,就知道五碳化合物降了,那么停止(或减少)二氧化碳,,自然是三碳化合物降五碳化合物升了,而ATP含量跟光走,停止光照就下降,不停光照(即减少二氧化碳)就上升,这样解题既快又准。
11 滤纸条上四色素带记忆
用纸层析法分离绿叶中色素时,滤纸条上会出现4条色带,从上到下依次为胡萝卜素、叶黄素、叶绿素a、叶绿素b,可用概括记忆法,概括为“胡黄ab”四个字记住。
12 细胞有丝分裂五期的变化特征
细胞有丝分裂各期变化多而零碎,直接记忆难度很大。可以把各期的变化归纳为一句口诀,借助口诀记忆。间期:“复制合成暗准备”,意为在间期细胞表面没变化,但实质上在进行染色质复制,包括了DNA复制和有关蛋白质合成,为分裂期作物质上的准备。前期:“膜仁消失显两体”,意为在前期核膜、核仁消失,形成纺锤体及染色质变成染色体。中期:“形定数晰赤道齐”,意为到中期,染色体不再缩短变粗,形态固定,数目清晰,便于观察,并整齐排列在细胞中央的赤道板上。后期:“点裂数增均两极”,意为后期着丝点分裂,两条姐妹染色单体分开成为两条子染色体,染色体数目加倍,在纺锤丝的牵引下移向细胞两极,实现平均分配。末期:“两消三现生二子”,在植物细胞有丝分裂末期,纺锤体消失,染色体变回染色质,核膜、核仁重现,细胞中央出现细胞板,形成新的细胞壁,把一个细胞分裂成两个子细胞(动物细胞中归纳为“两消两现生二子”,因不会出现细胞板了)。
13 人类遗传病的解题规律
人类遗传病判定方法采用口诀记忆法:父子相传为伴Y,子女同母为母系;无中生有为隐性,隐性遗传看女病,父子有正非伴性(女性的父亲和儿子只要有一个不患病,就不是伴性遗传),父子都病为伴性(伴X);有中生无为显性,显性遗传看男病,母女有正非伴性(男性的母亲和女儿只要有一个不患病,就不是伴性遗传),母女都病为伴性(伴X)。
14 各种遗传病的名称和类型
采用口诀记忆法:常隐白聋苯(常染色体隐性遗传病有白化病、先天性聋哑、苯丙酮尿症);色友肌性隐(色盲、血友病、进行性肌营养不良为X染色体上的隐性遗传病),常显多并软(常染色体显性遗传病常见的有多指、并指、软骨发育不全);抗D伴性显(抗维生素D佝偻病是伴X显性遗传病);唇脑冠哮高压尿(多基因遗传病常见的有唇裂、无脑儿、冠心病、哮喘、原发性高血压、青少年型糖尿病);性不良愚加猫叫(染色体异常遗传病有性腺发育不良、先天性愚型、猫叫综合征)。有趣又顺口,记忆起来轻松愉快。
②若蛋白质是一条链,则有:肽键数(失水数)=氨基酸数-1
③若蛋白质是由多条链组成则有:肽键数(失水数)=氨基酸数-肽链数
④若蛋白质是一个环状结构,则有:肽键数=失水数=氨基酸数
⑤蛋白质相对分子质量=氨基酸相对分子质量总和-失去水的相对分子质量总和(有时也要考虑因其他化学键的形成而导致相对分子质量的减少,如形成二硫键时)。
⑥蛋白质至少含有的氨基和羧基数=肽链数⑦基因的表达过程中,DNA中的碱基数:RNA中的碱基数:蛋白质中的氨基酸数=6:3:1。
一个细胞周期包括间期和_,间期在前,_在后;二是不理解图中不同线段长短或扇形图面积大小所隐含的生物学含义。线段长与短、扇形图面积大小分别表示细胞_期中的间期和_,间期主要完成DNA复制和有关蛋白质的合成,该时期没有染色体出现,_主要完成遗传物质的均分。
理解细胞周期概念时应明确三点:①只有连续_细胞才具有周期性;②分清细胞周期的起点和终点;③理解细胞周期中的_期与_之间的关系,特别是各期在时间、数量等方面的关联性。其生物学模型主要有以下四方面:线段描述、表格数据描述、坐标图描述、圆形图描述等。
一、生物科学是研究生命现象和生命活动规律的科学。
二、生物的基本特征
(一)具有共同的物质基础和结构基础。
共同的物质组成:蛋白质和核酸
结构基础:细胞结构(除病毒外)
(二)都有新陈代谢。
生物体与外界环境之间 要发生物质和能量交换。
一切生命活动的基础,生物区别于非生物最本质的特征。
(三)都有应激性。
植物的根:向地性、向水性、向肥性
植物的茎:向光性、背地性
动物:躲避有害刺激、趋向有利刺激
(四)都有生长、发育和生殖。
生长的原因:同化作用大于异化作用
生长的表现:细胞数目的增多和细胞体积的长大
个体发育的起点:受精卵
生殖的目的:延续种族
(五)都有遗传和变异的特性。
遗传:“龙生龙,凤生凤,老鼠的儿子会打洞”、“种瓜得瓜、种豆得豆”—维持种族的稳定
变异:“一猪生九仔,连母十个样”——有利于生物的进化
(六)都能适应和影响一定的环境(如:地衣)。
三、生物科学的发展
(一)描述性生物学阶段:
1.19世纪30年代,德国植物学家施莱登、动物学家施旺提出细胞学说。
2.1859年,英国生物学家达尔文出版《物种起源》。
(二)实验生物学阶段:
1900年,孟德尔遗传规律重新提出标志着实验生物学阶段的开始
(三)分子生物学阶段:
1.1944年,美国生物学家艾弗里首次证明DNA是遗传物质。
2.1953年,美国沃森,英国克里克提出DNA双螺旋结构模型。(标志着分子生物学阶段的开始)
四、当代生物的发展方向
微观方向:从细胞学水平发展到分子水平
宏观方向:生态学的发展解决全球性的环境和资源问题
第一章 生命的物质基础——构成生物体的化学元素和化合物
1.组成生物体的化学元素,在无机自然界都可以找到,没有一种化学元素是生物界所特有的,这个事实说明生物界和非生物界具统一性。
2.组成生物体的化学元素,在生物体内和在无机自然界中的含量相差很大,这个事实说明生物界与非生物界还具有差异性。
3.构成生物体的基本元素:C、H、O、N,最基本元素是C
4.大量元素:C、H、O、N、P、S、K、Ca、Mg
5.微量元素:Fe、Mn、Cu、Zn、Mo、B,Fe为半微量元素。6.构成生物体(家兔)的主要元素:C、H、O、N、P、S,含量最多的元素是O
7.植物“花而不实”是由于缺少硼元素。
8.各种生物体内含量最多的化合物是水,其存在形式有:自由水和结合水。9.人缺钙会出现抽搐,这说明无机盐离子能够维持生物体的生命活动。
10.糖类是生物体进行生命活动的主要能源物质,葡萄糖是生命活动的重要能源物质。
11.植物细胞内储存能量的物质是淀粉,动物细胞内的储存能量物质是糖元,生物体的储存能量的主要物质是脂肪。
12.脂类包括脂肪、类脂(磷脂构成细胞膜)和固醇(胆固醇、性激素、维生素
D)。
13.蛋白质是生命活动的体现者,其结构单位是氨基酸结构通式为
__________________________。
氨基酸经过脱水缩合形成肽键,通过肽键连接成多肽。
14.蛋白质的多样性取决于氨基酸的种类、数目、排列顺序以及蛋白质的空间结构。
15.核酸是一切生物的遗传物质,是生命活动的决定者,其结构单位是核苷酸。核酸具有两类:DNA和RNA,DNA存在于细胞核、线粒体和叶绿体内。
第二章 生命的基本单位——细胞
16.细胞膜以磷脂双分子层为基本骨架,其结构特点是一定的流动性。细胞膜的功能是物质交换和保护,功能特性是选择透过性。主动运输的进行需要载体和ATP。
17.细胞壁的化学成分是纤维素和果胶,对植物细胞起支持和保护作用。
18.细胞质基质是活细胞进行新陈代谢的主要场所,为新陈代谢的进行,提供所需要的物质(酶、ATP等)和一定的环境条件。
19.线粒体是活细胞进行有氧呼吸的主要场所。叶绿体是绿色植物进行光合作用的场所。
20.内质网与蛋白质、脂类和糖类的合成有关,也是蛋白质等的运输通道,增大细胞内的膜面积。
21.核糖体是细胞内合成蛋白质的场所。原核细胞只有核糖体一种细胞器。
22.细胞中的高尔基体与细胞分泌物的形成有关,主要是对蛋白质进行加工和转运;植物细胞分裂时,高尔基体与细胞壁的形成有关。
23.中心体是动物和低等植物细胞所特有的细胞器。在有丝分裂过程中,发出星射线,形成纺锤体。
24.染色质和染色体是细胞中同一种物质在不同时期的两种形态。
25.细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。
26.细胞只有保持完整性,才能够正常地完成各项生命活动。
27.细胞以分裂是方式进行增殖,细胞增殖是生物体生长、发育、繁殖和遗传的基础。
28.细胞有丝分裂的重要意义(特征),是将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。
29.细胞分化是一种持久性的变化,它发生在生物体的整个生命进程中,但在胚胎时期达到最大限度。
30.高度分化的植物细胞仍然具有发育成完整植株的潜能,也就是保持着细胞全能性。
第三章 生物的新陈代谢
31.新陈代谢是生物最基本的特征,是生物与非生物的最本质的区别。
32.酶是活细胞产生的一类具有生物催化作用的有机物,其中绝大多数酶是蛋白质,少数酶是RNA。
33.酶的催化作用具有高效性和专一性;并且需要适宜的温度和pH值等条件。
34.ATP(三磷酸腺苷)是新陈代谢所需能量的直接来源。结构简式:A—P~P~P
35.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并且释放出氧的过程。光合作用释放的氧全部来自水。
36.渗透作用的产生必须具备两个条件:一是具有一层半透膜,二是这层半透膜两侧的溶液具有浓度差。当成熟的植物细胞处于30%的蔗糖溶液中,成熟的植物细胞会发生渗透失水,表现出质壁分离的现象。吸收水分和运输水分的动力是蒸腾作用,植物所吸收的水分95%以上蒸腾作用散失,少量用于生命活动。
37.植物根的成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。吸收矿质元素的方式是主动运输。呼吸作用为矿质元素吸收提供动力,运输矿质元素的动力是蒸腾作用。
39.40对生物体来说,呼吸作用的生理意义表现在两个方面:一是为生物体的生命活动提供能量,二是为体内其它化合物的合成(如:氨基酸)提供原料。
第一章、生命的物质基础
第一节、组成生物体的化学元素
名词:
1、微量元素:生物体必需的,含量很少的元素。如:Fe(铁)、Mn(门)、B(碰)、Zn(醒)、Cu(铜)、Mo(母) ,巧记:铁门碰醒铜母(驴)。
2、大量元素:生物体必需的,含量占生物体总重量万分之一以上的元素。如:C (探)、0(洋)、H(亲)、N(丹)、S(留)、P(人people)、Ca(盖)、Mg(美)K(家) 巧记:洋人探亲,丹留人盖美家。
3、统一性:组成细胞的化学元素在非生物界都可以找到,这说明了生物界与非生物界具有统一性。
4、差异性 :组成生物体的化学元素在细胞内的含量与在非生物界中的含量明显不同,说明了生物界与非生物界存在着差异性。
语句:
1、地球上的生物现在大约有200万种,组成生物体的化学元素有20多种。
2、生物体生命活动的物质基础是指组成生物体的各种元素和化合物。
3、组成生物体的化学元素的重要作用:① C、H、O、N、P、S 6种元素是组成原生质的主要元素,大约占原生质的97%。②.有的参与生物体的组成。③有的微量元素能影响生物体的生命活动(如:B能够促进花粉的萌发和花粉管的伸长。当植物体内缺B时,花药和花丝萎缩,花粉发育不良,影响受精过程。)
第二节、组成生物体的化合物
名词:
1、原生质:指细胞内有生命的物质,包括细胞质、细胞核和细胞膜三部分。不包括细胞壁,其主要成分为核酸和蛋白质。如:一个植物细胞就不是一团原生质。
2、结合水:与细胞内其它物质相结合,是细胞结构的组成成分。
3、自由水:可以自由流动,是细胞内的良好溶剂,参与生化反应,运送营养物质和新陈代谢的废物。
4、无机盐:多数以离子状态存在,细胞中某些复杂化合物的重要组成成分(如铁是血红蛋白的主要成分),维持生物体的生命活动(如动物缺钙会抽搐),维持酸碱平衡,调节渗透压。
5、糖类:有单糖、二糖和多糖之分。a、单糖:是不能水解的糖。动、植物细胞中有葡萄糖、果糖、核糖、脱氧核糖。b、二糖:是水解后能生成两分子单糖的糖。植物细胞中有蔗糖、麦芽糖,动物细胞中有乳糖。c、多糖:是水解后能生成许多单糖的糖。植物细胞中有淀粉和纤维素(纤维素是植物细胞壁的主要成分)和动物细胞中有糖元(包括肝糖元和肌糖元)。
6、可溶性还原性糖:葡萄糖、果糖、麦芽糖等。
7、脂类包括:a、脂肪(由甘油和脂肪酸组成,生物体内主要储存能量的物质,维持体温恒定。)b、类脂(构成细胞膜、线立体膜、叶绿体膜等膜结构的重要成分)c、固醇(包括胆固醇、性激素、维生素D等,具有维持正常新陈代谢和生殖过程的作用。)
8、脱水缩合:一个氨基酸分子的氨基(-NH2)与另一个氨基酸分子的羧基(-COOH)相连接,同时失去一分子水。
9、肽键:肽链中连接两个氨基酸分子的键(-NH-CO-)。
10、二肽:由两个氨基酸分子缩合而成的化合物,只含有一个肽键。
11、多肽:由三个或三个以上的氨基酸分子缩合而成的链状结构。有几个氨基酸叫几肽。
12、肽链:多肽通常呈链状结构,叫肽链。
13、氨基酸:蛋白质的基本组成单位 ,组成蛋白质的氨基酸约有20种,决定20种氨基酸的密码子有61种。氨基酸在结构上的特点:每种氨基酸分子至少含有一个氨基(-NH2)和一个羧基(-COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上(如:有-NH2和-COOH但不是连在同一个碳原子上不叫氨基酸)。R基的不同氨基酸的种类不同。
14、核酸:最初是从细胞核中提取出来的,呈酸性,因此叫做核酸。核酸最遗传信息的载体,核酸是一切生物体(包括病毒)的遗传物质,对于生物体的遗传变异和蛋白质的生物合成有极其重要的作用。
15、脱氧核糖核酸(DNA):它是核酸一类,主要存在于细胞核内,是细胞核内的遗传物质,此外,在细胞质中的线粒体和叶绿体也有少量DNA。
16、核糖核酸:另一类是含有核糖的,叫做核糖核酸,简称RNA。
公式:
1、肽键数=脱去水分子数=氨基酸数目—肽链数。
2、基因(或DNA)的碱基:信使RNA的碱基:氨基酸个数=6:3:1
语句:
1、自由水和结合水是可以相互转化的,如血液凝固时,部分自由水转化为结合水。自由水/结合水的值越大,新陈代谢越活跃。自由水是细胞内的良好溶剂。
2、能源物质系列:生物体的能源物质是糖类、脂类和蛋白质;糖类是细胞的主要能源物质,是生物体进行生命活动的主要能源物质;生物体内的主要贮藏能量的物质是脂肪;动物细胞内的主要贮藏能量的物质是糖元;植物细胞内的主要贮藏能量的物质是淀粉;生物体内的直接能源物质是ATP;生物体内的最终能量来源是太阳能。
3、糖类、脂类、蛋白质、核酸四种有机物共同的元素是C、H、O三种元素,蛋白质必须有N,核酸必须有N、P;蛋白质的基本组成单位是氨基酸,核酸的基本组成单位是核苷酸。(例: DNA、叶绿素、纤维素、胰岛素、肾上腺皮质激素在化学成分中共有的元素是C、H、O)。
4、蛋白质的四大特点:①相对分子质量大;②分子结构复杂;③种类极其多样;④功能极为重要。
5、蛋白质结构多样性:①氨基酸种数不同,②氨基酸数目不同,③氨基酸排列次序不同,④肽链空间结构不同。
6、蛋白质分子结构的多样性决定了蛋白质分子功能多样性,概括有:①构成细胞和生物体的重要物质如肌动蛋白;②催化作用:如酶;③调节作用:如胰岛素、生长激素;④免疫作用:如抗体,抗原(不是蛋白质);⑤运输作用:如红细胞中的血红蛋白。 注意:蛋白质分子的多样性是由核酸控制的。
7、一切生命活动都离不开蛋白质,蛋白质是生命活动的承担者。核酸是一切生物的遗传物质,是遗传信息的载体,存在于一切细胞中(不是存在于一切生物中),对于生物的遗传、变异和蛋白质的合成具有重要作用。
8、组成核酸的基本单位是核苷酸,是由一分子磷酸、一分子核糖、一分子含氮碱基组成。组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸。
高中生物知识点总结:必修一
1、生命系统的结构层次依次为:细胞→组织→器官→系统→个体→种群→群落→生态系统
细胞是生物体结构和功能的基本单位;地球上最基本的生命系统是细胞
2、光学显微镜的操作步骤:对光→低倍物镜观察→移动视野中央(偏哪移哪)
→高倍物镜观察:①只能调节细准焦螺旋;②调节大光圈、凹面镜
3、原核细胞与真核细胞根本区别为:有无核膜为界限的细胞核
①原核细胞:无核膜,无染色体,如大肠杆菌等细菌、蓝藻
②真核细胞:有核膜,有染色体,如酵母菌,各种动物
注:病毒无细胞结构,但有DNA或RNA
4、蓝藻是原核生物,自养生物
5、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质
6、细胞学说建立者是施莱登和施旺,细胞学说建立揭示了细胞的统一性和生物体结构的统一性。细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折
7、组成细胞(生物界)和无机自然界的化学元素种类大体相同,含量不同
8、组成细胞的元素
①大量无素:C、H、O、N、P、S、K、Ca、Mg
②微量无素:Fe、Mn、B、Zn、Mo、Cu
③主要元素:C、H、O、N、P、S
④基本元素:C
⑤细胞干重中,含量最多元素为C,鲜重中含最最多元素为O
9、生物(如沙漠中仙人掌)鲜重中,含量最多化合物为水,干重中含量最多的
化合物为蛋白质。
10、(1)还原糖(葡萄糖、果糖、麦芽糖)可与斐林试剂反应生成砖红色沉淀;脂肪可苏丹III染成橘黄色(或被苏丹IV染成红色);淀粉(多糖)遇碘变蓝色;蛋白质与双缩脲试剂产生紫色反应。
(2)还原糖鉴定材料不能选用甘蔗
(3)斐林试剂必须现配现用(与双缩脲试剂不同,双缩脲试剂先加A液,再加B液)
11、蛋白质的基本组成单位是氨基酸,氨基酸结构通式为NH2—C—COOH,各种氨基酸的区别在于R基的不同。
12、两个氨基酸脱水缩合形成二肽,连接两个氨基酸分子的化学键(—NH—CO—)叫肽键。
13、脱水缩合中,脱去水分子数=形成的肽键数=氨基酸数—肽链条数
14、蛋白质多样性原因:构成蛋白质的氨基酸种类、数目、排列顺序千变万化,多肽链盘曲折叠方式千差万别。
15、每种氨基酸分子至少都含有一个氨基(—NH2)和一个羧基(—COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上,这个碳原子还连接一个氢原子和一个侧链基因。
16、遗传信息的携带者是核酸,它在生物体的遗传变异和蛋白质合成中具有极其重要作用,核酸包括两大类:一类是脱氧核糖核酸,简称DNA;一类是核糖核酸,简称RNA,核酸基本组成单位核苷酸。
17、蛋白质功能:
①结构蛋白,如肌肉、羽毛、头发、蛛丝
②催化作用,如绝大多数酶
③运输载体,如血红蛋白
④传递信息,如胰岛素
⑤免疫功能,如抗体
18、氨基酸结合方式是脱水缩合:一个氨基酸分子的羧基(—COOH)与另一个氨基酸分子的氨基(—NH2)相连接,同时脱去一分子水,如图:
HOHHH
NH2—C—C—OH+H—N—C—COOHH2O+NH2—C—C—N—C—COOH
R1HR2R1OHR2
19、DNA、RNA
全称:脱氧核糖核酸、核糖核酸
分布:细胞核、线粒体、叶绿体、细胞质
染色剂:甲基绿、吡罗红
链数:双链、单链
碱基:ATCG、AUCG
五碳糖:脱氧核糖、核糖
组成单位:脱氧核苷酸、核糖核苷酸
代表生物:原核生物、真核生物、噬菌体、HIV、SARS病毒
20、主要能源物质:糖类
细胞内良好储能物质:脂肪
人和动物细胞储能物:糖原
直接能源物质:ATP
21、糖类:
①单糖:葡萄糖、果糖、核糖、脱氧核糖
②二糖:麦芽糖、蔗糖、乳糖
③多糖:淀粉和纤维素(植物细胞)、糖原(动物细胞)
④脂肪:储能;保温;缓冲;减压
22、脂质:磷脂(生物膜重要成分)
胆固醇、固醇(性激素:促进人和动物生殖器官的发育及生殖细胞形成)
维生素D:(促进人和动物肠道对Ca和P的吸收)
23、多糖,蛋白质,核酸等都是生物大分子,
组成单位依次为:单糖、氨基酸、核苷酸。
生物大分子以碳链为基本骨架,所以碳是生命的核心元素。
自由水(95.5%):良好溶剂;参与生物化学反应;提供液体环境;运送
24、水存在形式营养物质及代谢废物
结合水(4.5%)
25、无机盐绝大多数以离子形式存在。哺乳动物血液中Ca2+过低,会出现抽搐症状;患急性肠炎的病人脱水时要补充输入葡萄糖盐水;高温作业大量出汗的工人要多喝淡盐水。
26、细胞膜主要由脂质和蛋白质,和少量糖类组成,脂质中磷脂最丰富,功能越复杂的细胞膜,蛋白质种类和数量越多;细胞膜基本支架是磷脂双分子层;细胞膜具有一定的流动性和选择透过性。将细胞与外界环境分隔开
27、细胞膜的功能控制物质进出细胞进行细胞间信息交流
28、植物细胞的细胞壁成分为纤维素和果胶,具有支持和保护作用。
29、制取细胞膜利用哺乳动物成熟红细胞,因为无核膜和细胞器膜。
30、叶绿体:光合作用的细胞器;双层膜
线粒体:有氧呼吸主要场所;双层膜
核糖体:生产蛋白质的细胞器;无膜
中心体:与动物细胞有丝分裂有关;无膜
液泡:调节植物细胞内的渗透压,内有细胞液
内质网:对蛋白质加工
高尔基体:对蛋白质加工,分泌
31、消化酶、抗体等分泌蛋白合成需要四种细胞器:核糖体,内质网、高尔基体、线粒体。
32、细胞膜、核膜、细胞器膜共同构成细胞的生物膜系统,它们在结构和功能上紧密联系,协调。
维持细胞内环境相对稳定生物膜系统功能许多重要化学反应的位点把各种细胞器分开,提高生命活动效率
核膜:双层膜,其上有核孔,可供mRNA通过结构核仁
33、细胞核由DNA及蛋白质构成,与染色体是同种物质在不同时期的染色质两种状态容易被碱性染料染成深色
功能:是遗传信息库,是细胞代谢和遗传的控制中心
34、植物细胞内的液体环境,主要是指液泡中的细胞液。
原生质层指细胞膜,液泡膜及两层膜之间的细胞质
植物细胞原生质层相当于一层半透膜;质壁分离中质指原生质层,壁为细胞壁
35、细胞膜和其他生物膜都是选择透过性膜
自由扩散:高浓度→低浓度,如H2O,O2,CO2,甘油,乙醇、苯
协助扩散:载体蛋白质协助,高浓度→低浓度,如葡萄糖进入红细胞
36、物质跨膜运输方式主动运输:需要能量;载体蛋白协助;低浓度→高浓度,如无机盐、离子、胞吞、胞吐:如载体蛋白等大分子
37、细胞膜和其他生物膜都是选择透过性膜,这种膜可以让水分子自由通过,一些离子和小分子也可以通过,而其他离子,小分子和大分子则不能通过。
38、本质:活细胞产生的有机物,绝大多数为蛋白质,少数为RNA、高效性
特性专一性:每种酶只能催化一种成一类化学反应
酶作用条件温和:适宜的温度,pH,最适温度(pH值)下,酶活性最高,
温度和pH偏高或偏低,酶活性都会明显降低,甚至失活(过高、过酸、过碱)功能:催化作用,降低化学反应所需要的活化能
结构简式:A—P~P~P,A表示腺苷,P表示磷酸基团,~表示高能磷酸键
全称:三磷酸腺苷
39、ATP与ADP相互转化:A—P~P~PA—P~P+Pi+能量
功能:细胞内直接能源物质
40、细胞呼吸:有机物在细胞内经过一系列氧化分解,生成CO2或其他产物,释放能量并生成ATP过程
41、有氧呼吸与无氧呼吸比较:有氧呼吸、无氧呼吸
场所:细胞质基质、线粒体(主要)、细胞质基质
产物:CO2,H2O,能量
CO2,酒精(或乳酸)、能量
反应式:C6H12O6+6O26CO2+6H2O+能量
C6H12O62C3H6O3+能量
C6H12O62C2H5OH+2CO2+能量
过程:第一阶段:1分子葡萄糖分解为2分子丙酮酸和少量[H],释放少量能量,细胞质基质
第二阶段:丙酮酸和水彻底分解成CO2和[H],释放少量能量,线粒体基质
第三阶段:[H]和O2结合生成水,大量能量,线粒体内膜
无氧呼吸
第一阶段:同有氧呼吸
第二阶段:丙酮酸在不同酶催化作用下,分解成酒精和CO2或转化成乳酸能量42、细胞呼吸应用:包扎伤口,选用透气消毒纱布,抑制细菌有氧呼吸
酵母菌酿酒:选通气,后密封。先让酵田菌有氧呼吸,大量繁殖,再无氧呼吸产生酒精
花盆经常松土:促进根部有氧呼吸,吸收无机盐等
稻田定期排水:抑制无氧呼吸产生酒精,防止酒精中毒,烂根死亡
提倡慢跑:防止剧烈运动,肌细胞无氧呼吸产生乳酸
破伤风杆菌感染伤口:须及时清洗伤口,以防无氧呼吸
43、活细胞所需能量的最终源头是太阳能;流入生态系统的总能量为生产者固定的太阳能
44、叶绿素a
叶绿素主要吸收红光和蓝紫光
叶绿体中色素叶绿素b(类囊体薄膜)胡萝卜素
类胡萝卜素主要吸收蓝紫光
叶黄素
45、光合作用是指绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并且释放出O2的过程。
46、18C中期,人们认为只有土壤中水分构建植物,未考虑空气作用
1771年,英国普利斯特利实验证实植物生长可以更新空气,未发现光的作用
1779年,荷兰英格豪斯多次实验验证,只有阳光照射下,只有绿叶更新空气,但未知释放该气体的成分。
1785年,明确放出气体为O2,吸收的是CO2
1845年,德国梅耶发现光能转化成化学能
1864年,萨克斯证实光合作用产物除O2外,还有淀粉
1939年,美国鲁宾卡门利用同位素标记法证明光合作用释放的O2来自水。
47、条件:一定需要光
光反应阶段场所:类囊体薄膜,
产物:[H]、O2和能量
过程:(1)水在光能下,分解成[H]和O2;
(2)ADP+Pi+光能ATP
条件:有没有光都可以进行
暗反应阶段场所:叶绿体基质
产物:糖类等有机物和五碳化合物
过程:(1)CO2的固定:1分子C5和CO2生成2分子C3
(2)C3的还原:C3在[H]和ATP作用下,部分还原成糖类,部分又形成C5
联系:光反应阶段与暗反应阶段既区别又紧密联系,是缺一不可的整体,光反应为暗反应提供[H]和ATP。
48、空气中CO2浓度,土壤中水分多少,光照长短与强弱,光的成分及温度高低等,都是影响光合作用强度的外界因素:可通过适当延长光照,增加CO2浓度等提高产量。
49、自养生物:可将CO2、H2O等无机物合成葡萄糖等有机物,如绿色植物,硝化细菌(化能合成)
异养生物:不能将CO2、H2O等无机物合成葡萄糖等有机物,只能利用环境中现成的有机物来维持自身生命活动,如许多动物。
50、细胞表面积与体积关系限制了细胞的长大,细胞增殖是生物体生长、发育、繁殖遗传的基础。
51、真核细胞的分裂方式减数分裂:生殖细胞(精子,卵细胞)增殖
52、分裂间期:完成DNA分子复制及有关蛋白质合成,染色体数目不增加,DNA加倍。有丝分裂:体细胞增殖
无丝分裂:蛙的红细胞。分裂过程中没有出现纺缍丝和染色体变化
前期:核膜核仁逐渐消失,出现纺缍体及染色体,染色体散乱排列。
有丝分裂中期:染色体着丝点排列在赤道板上,染色体形态比较稳定,数目比分裂期较清晰便于观察
后期:着丝点分裂,姐妹染色单体分离,染色体数目加倍
末期:核膜,核仁重新出现,纺缍体,染色体逐渐消失。
53、动植物细胞有丝分裂区别:植物细胞、动物细胞
间期:DNA复制,蛋白质合成(染色体复制)
染色体复制,中心粒也倍增
前期:细胞两极发生纺缍丝构成纺缍体中心体发出星射线,构成纺缍体
末期:赤道板位置形成细胞板向四周扩散形成细胞壁
不形成细胞板,细胞从中央向内凹陷,缢裂成两子细胞
54、有丝分裂特征及意义:将亲代细胞染色体经过复制(实质为DNA复制后),精确地平均分配到两个子细胞,在亲代与子代之间保持了遗传性状稳定性,对于生物遗传有重要意义
55、有丝分裂中,染色体及DNA数目变化规律
56、细胞分化:个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程,它是一种持久性变化,是生物体发育的基础,使多细胞生物体中细胞趋向专门化,有利于提高各种生理功能效率。
57、细胞分化举例:红细胞与肌细胞具有完全相同遗传信息,(同一受精卵有丝分裂形成);形态、功能不能原因是不同细胞中遗传信息执行情况不同
58、细胞全能性:指已经分化的细胞,仍然具有发育成完整个体潜能。
高度分化的植物细胞具有全能性,如植物组织培养因为细胞(细胞核)具有该生物
生长发育所需的遗传信息高度分化的动物细胞核具有全能性,如克隆羊
59、细胞内水分减少,新陈代谢速率减慢
细胞内酶活性降低,细胞衰老特征细胞内色素积累
细胞内呼吸速度下降,细胞核体积增大
细胞膜通透性下降,物质运输功能下降
60、细胞凋亡指基因决定的细胞自动结束生命的过程,是一种正常的自然生理过程,如蝌蚪尾消失,它对于多细胞生物体正常发育,维持内部环境的稳定以及抵御外界因素干扰具有非常关键作用。
能够无限增殖
61、癌细胞特征形态结构发生显著变化
癌细胞表面糖蛋白减少,容易在体内扩散,转移
62、癌症防治:远离致癌因子,进行CT,核磁共振及癌基因检测;也可手术切除、化疗和放疗
一、默会知识的特征
1.缺乏表述性。相对于显性知识, 默会知识的可表述性极差, 很难用标准的逻辑化语言准确地描述出来。更确切地说, 很多情况下这种默会知识表现为一种能力, 是一种后天经过具体学习或事物潜移默化的影响而形成在头脑中的观念, 表现在肢体活动中就成为一种能力。如人际交往能力、快速阅读能力等。
2.不能用正规方法传递。默会知识既然是隐性的、存在于头脑中的知识, 就注定传递不会方便, 无法像显性知识一样写成书面文字进行大规模传递。在教学中我们发现, 在相同环境下, 对于默会知识不同的人可以有相同或相近的感受。这也就方便了生物教学中的思想传递, 尽管语言不能表述, 但可以转换成其他方式, 凭借学生不同的认知能力, 达到不同层次的理解效果。因此教师在教学过程中要注意自己的言行, 带给学生更多积极的默会知识。
3.具备经验性。默会知识大多是从经验中获得, 有一定的形成背景和形成过程, 不能一蹴而就, 而是要经历长期的过程。如同高中生物学习, 这种默会知识是从不断的练习、复习、做题中得来的, 做题中的错误犯过就不会再犯, 也是由于形成了默会知识。学生对生物学习进行综合把握, 整体总结, 这对取得优异成绩形成推动作用。
4.体现文化性。体现默会知识的文化性与显性知识的文化性不同, 默会知识的文化性体现得更为强烈, 也更不好把握, 因为若发生偏差, 就会将思维引向歧路。这种思维文化比显性文化更能支配人的行为, 如骑自行车、游泳等运动, 即使很久不复习, 再次练习只需稍加练习便可, 因为已经成为自己的文化和能力, 有自给自足性。
二、生物教学中对默会知识的关注
1.在师生对话间挖掘默会知识的共同点。无论在课中还是课下, 沟通永远都是解决问题的最好办法。在认知的默会知识上, 教师和学生是平等的, 因为不能确定教师的潜在思想就一定是正确的, 学生的思想就一定是有偏差的, 只有教学相长才是共同进步的正确方法。因此, 在沟通与对话中, 将彼此的潜在思想和默会知识表现出来, 通过人与人的思维联结寻求共鸣, 对于生物教学有极大的帮助。师生相互成为倾吐者和倾听者, 一方面可加深师生感情, 另一方面可以发现教学和学习中的问题, 互通有无, 取长补短。在课堂上, 教师的教学态度也应放平和, 以学生作为教学的主体, 摒弃传统教学中“一言堂”的教学方式, 多听听学生的声音, 避免双方保持沉默, 除生物知识以外避之不谈的现象。但是应该认识到这种寻求共鸣并不是绝对的思想统一, 完全地消除思想上的差异, 应在和谐的基调上让师生思想有机地统一起来。
2.提升和转化默会知识, 使之成为正确、科学的思想。默会知识在一定程度上表现为一种处理问题的固定程序, 同时也是支配意识做什么、怎么做的重要来源。认识到默会知识的重要作用后, 我们应该使默会知识发挥其重要的领导作用。在生物教学中, 面对学生明显的意识偏差, 教师应想方设法帮助其转化成科学、正确的思想。而对于一些认知浅显、知识攫取程度低的学生, 应帮助其提高默会知识的高度, 努力让默会知识成为科学的、对学生学习有帮助的重要动力。教师可尝试设置情景训练, 以实验或演示来纠正学生思想中对生物知识的错误想法, 使学生开阔视野, 对默会知识形成新的主观改变, 这对学生答题及接下来连锁的生物知识学习也有很好的推动作用。
3.应用默会知识。在一番纠正与思考过后, 是“趁热打铁”阶段, 教师应让学生自己体验生物默会知识的具体内涵。教师可开展一些实践活动或生物科学的研究, 巩固学生刚刚形成的默会知识, 让正确的思想在心中扎根。
关键词:高中生物;光合作用;知识
一、能量知识方面的总结
在高中生物选修课本中我们可以看出新增加了“光能转化为电能”这一新的知识点。在课本上我们可以得出三个知识点:(1)色素对光能的吸收、聚焦和传递功能;(2)叶绿素a在特殊的情况下接受到光能以后,通过本能放出电子,又在水中得到电子,叶绿素a的这种电子得失转换即是光能与电能的相互转换;(3)会有NADPH的产生。根据课本上能量转化及其电子转换图我们可以得到光能到电能再到化学能之间的转化过程。在对这些知识点进行教授的过程中,老师还可以通过各种状态的图示来讲解。
二、对于光合作用速率的判断
1.采用文字叙述的方法
通常是根据题目中文字出现的信息,进行初步的判断。当题中出现总的量发生的变化、产生总的有机物时,一般表示的是总的光合作用速率。相對应的题目中出现有机物积累量、净量的变化时,我们则可以判断为净光合作用速率。
2.采用图表法
在图表中我们可以清楚地看到光照强度的变化,如果我们看到的光照强度在0点处,就可以判断题目中所要表达的是净光合作用速率。又或者题目中用二氧化碳的变化量或者释放速度来表示光合作用。再有就是在用数轴表示时,如果数轴中光合作用的速率在纵轴上有负值时,我们可以毫不犹豫地判定题目中表示的为净光合作用速率。但是,有一种特殊情况,就是当图表中的光照强度为0的时候,但是此时的光合作用速度也是0的话,那么题目中所要表达的是总的光和速率。
总之,不论是高中生物必修课本中对光合作用的学习,还是选修课本中要求我们对光合作用的了解,都是十分重要的。我们在这部分的学习中要注意知识的整合和概括,提高自己的学习能力,提高对生物学习中光合作用的更广泛的了解。同时,我们还要找到适合自己的学习方法,通过记忆或者看图都要因人而异,只有适合自己的学习基础、学习能力,才能更利于我们生物的学习,才能促进我们对光合作用知识点的掌握。
参考文献:
李伟.中学生物概念教学[J].中学生物学,2009(25).
(作者单位 内蒙古自治区鄂尔多斯市达拉特旗第七中学)
【高中生物学知识点总结】推荐阅读:
高中生物知识点总结:杂交育种与诱变育种10-31
人教版高中生物知识点必修一11-24
高中生物公式总结10-29
高中生物基本概念总结11-23
高中生物老师工作述职总结11-04
高中竞赛普通生物学07-13
高中生物教学论文 高中生物教学设计06-28
高中生物《生物群落的演替》的教案11-23
高中生物实验方法05-29