抽屉原理

2025-03-30 版权声明 我要投稿

抽屉原理(精选8篇)

抽屉原理 篇1

把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。一般地,我们将它表述为:

第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

使用抽屉原理解题,关键是构造抽屉。一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。

例1 从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定:

(1)有2个数互质;

(2)有2个数的差为50;

(3)有8个数,它们的最大公约数大于1。

证明:(1)将100个数分成50组:

{1,2},{3,4},…,{99,100}。

在选出的51个数中,必有2个数属于同一组,这一组中的2个数是两个相邻的整数,它们一定是互质的。

(2)将100个数分成50组:

{1,51},{2,52},…,{50,100}。

在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。

(3)将100个数分成5组(一个数可以在不同的组内):

第一组:2的倍数,即{2,4,…,100};

第二组:3的倍数,即{3,6,…,99};

第三组:5的倍数,即{5,10,…,100};

第四组:7的倍数,即{7,14,…,98};

第五组:1和大于7的质数即{1,11,13,…,97}。

第五组中有22个数,故选出的51个数至少有29个数在第一组到第四组中,根据抽屉原理,总有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。

例2 求证:可以找到一个各位数字都是4的自然数,它是1996的倍数。

证明:因1996÷4=499,故只需证明可以找到一个各位数字都是1的自然数,它是499的倍数就可以了。

得到500个余数r1,r2,…,r500。由于余数只能取0,1,2,…,499这499个值,所以根据抽屉原理,必有2个余数是相同的,这2个数的差就是499的倍数,这个差的前若干位是1,后若干位是0:11…100…0,又499和10是互质的,故它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,它是1996的倍数。

例3 在一个礼堂中有99名学生,如果他们中的每个人都与其中的66人相识,那么可能出现这种情况:他们中的任何4人中都一定有2人不相识(假定相识是互相的)。

分析:注意到题中的说法“可能出现……”,说明题的结论并非是条件的必然结果,而仅仅是一种可能性,因此只需要设法构造出一种情况使之出现题目中所说的结论即可。

解:将礼堂中的99人记为a1,a2,…,a99,将99人分为3组:

(a1,a2,…,a33),(a34,a35,…,a66),(a67,a68,…,a99),将3组学生作为3个抽屉,分别记为A,B,C,并约定A中的学生所认识的66人只在B,C中,同时,B,C中的学生所认识的66人也只在A,C和A,B中。如果出现这种局面,那么题目中所说情况

/ 7

就可能出现。

因为礼堂中任意4人可看做4个苹果,放入A,B,C三个抽屉中,必有2人在同一抽屉,即必有2人来自同一组,那么他们认识的人只在另2组中,因此他们两人不相识。

例4 如右图,分别标有数字1,2,…,8的滚珠两组,放在内外两个圆环上,开始时相对的滚珠所标数字都不相同。当两个圆环按不同方向转动时,必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。

分析:此题中没有直接提供我们用以构造抽屉和苹果的数量关系,需要转换一下看问题的角度。

解:内外两环对转可看成一环静止,只有一个环转动。一个环转动一周后,每个滚珠都会有一次与标有相同数字的滚珠相对的局面出现,那么这种局面共要出现8次。将这8次局面看做苹果,再需构造出少于8个抽屉。

注意到一环每转动45°角就有一次滚珠相对的局面出现,转动一周共有8次滚珠相对的局面,而最初的8对滚珠所标数字都不相同,所以数字相同的滚珠相对的情况只出现在以后的7次转动中,将7次转动看做7个抽屉,8次相同数字滚珠相对的局面看做8个苹果,则至少有2次数字相对的局面出现在同一次转动中,即必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。

例5 有一个生产天平上用的铁盘的车间,由于工艺上的原因,只能控制盘的重量在指定的20克到20.1克之间。现在需要重量相差不超过0.005克的两只铁盘来装配一架天平,问:最少要生产多少个盘子,才能保证一定能从中挑出符合要求的两只盘子?

解:把20~20.1克之间的盘子依重量分成20组:

第1组:从20.000克到20.005克;

第2组:从20.005克到20.010克;

……

第20组:从20.095克到20.100克。

这样,只要有21个盘子,就一定可以从中找到两个盘子属于同一组,这2个盘子就符合要求。

例6 在圆周上放着100个筹码,其中有41个红的和59个蓝的。那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?

分析:此题需要研究“红筹码”的放置情况,因而涉及到“苹果”的具体放置方法,由此我们可以在构造抽屉时,使每个抽屉中的相邻“苹果”之间有19个筹码。

解:依顺时针方向将筹码依次编上号码:1,2,…,100。然后依照以下规律将100个筹码分为20组:

(1,21,41,61,81);

(2,22,42,62,82);

……

(20,40,60,80,100)。

将41个红筹码看做苹果,放入以上20个抽屉中,因为41=2×20+1,所以至少有一个抽屉中有2+1=3(个)苹果,也就是说必有一组5个筹码中有3个红色筹码,而每组的5个筹码在圆周上可看做两两等距,且每2个相邻筹码之间都有19个筹码,那么3个红色筹码中必有2个相邻(这将在下一个内容——第二抽屉原理中说明),即有2个红色筹码之间有19个筹码。

下面我们来考虑另外一种情况:若把5个苹果放到6个抽屉中,则必然有一个抽屉空着。这种情况一般可以表述为:

/ 7

第二抽屉原理:把(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

例7 在例6中留有一个疑问,现改述如下:在圆周上放有5个筹码,其中有3个是同色的,那么这3个同色的筹码必有2个相邻。

分析:将这个问题加以转化:

如右图,将同色的3个筹码A,B,C置于圆周上,看是否能用另外2个筹码将其隔开。

解:如图,将同色的3个筹码放置在圆周上,将每2个筹码之间的间隔看做抽屉,将其余2个筹码看做苹果,将2个苹果放入3个抽屉中,则必有1个抽屉中没有苹果,即有2个同色筹码之间没有其它筹码,那么这2个筹码必相邻。

例8 甲、乙二人为一个正方形的12条棱涂红和绿2种颜色。首先,甲任选3条棱并把它们涂上红色;然后,乙任选另外3条棱并涂上绿色;接着甲将剩下的6条棱都涂上红色。问:甲是否一定能将某一面的4条棱全部涂上红色?

解:不能。

如右图将12条棱分成四组:

第一组:{A1B1,B2B3,A3A4},第二组:{A2B2,B3B4,A4A1},第三组:{A3B3,B4B1,A1A2},第四组:{A4B4,B1B2,A2A3}。

无论甲第一次将哪3条棱涂红,由抽屉原理知四组中必有一组的3条棱全未涂红,而乙只要将这组中的3条棱涂绿,甲就无法将某一面的4条棱全部涂红了。

下面我们讨论抽屉原理的一个变形——平均值原理。

我们知道n个数a1,a2,…,an的和与n的商是a1,a2,…,an这n个数的平均值。平均值原理:如果n个数的平均值为a,那么其中至少有一个数不大于a,也至少有一个不小于a。

例9 圆周上有2000个点,在其上任意地标上0,1,2,…,1999(每一点只标一个数,不同的点标上不同的数)。求证:必然存在一点,与它紧相邻的两个点和这点上所标的三个数之和不小于2999。

解:设圆周上各点的值依次是a1,a2,…,a2000,则其和

a1+a2+…+a2000=0+1+2+…+1999=1999000。

下面考虑一切相邻三数组之和:

(a1+a2+a3)+(a2+a3+a4)+…+(a1998+a1999+a2000)+(a1999+a2000+a1)+(a2000+a1+a2)

=3(a1+a2+…+a2000)

=3×1999000。

这2000组和中必至少有一组和大于或等于

但因每一个和都是整数,故有一组相邻三数之和不小于2999,亦即存在一个点,与它紧相邻的两点和这点上所标的三数之和不小于2999。

例10 一家旅馆有90个房间,住有100名旅客,如果每次都恰有90名旅客同时回来,那么至少要准备多少把钥匙分给这100名旅客,才能使得每次客人回来时,每个客人都能用自己分到的钥匙打开一个房门住进去,并且避免发生两人同时住进一个房间?

解:如果钥匙数小于990,那么90个房间中至少有一个房间的钥匙数少房间就打不开,因此90个人就无法按题述的条件住下来。

/ 7

另一方面,990把钥匙已经足够了,这只要将90把不同的钥匙分给90个人,而其余的10名旅客,每人各90把钥匙(每个房间一把),那么任何90名旅客返回时,都能按要求住进房间。

最后,我们要指出,解决某些较复杂的问题时,往往要多次反复地运用抽屉原理,请看下面两道例题。

例11 设有4×28的方格棋盘,将每一格涂上红、蓝、黄三种颜色中的任意一种。试证明:无论怎样涂法,至少存在一个四角同色的长方形。

证明:我们先考察第一行中28个小方格涂色情况,用三种颜色涂28个小方格,由抽屉原理知,至少有10个小方格是同色的,不妨设其为红色,还可设这10个小方格就在第一行的前10列。

下面考察第二、三、四行中前面10个小方格可能出现的涂色情况。这有两种可能:

(1)这三行中,至少有一行,其前面10个小方格中,至少有2个小方格是涂有红色的,那么这2个小方格和第一行中与其对应的2个小方格,便是一个长方形的四个角,这个长方形就是一个四角同是红色的长方形。

(2)这三行中每一行前面的10格中,都至多有一个红色的小方格,不妨设它们分别出现在前三列中,那么其余的3×7个小方格便只能涂上黄、蓝两种颜色了。

我们先考虑这个3×7的长方形的第一行。根据抽屉原理,至少有4个小方格是涂上同一颜色的,不妨设其为蓝色,且在第1至4列。

再考虑第二行的前四列,这时也有两种可能:

(1)这4格中,至少有2格被涂上蓝色,那么这2个涂上蓝色的小方格和第一行中与其对应的2个小方格便是一个长方形的四个角,这个长方形四角同是蓝色。

(2)这4格中,至多有1格被涂上蓝色,那么,至少有3格被涂上黄色。不妨设这3个小方格就在第二行的前面3格。

下面继续考虑第三行前面3格的情况。用蓝、黄两色涂3个小方格,由抽屉原理知,至少有2个方格是同色的,无论是同为蓝色或是同为黄色,都可以得到一个四角同色的长方形。

总之,对于各种可能的情况,都能找到一个四角同色的长方形。

例12 试卷上共有4道选择题,每题有3个可供选择的答案。一群学生参加考试,结果是对于其中任何3人,都有一道题目的答案互不相同。问:参加考试的学生最多有多少人?

解:设每题的三个选择分别为a,b,c。

(1)若参加考试的学生有10人,则由第二抽屉原理知,第一题答案分别为a,b,c的三组学生中,必有一组不超过3人。去掉这组学生,在余下的学生中,定有7人对第一题的答案只有两种。对于这7人关于第二题应用第二抽屉原理知,其中必可选出5人,他们关于第二题的答案只有两种可能。对于这5人关于第三题应用第二抽屉原理知,可以选出4人,他们关于第三题的答案只有两种可能。最后,对于这4人关于第四题应用第二抽屉原理知,必可选出3人,他们关于第四题的答案也只有两种。于是,对于这3人来说,没有一道题目的答案是互不相同的,这不符合题目的要求。可见,所求的最多人数不超过9人。

另一方面,若9个人的答案如下表所示,则每3人都至少有一个问题的答案互不相同。

所以,所求的最多人数为9人。练习13

1.六(1)班有49名学生。数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有4人成绩相同。”请问王老师说得对吗?为什么?

2.现有64只乒乓球,18个乒乓球盒,每个盒子里最多可以放6只乒乓球,至少有几个

/ 7

乒乓球盒子里的乒乓球数目相同?

3.某校初二年级学生身高的厘米数都为整数,且都不大于160厘米,不小于150厘米。问:在至少多少个初二学生中一定能有4个人身高相同?

4.从1,2,…,100这100个数中任意选出51个数,证明在这51个数中,一定:

(1)有两个数的和为101;

(2)有一个数是另一个数的倍数;

(3)有一个数或若干个数的和是51的倍数。

5.在3×7的方格表中,有11个白格,证明

(1)若仅含一个白格的列只有3列,则在其余的4列中每列都恰有两个白格;

(2)只有一个白格的列只有3列。

6.某个委员会开了40次会议,每次会议有10人出席。已知任何两个委员不会同时开两次或更多的会议。问:这个委员会的人数能够多于60人吗?为什么?

7.一个车间有一条生产流水线,由5台机器组成,只有每台机器都开动时,这条流水线才能工作。总共有8个工人在这条流水线上工作。在每一个工作日内,这些工人中只有5名到场。为了保证生产,要对这8名工人进行培训,每人学一种机器的操作方法称为一轮。问:最少要进行多少轮培训,才能使任意5个工人上班而流水线总能工作?

8.有9名数学家,每人至多能讲3种语言,每3人中至少有2人能通话。求证:在这9名中至少有3名用同一种语言通话。

练习13

1.对。解:因为49-3=3×(100-86+1)+1,即46=3×15+1,也就是说,把从100分至86分的15个分数当做抽屉,49-3=46(人)的成绩当做物体,根据第二抽屉原理,至少有4人的分数在同一抽屉中,即成绩相同。

2.4个。解:18个乒乓球盒,每个盒子里至多可以放6只乒乓球。为使相同乒乓球个数的盒子尽可能少,可以这样放:先把盒子分成6份,每份有18÷6=3(只),分别在每一份的3个盒子中放入1只、2只、3只、4只、5只、6只乒乓球,即3个盒子中放了1只乒乓球,3个盒中放了2只乒乓球……3个盒子中放了6只乒乓球。这样,18个盒子中共放了乒乓球

(1+2+3+4+5+6)×3=63(只)。

把以上6种不同的放法当做抽屉,这样剩下64-63=1(只)乒乓球不管放入哪一个抽屉里的任何一个盒子里(除已放满6只乒乓球的抽屉外),都将使该盒子中的乒乓球数增加1只,这时与比该抽屉每盒乒乓数多1的抽屉中的3个盒子里的乒乓球数相等。例如剩下的1只乒乓球放进原来有2只乒乓球的一个盒子里,该盒乒乓球就成了3只,再加上原来装有3只乒乓球的3个盒子,这样就有4个盒子里装有3个乒乓球。所以至少有4个乒乓球盒里的乒乓球数目相同。

3.34个。

解:把初二学生的身高厘米数作为抽屉,共有抽屉

160-150+1=11(个)。

根据抽屉原理,要保证有4个人身高相同,至少要有初二学生

3×11+1=34(个)。

4.证:(1)将100个数分成50组:

/ 7

{1,100},{2,99},…,{50,51}。

在选出的51个数中,必有两数属于同一组,这一组的两数之和为101。

(2)将100个数分成10组:

{1,2,4,8,16,32,64}, {3,6,12,24,48,96},{5,10,20,40,80}, {7,14,28,56},{9,18,36,72}, {11,22,44,88},{13,26,52}, {15,30,60},…, {49,98}, {其余数}。

其中第10组中有41个数。在选出的51个数中,第10组的41个数全部选中,还有10个数从前9组中选,必有两数属于同一组,这一组中的任意两个数,一个是另一个的倍数。

(3)将选出的51个数排成一列:

a1,a2,a3,…,a51。

考虑下面的51个和:

a1,a1+a2,a1+a2+a3,…,a1+a2+a3+…+a51。

若这51个和中有一个是51的倍数,则结论显然成立;若这51个和中没有一个是51的倍数,则将它们除以51,余数只能是1,2,…,50中的一个,故必然有两个的余数是相同的,这两个和的差是51的倍数,而这个差显然是这51个数(a1,a2,a3,…,a51)中的一个数或若干个数的和。

5.证:(1)在其余4列中如有一列含有3个白格,则剩下的5个白格要放入3列中,将3列表格看做3个抽屉,5个白格看做5个苹果,根据第二抽屉原理,5(=2×3-1)个苹果放入3个抽屉,则必有1个抽屉至多只有(2-1)个苹果,即必有1列只含1个白格,也就是说除了原来3列只含一个白格外还有1列含1个白格,这与题设只有1个白格的列只有3列矛盾。所以不会有1列有3个白格,当然也不能再有1列只有1个白格。推知其余4列每列恰好有2个白格。

(2)假设只含1个白格的列有2列,那么剩下的9个白格要放入5列中,而9=2×5-1,由第二抽屉原理知,必有1列至多只有2-1=1(个)白格,与假设只有2列每列只1个白格矛盾。所以只有1个白格的列至少有3列。

6.能。

解:开会的“人次”有 40×10=400(人次)。设委员人数为N,将“人次”看做苹果,以委员人数作为抽屉。

若N≤60,则由抽屉原理知至少有一个委员开了7次(或更多次)会。但由已知条件知没有一个人与这位委员同开过两次(或更多次)的会,故他所参加的每一次会的另外9个人是不相同的,从而至少有7×9=63(个)委员,这与N≤60的假定矛盾。所以,N应大于60。

7.20轮。

解:如果培训的总轮数少于20,那么在每一台机器上可进行工作的工人果这3个工人某一天都没有到车间来,那么这台机器就不能开动,整个流水线就不能工作。故培训的总轮数不能少于20。

另一方面,只要进行20轮培训就够了。对3名工人进行全能性培训,训练他们会开每一台机器;而对其余5名工人,每人只培训一轮,让他们每人能开动一台机器。这个方案实施后,不论哪5名工人上班,流水线总能工作。

8.证:以平面上9个点A1,A2,…,A9表示9个数学家,如果两人能通话,就把表示他们的两点联线,并涂上一种颜色(不同的语言涂上不同颜色)。此时有两种情况:

(1)9点中有任意2点都有联线,并涂了相应的颜色。于是从某一点A1出发,分别与

/ 7

A2,A3,…,A9联线,又据题意,每人至多能讲3种语言,因此A1A2,A1A3,…,A1A9中至多只能涂3种不同的颜色,由抽屉原理知,这8条线段中至少有2条同色的线段。不妨设A1A2与A1A3是同色线段,因此A1,A2,A3这3点表示的3名数学家可用同一种语言通话。

(2)9点中至少有2点不联线,不妨设是A1与A2不联线。由于每3人中至少有两人能通话,因此从A1与A2出发至少有7条联线。再由抽屉原理知,其中必有4条联线从A1或A2 出发。不妨设从A1出发,又因A1至多能讲3种语言,所以这4条联线中,至少有2条联线是同色的。若A1A3与A1A4同色,则A1,A3,A4这3点表示的3名数学家可用同一种语言通话。

抽屉原理 篇2

定理:如果将n+1个物体放进n个抽屉, 那么至少有一个抽屉中包含两个或更多的物体.

证明:如果这n个盒子中的每一个至多包含有一个物体, 那么物体的总数最多是n, 既然我们有n+1个物体, 于是某个盒子中就必然包含至少两个物体.

2.抽屉原理应用举例

例1:给定m个整数a1, a2, …, am, 存在0≤k

解:为了深入这个问题, 考虑m个和

a1, a1+a2, a1+a2+a3, …, a1+a2+a3+…+am

如果这些和当中的任意一个可被m整除, 那么结论就成立.因此, 我们可以设这些和中的每一个除以m都有一个非零余数, 余数等于1, 2, …, m-1.由于存在m个和而只有m-1个余数, 则必然有两个和数除以m有相同的余数.因此, 存在整数k和l, k

a1+a2+…+ak=bm+r, a1+a2+…+al=cm+r

二式相减, 我们发现ak+1+…+al= (c-b) m, 从而ak+1+…+al能够被m整除.

为了解释上面的论断, 令m=7, 并令整数为2, 4, 6, 3, 5, 5, 6.计算上面的和得到2, 6, 12, 15, 20, 25, 31, 其中当被7除时余数分别为2, 6, 5, 1, 6, 4, 3.有两个等于6的余数, 这意味着结论:6+3+5=14可被7整除.

例2:一位国际象棋大师有11周的时间备战一场锦标赛, 他决定每天至少下一盘棋, 但为了不使自己过于疲劳他还决定在每周不能下棋超过12盘.证明:存在连续若干天, 期间这位大师恰好下了21盘棋.

解:令a1是在第一天所下的盘数, a2是在第一天和第二天所下的总盘数, 而a3是在第一天、第二天和第三天所下的总盘数, 等等.由于每天至少要下一盘棋, 故数值序列a1, a2, …, a77是一个严格递增序列.此外, a1≥1, 而且由于每周下棋最多是12盘, a77≤12×11=132.

因此, 我们有

1≤a1

序列a1+21, a2+21, …, a77+21也是一个严格递增序列:

22≤a1+21

于是, 这154个数

a1, a2, …, a77, a1+21, a2+21, …, a77+21

中的每一个都是1到153之间的一个整数.由此可知, 它们中间有两个是相等的.既然a1, a2, …, a77中没有相等的数, 并且a1+21, a2+21, …, a77+21中也没有相等的数, 因此必然存在一个i和一个j使得ai=aj+21.从而, 这位国际象棋大师在第j+1, j+2, …, j+i天总共下了21盘棋.

例3:从整数1, 2, …, 200中, 我们选择101个整数.证明:在所选的这些整数之间存在两个这样的整数, 其中的一个可被另一个整除.

通过分解出尽可能多的2因子, 我们看到, 任一整数都可以写成2^k×a的形式, 其中k≥0并且a是奇数.对于1到200之间的一个整数, a是100个数1, 3, 5, …, 199中的一个.因此, 在所选的101个整数中存在两个整数, 当写成上述形式时这两个数具有相同的a值.令这两个数是2^r×a和2^s×a.如果rs, 那么第一个数就能被第二个数整除.

注意, 例3在这种意义下是最好的可能:从1, 2, …, 200中可以选择这样的100个数, 其中没有一个能被另一个整除, 比如, 101, 102, …, 199, 200就是这样的整数.

我们以另外的, 来自数论中的应用来结束本段.首先我们回忆, 如果两个正整数m和n的最大公约数为1, 我们就称它们为互数.

于是, 12和35互数, 而12和15则否, 因为3是12和15的公因子.

3.问题的总结

通过上述三个例题, 我们看到, 利用抽屉原理能够解决看起来很复杂的问题, 而得出解决问题的关键是为后面巧妙地构造抽屉.

参考文献

[1]Richard.Brualdi著.罗平等译.组合数学.北京:机械工业出版社, 2005.2.

趣谈“抽屉原理” 篇3

例1 储蓄筒里有五分硬币50枚,二分硬币60枚。如果倒出硬币,一次必须倒出几枚,才能保证至少有1枚五分硬币?

分析与解 如果一次倒出硬币1~60枚,有可能至少有一枚五分硬币,但不能确保有1枚五分硬币。因为二分硬币就有60枚,一次倒60枚有可能都是二分硬币,所以必须一次倒出61枚硬币,才能保证至少有一枚五分硬币。

(想一想:如果倒出硬币,一次必须倒出几枚,才能保证至少有1枚二分硬币?)

例2六年级(1)班共有学生42人,开展学雷锋活动,他们共做好事212件,是否有人至少能做6件或6件以上的好事?

分析与解 如果没有一个同学能做6件或6件以上的好事(与原题结果相反的结论),也就是说每位同学只能做5件或一件都不做。那么42个同学最多只能做52=210(件),而不是212件。这就推出了与已知条件相矛盾的现象,说明我们原先的假设是不对的。从而推出必定有人至少能做6件或6件以上的好事。

此题还可以这样解答:把42位同学看作42个抽屉,把212件好事看成212个苹果,如果每个抽屉放5个苹果,那么共放52=210(个)。因为210个少于212个,所以至少有一个抽屉放6个或6个以上苹果。从而得出42位同学做212件好事,肯定有的同学能做6件或6件以上的好事。

练一练 回答下列问题。

1.把5枝铅笔放进4个文具盒,总有一个文具盒里至少放进2枝铅笔,为什么?如果把6枝铅笔放进5个文具盒,结果是否一样呢?

2.把5本书放进2个抽屉,不管怎么放,总有一个抽屉至少放进3本书,这是为什么?

3.任意13人中,至少有两人的出生月份是相同的,这是为什么?

4.任意367名学生中,一定存在两名学生在同一天过生日,对吗?

抽屉原理教学反思 篇4

1、《数学广角》的教学要适当把握教学的要求。

本内容只要求学生能结合具体问题把大致的意思说出来就可以了,不必过于追求说理的“严密”性。而我对学生的要求过高了,不仅要求他们能说理还要求他们的语言准确严密。在例1后的做一做中,有学生描述结论时说“至少有一个鸽舍会飞进2个鸽子”。我认为这种说法是错误的,不是“至少一个鸽舍”,而是“至少2只鸽子”,于是我错误地判断学生还没有理解,就揪住这一点不放,在文字上和学生纠缠不清。其实通过之前学生对例题1的证明、说理过程和对做一做的说理可以看出学生已经理解了抽屉原理中假设法的核心“平均分”,这里学生只是表述结论时不够严密。由于我对文字的纠缠让本来思维清晰的学生反而不清了,也影响了例2 的教学,临时改变例2的教学设计,又让学生动手操作了一次。

2、对原理的探究要给学生提供充分的时间消化理解。

例1的目的之一就是通过充分的操作,让学生理解“总有一个文具盒中至少放进2支铅笔”这句话。本节课中,学生很快将4支铅笔放进3个文具盒的所有情况一一罗列出来了,也很快根据所有的情况证明了结论应该是“至少2只”,而不是“至少1只”。这时我就直接抛出了问题“不用一一列举,想一想,还有其它的方法来证明这个结论吗?”,这里进行的太快了。虽然部分学生很顺利地罗列了所以的情况,也证明了结论,但是不能代表所有学生的认知水平都达到了同步。大多数学生此时只是刚刚理解“总有一个文具盒中至少放进2支铅笔”这句话。对于“总有一个文具盒”和“至少2只”的理解应该再充分利用“一一列举”图示,加以解释理解。这个重要的环节,我没有落实到位,一带而过,造成了学生对“总有一个文具盒”的理解不到位,也为后面的教学环节制造了障碍。

3、问题面对的是全体而不是个体,应给大多数学生思考的时间和空间。

在每个具体问题的说理证明过程中,老师操之过急。问题提出后就马上指名回答,没有给大多数同学思考的时间,变成了点对点式的教学,没有做到点对面。

4、挖掘数学背景知识,应与教学内容紧密联系,不能流于形式。

教学中的每一个环节的设计都应围绕教学内容,与之紧密联系。本节课中,在总结规律后,向学生介绍了抽屉原理的发现者,数学家狄里克雷。但是仅仅停留在学生阅读资料的程度上,没有充分利用这个资料与本节课中的“做一做”联系,来说明抽屉原理为什么又叫做“鸽巢原理”,流于形式,与“高效课堂”是相悖的。

《数学广角》这个内容,我教学实践了几次,每次教学中学生反映的情况都不同,有的教学下来感觉不错,有的教学下来遗憾多多。特别是这节课,虽然开始还不错,但是由于中间对学生出现情况的错误处理,导致后面例2的教学完全改变了原来设计。

抽屉原理例题解析 篇5

1、把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.2、如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.3、我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。

例题讲解

例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

解析(首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。)例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?

解析(扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计10种情况.把这10种花色配组看作10个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。)例3 从2、4、6、„、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

解析(用题目中的15个偶数制造8个抽屉:

凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。)例4 从1、2、3、4、„、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

解析(在这20个自然数中,差是12的有以下8对: {20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,„,12),那么这12个数中任意两个数的差必不等于12)。)

例5 从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。

解析(分析与解答 根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质): {1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。)

例6 证明:在任取的5个自然数中,必有3个数,它们的和是3的倍数。分析与解答 按照被3除所得的余数,把全体自然数分成3个剩余类,即构成3个抽屉.如果任选的5个自然数中,至少有3个数在同一个抽屉,那么这3个数除以3得到相同的余数r,所以它们的和一定是3的倍数(3r被3整除)。如果每个抽屉至多有2个选定的数,那么5个数在3个抽屉中的分配必为1个,2个,2个,即3个抽屉中都有选定的数.在每个抽屉中各取1个数,那么这3个数除以3得到的余数分别为0、1、2.因此,它们的和也一定能被3整除(0+1+2被3整除)。

例7 某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。

分析与解答 共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.校友人数与握手次数的不同情况(0,1,2,„,n-1)数都是n,还无法用抽屉原理。然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、„、n-2,还是后一种状态1、2、3、„、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。

抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。概念解析

1、假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样n个抽屉中可放物品的总数就不会超过m×n件,这与多于m×n件物品的假设相矛盾。这说明一开始的假定不能成立,所以至少有一个抽屉中物品的件数不少于(m+1)件。

2、“抽屉原理1”和“抽屉原理2”的区别是:“抽屉原理1”物体多,抽屉少,数量比较接近;“抽屉原理2”虽然也是物体多,抽屉少,但是数量相差较大,物体个数比抽屉个数的几倍还多 例题讲解

1、如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子。道理很简单,如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子,剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。

2、有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?

分析与解:将40名小朋友看成40个抽屉。有玩具122件,而122=3×40+2,应用抽屉原理2,取n=40,m=3,立即知道至少有一个抽屉中放有4件或4件以上的玩具,也就是说,至少会有一个小朋友得到4件或4件以上的玩具

3、布袋里有4种不同颜色的球,每种都有10个。最少取出多少个球,才能保证其中一定有3个球的颜色一样?

分析与解:把4种不同颜色看做4个抽屉,把布袋中的球看做元素。根据抽屉原理2,要使其中一个抽屉里有3个颜色一样的球,那么放入的球的个数最少应比抽屉个数的2倍多1,即最少取出(3-1)×4+1=9(个)球。

4、有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同?

分析与解:关键是构造合适的“抽屉”。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余学生的成绩均在75~95分之间,而75~95分中共有21个不同的分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。则有44÷21=2„„2,根据抽屉原理2,至少有1个抽屉中至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的

5、学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(也可以不参加)。问:至少有多少名学生,才能保证有不少于5名学生参加学习班的情况完全相同?

分析与解:首先要弄清参加学习班有多少种不同的情况:不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况。共有1+3+3=7(种)情况。将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证有不少于5名学生参加学习班的情况完全相同,那么至少有学生7×(5-1)+1=29(名)。

6、夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。规定每人必须参加一项或两项活动。那么至少有几名营员参加的活动项目完全相同?

分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。营员数已经有了,现在的问题是应当搞清有多少个抽屉。

因为“每人必须参加一项或两项活动”,共有3项活动,所以只参加一项活动的情况有3种,参加两项活动的有爬山与参观、爬山与海滩游玩、参观与海滩游玩3种情况,所以共有3+3=6(个)抽屉。则有2000÷6=333„„2,根据抽屉原理2,至少有一个抽屉中有333+1=334(件)物品,即至少有334名营员参加的活动项目是完全相同的。

7、幼儿园里有120个小朋友,各种玩具有364件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?

把120个小朋友看做是120个抽屉,把玩具件数看做是元素。则364=120×3+4,4<120。根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具

课堂练习

1.五名同学在一起练习投篮,共投进了41个球,那么至少有一个人投进了几个球?

2.有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、两种或三种。问:至少有多少名学生订阅的杂志种类相同?

3.篮子里有苹果、梨、桃和橘子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?

4.放体育用品的仓库里有许多足球、排球和篮球,有66名同学来仓库拿球,要求每人至少拿1个球,至多拿2个球。问:至少有多少名同学所拿的球的种类是完全一样的?

5.①求证:任意25个人中,至少有3个人的属相相同。②要想保证至少有5个人的属相相同,但不能保证有6个人的属相相同,那么人的总数应在什么范围内?

参考答案

1.解:将5个同学投进的球数作为抽屉,将41个球放入抽屉中,41=5×8+1,所以至少有一个抽屉中放了9个球,即至少有一个人投进了9个球。

2.解:首先应当弄清订阅杂志的种类共有多少种不同的情况。

订一种杂志有:订甲、订乙、订丙3种情况;

订两种杂志有:订甲乙、订乙丙、订丙甲3种情况;

订三种杂志有:订甲乙丙1种情况。

总共有3+3+1=7(种)订阅方法。我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品。因为100=14×7+2。根据抽屉原理2,至少有14+1=15(名)学生所订阅的杂志种类是相同的。

3.解:首先应弄清不同的水果搭配有多少种。两个水果是相同的有4种,两个水果不同的有6种:苹果和梨、苹果和桃、苹果和橘子、梨和桃、梨和橘子、桃和橘子,所以不同的水果搭配共有4+6=10(种)。将这10种搭配作为10个“抽屉”,因为81=8×10+1,根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果是相同的。

4.解:拿球的配组方式有以下9种:{足},{排},{篮},{足,足},{排,排},{篮,篮},{足,排},{足,篮},{排,篮}。

把这9种配组方式看作9个抽屉,因为66=7×9+3,所以至少有7+1=8(名)同学所拿的球的种类是完全一样的。

5.解:①把12种属相看作12个抽屉,因为25=2×12+1,所以根据抽屉原理2,至少有3个人的属相相同。

②要保证有5个人的属相相同,总人数最少为4×12+1=49(人)。不能保证有6个人的属相相同的最多人数为5×12=60(人)。所以总人数应在49人到60人的范围内。

练习1:

1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?

2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。为什么?

3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?

答案:

1、把40名小朋友看做40个抽屉,将125件玩具放入这些抽屉,因为125=3×40+5,根据抽屉原理,可知至少有一个抽屉有4件或4件以上的玩具,所以肯定有人会得到4件或4件以上的玩具。

2、把三个笔盒看做3个抽屉,因为16=5×3+1,根据抽屉原理可以至少有一个笔盒里的笔有6枝或6枝以上。

3、把盒子数看成抽屉,要使其中一个抽屉里至少有7个球,那么球的个数至少应比抽屉个数的(7-1)倍多1,而25=4×(7-1)+1,所以最多方子4个盒子里,才能保证至少有一个盒子里有7个球。

例题2:

布袋里有4种不同颜色的球,每种都有10个。最少取出多少个球,才能保证其中一定有3个球的颜色一样? 解析:把4种不同颜色看做4个抽屉,把布袋中的球看做元素。据抽屉原理2要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。即2×4+1=9(个)球。列算式为(3—1)×4+1=9(个)

练习2:

1、布袋里有组都多的5种不同颜色的球。最少取出多少个球才能保证其中一定有3个颜色一样的球?

2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?

3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。至少要取出几张牌,才能保证其中必有4张牌的点数相同?

参考答案

1、最少应取出(3-1)×5+1=11个球

2、至少取出(4-1)×3+1=10块木块。

3、如果没有两张王牌,至少要取(4-1)×13+1=40张,再加上两张王牌,至少要摸出40+2=42张,才能保证其中必有4张牌点数相同。

例题3:

某班共有46名学生,他们都参加了课外兴趣小组。活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。问班级中至少有几名学生参加的项目完全相同?

解析:参加课外兴趣小组的学生共分四种情况,只参加一个组的有4种类型,只参加两个小组的有6个类型,只参加三个组的有4种类型,参加四个组的有1种类型。把4+6+4+1=15(种)类型看做15个抽屉,把46个学生放入这些抽屉,因为46=3×15+1,所以班级中至少有4名学生参加的项目完全相同。

练习3:

1、某班有37个学生,他们都订阅了三种报刊中的一、二、三种。其中至少有几位同学订的报刊相同?

2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每个学生最多可以参加两个(可以不参加)。某班有52名同学,问至少有几名同学参加课外学习班的情况完全相同?

3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个,问:在31个 搬运者中至少有几人搬运的球完全相同?

参考答案

1、小学六年中最多有2个闰年,共366×2+365×4=2191天,因为13170=6×2192+18,所以其中一定有7人是同年同月同日生的。

2、参加课外兴趣小组的学生共分四种情况,只参加一个组的有4种类型,只参加两个组的有6种类型,只参加三个字的有4种类型,参加四个组的有1种类型。把4+6+4+1=15种类型看作15个抽屉,把46个学生放入这些抽屉,因为46=15×3+1,所以班级中至少有4名学生参加的项目完全相同。

3、全班订阅报刊的类型共有3+3+1=7种,因为37=5×7+2,所以其中至少有6位学生订的报刊相同。

例题4:

从1至30中,3的倍数有30÷3=10个,不是3的倍数的数有30—10=20个,至少要取出20+1=21个不同的数才能保证其中一定有一个数是3的倍数。

练习4:

1、在1,2,3,„„49,50中,至少要取出多少个不同的数,才能保证其中一定有一个数能被5整除?

2、从1至120中,至少要取出几个不同的数才能保证其中一定有一个数是4的倍数?

3、从1至36中,最多可以取出几个数,使得这些数中没有两数的差是5的倍数?

参考答案 练4

1、在1~50中,5的倍数有50÷5=10个,不是5的倍数的就有50-10=40个,至少要取

出40+1=41个不同的数才能保证其中有个数能贝5整除。

2、在1~120中,4的倍数有120÷4=30个,不是4的倍数有120-30=90个,正是要取出90+1=91个不同的数才能保证其中一定有一个数是4的倍数。

3、差是5的两数有下列5组:

1、6,11、16,21、26,31、36;

2、7,12、17,22、27;

3、8,13、18,23、28、33;

4、9,14、19,24、29,34;

5、10,15、20,25、30、35。要使取出的数中没有两个数的差是5的倍数,最多只能从每组中各取1个数,即最多可以取5个数。

例题5:

将400张卡片分给若干名同学,每人都能分到,但都不能超过11张,试证明:找少有七名同学得到的卡片的张数相同。

解析:这题需要灵活运用抽屉原理。将分得1,2,3,„„,11张可片看做11个抽屉,把同学人数看做元素,如果每个抽屉都有一个元素,则需1+2+3+„„+10+11=66(张)卡片。而400÷66=6„„4(张),即每个周体都有6个元素,还余下4张卡片没分掉。而这4张卡片无论怎么分,都会使得某一个抽屉至少有7个元素,所以至少有7名同学得到的卡片的张数相同。

练习5:

1、把280个桃分给若干只猴子,每只猴子不超过10个。证明:无论怎样分,至少有6只猴子得到的桃一样多。

2、把61颗棋子放在若干个格子里,每个格子最多可以放5颗棋子。证明:至少有5个格子中的棋子数目相同。

3、汽车8小时行了310千米,已知汽车第一小时行了25千米,最后一小时行了45千米。证明:一定存在连续的两小时,在这两小时内汽车至少行了80千米。

参考答案练5

1、把11秒钟看做11个抽屉,把100米看作100个元素,因为100=9×11+1,所以必有1个抽屉里超过9米,即必有某一秒钟,他跑的距离超过9米。

2、如图答30-1,把边长为2的等边三角形分成四个边长为1的小等边三角形。把它看作4个抽屉,5个点看作5个元素,则一定有一个小三角形内有2个点,这2个点之间的距离不超过1。

抽屉原理 篇6

2013-6-7 11:17:51 来源:京佳教育 [我要评论(0)]

字号:T|T

在近几年的公务员考试中,行测数量关系中的抽屉原理问题逐年升温,已成为当前的一个常考的重要题型之一。2012年和2013年的国考就连续考了两年,可见此题型的重要性。所以,备考2013年河南省考的考生应重视抽屉原理问题,掌握其核心知识,以不变应万变。在此,京佳教育宋思琪老师为大家详细解读抽屉原理问题。

v 抽屉原理

抽屉问题所求多为极端情况,即从最差的情况考虑。对于“一共有n个抽屉,要有(取)多少件物品,才能保证至少有一个抽屉中有m个物体”,即求物品总数时,考虑最差情况这一方法的使用非常有效。具体思路如下:

最差情况是尽量不能满足至少有一个抽屉中有m个物品,因此只能将物品均匀放入n个抽屉中。当物品总数=n×(m-1)时,每个抽屉中均有m-1个物品,此时再多1个,即可保证有1个抽屉中有m个物品。因此物品总数为n×(m-1)+1。

v 真题详解

1.从一副完整的扑克牌中,至少抽出()张牌,才能保证至少6张牌的花色相同。

A.21 B.22 C.23 D.24

【京佳解析】本题属于抽屉问题。一副完整的扑克牌包括大王、小王;红桃、方块、黑桃、梅花各13张。至少抽出多少张牌→求取物品的件数,考虑最差情况。假设这个人连续抽了5张黑桃的,如果再抽取一张黑桃就满足6张同色的了,但是很不凑巧,他又连续抽了5张红桃,接着连续抽了5张方块,最后连续抽了5张梅花,又抽取了1张大王、1张小王,这是最不凑巧的情况,这时候他再抽取1张,就可以保证有6张牌花色相同了,故答案为:4×5+1+1+1=23(张)。故选C。

2.有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒?()

A.3 B.4 C.5 D.6

【京佳解析】抽屉问题。题目中同时出现了“保证”、“至少”,考虑最差情况,假设摸出的前四粒均为不同色,则只需再摸出一粒即可保证至少有二粒颜色是相同的,即4+1=5,故选C。

3.有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要()。

A.7天 B.8天 C.9天 D.10天

【京佳解析】抽屉问题。考虑最不凑巧原则,要想审核的时间最长,假设每天审核的课题数尽可能的少,才能增加审核天数,即第一天审1个,第二天审2个,依此类推,审到第六天时,共审了21个课题,第七天需审9个,如果拖到第八天,则一定会出现两天审核的课题数量相同的情况。故选A。

4.共有100人参加招聘考试,考试内容有5道,1-5题分别有80人、92人、86人、78人和74人答对,答对3道以上的人通过考试,问至少多少人通过考试?()

A.30 B.55 C.70 D.74

【京佳解析】抽屉问题。回答这类“至少”型题目,通常需要关注最不可能的情况。考虑未被答对的题目的总数有:(100-80)+(100-92)+(100-86)+(100-78)+(100-74)=90,由于必须错误3道或3道以上才能不通过考试,最不凑巧的情况就是90道刚好是30个人,每人错3道,所以入选的是70人。故选C

5.某单位组织党员参加党史、党风廉政建设、科学发展观和业务能力四项培训,要求每名党员参加且只参加其中的两项。无论如何安排,都有至少5名党员参加的培训完全相同。问该单位至少有多少名党员?()(2013国考)

A.17 B.21 C.25 D.29

运用抽屉原理妙解竞赛题 篇7

例1在坐标平面上任取五个整点(该点的横纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点.

分析与解答由中点坐标公式,点(x1,y1)、(x2,y2)连线中点坐标为要使其为整点,只须x1与x2,y1与y2的奇偶性相同.由此我们能将坐标系中所有点分为4类:(奇数、奇数),(偶数,偶数),(奇数,偶数),(偶数,奇数),得到四个“抽屉”,而依题有5个点,将其抽象为5个物体,放入4个“抽屉”,则必有一个“抽屉”至少有2个物体(点)的横、纵坐标相等,故其中点为整点.

反思与推广:由此题可以看出,运用抽屉原理解题的关键在于进行合理分类构造“抽屉”,这要求我们理解题中所给条件,抓住题中“至少”、“至多”等关键词.同时,此题还可推广为:如果(x1,x2,…,xn)是n维(元)有序数组,且x1,x2,…,xn中的每一个数都是整数,则称(x1,x2,…,xn)是一个n维整点(整点又称格点).如果对所有的n维整点按每一个xi的奇偶性来分类,由于每一个位置上有奇、偶两种可能性,因此共可分为2×2×…×2=2n个类.这是对n维整点的一种分类方法.当n=3时,23=8,此时可以构造命题:“任意给定空间中九个整点,求证它们之中必有两点存在,使连接这两点的直线段的内部含有整点”.在n=2的情形,也可以构造如下的命题:“平面上任意给定5个整点”,对“它们连线段中点为整点”的4个命题中,为真命题的是:(A)最少可为0个,最多只能是5个,(B)最少可为0个,最多可取10个,(C)最少为1个,最多为5个,(D)最少为1个,最多为10个(正确答案(D)).

例2 17名科学家中每两名科学家都和其他科学家通信,在他们通信时,只讨论三个题目,而且任意两名科学家通信时只讨论一个题目,证明:其中至少有三名科学家,他们相互通信时讨论的是同一个题目.

证明此题属于组合范畴,故想到运用图论知识,结合分类讨论及抽屉原理解决此题.视17个科学家为17个点,每两个点之间连一条线表示这两个科学家在讨论同一个问题,若讨论第一个问题则在相应两点连红线,若讨论第2个问题则在相应两点连条黄线,若讨论第3个问题则在相应两点连条蓝线.三名科学家研究同一个问题就转化为找到一个三边同颜色的三角形.先考虑科学家A,他要与另外的16位科学家每人通信讨论一个问题,相应于从A出发引出16条线段,将它们染成3种颜色,而16=3×5+1,因而必有6=5+1条同色,不妨记为AB1,AB2,AB3,AB4,AB5,AB6同红色,若Bi(i=1,2,…,6)之间有红线,则出现红色三角线,命题已成立;否则B1,B2,B3,B4,B5,B6之间的连线只染有黄蓝两色.再考虑从B1引出的5条线,B1B2,B1B3,B1B4,B1B5,B1B6,用两种颜色染色,因为5=2×2+1,故必有3=2+1条线段同色,假设为黄色,并记它们为B1B2,B1B3,B1B4.这时若B2,B3,B4之间有黄线,则有黄色三角形,命题也成立,若B2,B3,B4,之间无黄线,则△B2B3B4,必为蓝色三角形,命题仍然成立.

反思与推广:本题源于一个古典问题———世界上任意6个人中必有3人互相认识,或互相不认识.(美国普特南数学竞赛题).

提示:将互相认识用红色表示,将互相不认识用蓝色表示,(1)将化为一个染色问题,成为一个图论问题:空间六个点,任何三点不共线,四点不共面,每两点之间连线都涂上红色或蓝色.之后的证明参照例2.

Ramsey定理:可以往两个方向推广:其一是颜色的种数,其二是点的数目.

本例便是方向一的进展,其证明已知上述.如果继续沿此方向前进,可有下题:

在66个科学家中,每个科学家都和其他科学家通信,在他们的通信中仅仅讨论四个题目,而任何两个科学家之间仅仅讨论一个题目.证明至少有三个科学家,他们互相之间讨论同一个题目.

回顾上面证明过程,对于17点染3色问题可归结为6点染2色问题,又可归结为3点染一色问题.反过来,我们可以继续推广.从以上(3,1)→(6,2)→(17,3)的过程,易发现

同理可得(66-1)×5+2=327,(327-1)×6+2=1958…记为r1=3,r2=6,r3=17,r4=66,r5=327,r6=1958,…

我们可以得到递推关系式:rn=n(rn-1-1)+2,n=2,3,4…这样就可以构造出327点染5色问题,1958点染6色问题,都必出现一个同色三角形.

例3已知在边长为1的等边三角形内(包括边界)有任意五个点.证明:至少有两个点之间的距离不大于

分析与解答本题看上去像平面几何,但仔细思考会发现本题有浓厚组合色彩,我们称这种题为“组合几何”.题中5个点的分布是任意的,说明我们应构造4个“抽屉”,并且同一个抽屉中的点距离不大于而我们熟知,三角形内(包括边界)任两点距离不大于最长边边长,故我们取三角形边中点并顺次连接,得到4个边长为的等边三角形,则5个点中必有2点位于同一个小等边三角形中(包括边界),其距离便不大于

以上结论要由定理“三角形内(包括边界)任意两点间的距离不大于其最大边长”来保证.

反思与推广:(1)这里是用等分三角形的方法来构造“抽屉”.类似地,还可以利用等分线段、等分正方形的方法来构造“抽屉”.例如“任取n+1个正数ai,满足0<ai≤1(i=1,2,…,n+1),试证明:这n+1个数中必存在两个数,其差的绝对值小于.又如“在边长为1的正方形内任意放置五个点,求证:其中必有两点,这两点之间的距离不大于

(2)例3中,如果把条件(包括边界)去掉,则结论可以修改为:至少有两个点之间的距离小于请读者试证之,并比较证明的差别.

(3)用同样的方法可证明以下结论:

ⅰ)在边长为1的等边三角形中有n2+1个点,这n2+1个点中一定有距离不大于的两点.

ⅱ)在边长为1的等边三角形内有n2+1个点,这n2+1个点中一定有距离小于的两点.

(4)将(3)中两个命题中的等边三角形换成正方形,相应的结论中的命题仍然成立.

(5)读者还可以考虑相反的问题:一般地,“至少需要多少个点,才能够使得边长为1的正三角形内(包括边界)有两点其距离不超过

分析与解答抽屉原理不仅能用于组合问题,在某些不等式证明中,也有意想不到的效果.观察不等式,知△ABC为正三角形时取等号,故以角度与60°的大小关系分类.

女孩的抽屉 篇8

赤橙黄绿青蓝紫——青春的色彩,富有色彩的青春。女孩是青春最典型的代言人,女孩活泼、开朗、可爱又美丽。只要一见到女孩甜美的笑容,你的心都温暖了,看着她们那迷人的双眸,真希望从中读懂她们的心。

抽屉里藏了许多回忆,藏着女孩对过去的珍惜。看着那可爱的流氓兔,看着那精致的小别针,看着好友写的一封又一封信,看着生日卡上令你激动不已的美好祝愿,你不禁又想起点燃生日蜡烛时的一幕幕画面。抽屉里还有一颗弹珠,是儿时好友送你的第一份礼物,她没忘记你们在榕树下听故事、在你外婆家小园里嬉戏的情景……共同的怀念都凝聚在这小小的五彩石上。

女孩的抽屉里藏着一本影集。那里有女孩们春天里的倩影,有女孩们一次又一次微笑瞬间的定格,有女孩们踏青的风采……抽屉里被女孩们藏入很多打算,为自己未来的打算,为自己家人的打算,为自己朋友的打算。为了激励自己实现梦想,她们总是去打开抽屉欣赏一番,为自己打气、加油。

抽屉里还有几封信藏在最保险的地方,还有一张看后从心里笑到脸上的小照片。有许许多多想炫耀又不敢炫耀的东西,心里闷着许许多多想说又不敢说的话。

以前,你羡慕抽屉里装满书的大女孩,甚至对她们肃然起敬。现在,你说,书可以放在书橱了,抽屉是你自己的世界。你说,你那么喜欢绚丽多彩、五彩缤纷。你说,你要有世界上最大的抽屉。

上一篇:曾经错过的作文范文下一篇:爱父母作文