动量守恒练习题

2024-09-08 版权声明 我要投稿

动量守恒练习题

动量守恒练习题 篇1

一、选择题

1.木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上,在b上施加向左的水平力使弹簧压缩,如图1所示,当撤去外力后,下列说法中正确的是 [ ]

A.a尚未离开墙壁前,a和b系统的动量守恒

B.a尚未离开墙壁前,a与b系统的动量不守恒

C.a离开墙后,a、b系统动量守恒

D.a离开墙后,a、b系统动量不守恒

2.甲球与乙球相碰,甲球的速度减少5m/s,乙球的速度增加了3m/s,则甲、乙两球质量之比m甲∶m乙是 [ ]

A.2∶

1B.3∶

5C.5∶

3D.1∶2

3.光滑水平面上停有一平板小车,小车上站有两人,由于两人朝同一方向跳离小车,而使小车获得一定速度,则下面说法正确的是 [ ]

A.两人同时相对于地以2m/s的速度跳离,比两人先后相对于地以2m/s的速度跳离使小车获得速度要大些

B.两人同时相对于地以2m/s的速度跳离与两人先后相对于地以2m/s的速度跳离两种情况下,小车获得的速度是相同的

C.两人同时相对于车以2m/s的速度跳离,比两人先后相对于车以2m/s的速度跳离,使小车获得的速度要大些

D.两人同时相对于车以2m/s的速度跳离,比两人先后相对于车以2m/s的速度跳离,使小车获得的速度要小些

4.A、B两球在光滑水平面上相向运动,两球相碰后有一球停止运动,则下述说法中正确的是 [ ]

A.若碰后,A球速度为0,则碰前A的动量一定大于B的动量

B.若碰后,A球速度为0,则碰前A的动量一定小于B的动量

C.若碰后,B球速度为0,则碰前A的动量一定大于B的动量

D.若碰后,B球速度为0,则碰前A的动量一定小于B的动量

5.在光滑水平面上有A、B两球,其动量大小分别为10kg·m/s与15kg·m/s,方向均为向东,A球在B球后,当A球追上B球后,两球相碰,则相碰以后,A、B两球的动量可能分别为 [ ]

A.10kg·m/s,15kg·m/s

B.8kg·m/s,17kg·m/s

C.12kg·m/s,13kg·m/s

D.-10kg·m/s,35kg·m/s

6.分析下列情况中系统的动量是否守恒 [ ]

A.如图2所示,小车停在光滑水平面上,车上的人在车上走动时,对人与车组成的系统

B.子弹射入放在光滑水平面上的木块中对子弹与木块组成的系统(如图3)

C.子弹射入紧靠墙角的木块中,对子弹与木块组成的系统

D.斜向上抛出的手榴弹在空中炸开时

7.一平板小车静止在光滑的水平地面上,甲乙两个人背靠站在车的中央,当两人同时向相反方向行走,如甲向小车左端走,乙向小车右端走,发现小车向右运动,则 [ ]

A.若两人质量相等,则必定v甲>v乙

B.若两人的质量相等,则必定v甲<v乙

C.若两人的速度相等,则必定m甲>m乙

D.若两人的速度相等,则必定m甲<m乙

8.质量为M的原子核,原来处于静止状态,当它以速度V放出一个质量为m的粒子时,剩余部分的速度为 [ ]

A.mV/(M-m)

B.-mV/(M—m)

C.mV/(M+m)

D.-mV/(M+m)

9.如图4所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,若以两车及弹簧组成系统,则下列说法中正确的是 [ ]

A.两手同时放开后,系统总量始终为零

B.先放开左手,后放开右手后动量不守恒

C.先放开左手,后放开右手,总动量向左

D.无论何时放手,只要两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零

10.质量分别为mA和mB的人,站在停于水平光滑的冰面上的冰车C上,当此二人作相向运动时,设A的运动方向为正,则关于冰车的运动下列说法中正确的是 [ ]

A.如果vA>vB,则车运动方向跟B的方向相同

B.如果vA>vB,则车运动方向跟B的方向相反

C.如果vA=vB,则车保持静止

D.如果mAvA>mBvB,则车运动方向跟B的方向相同

11.A、B两个相互作用的物体,在相互作用的过程中合外力为0,则下述说法中正确的是 [ ]

A.A的动量变大,B的动量一定变大

B.A的动量变大,B的动量一定变小

C.A与B的动量变化相等

D.A与B受到的冲量大小相等

12.船静止在水中,若水的阻力不计,当先后以相对地面相等的速率,分别从船头与船尾水平抛出两个质量相等的物体,抛出时两物体的速度方向相反,则两物体抛出以后,船的状态是 [ ]

A.仍保持静止状态

B.船向前运动

C.船向后运动

D.无法判断

13.如图5所示,在光滑水平面上有一静止的小车,用线系一小球,将球拉开后放

开,球放开时小车保持静止状态,当小球落下以后与固定在小车上的油泥沾在一起,则从此以后,关于小车的运动状态是 [ ]

A.静止不动

B.向右运动

C.向左运动

D.无法判断

14.小车静止在光滑的水平面上,A、B二人分别站在车的左、右两端,A、B二人同时相向运动,此时小车向左运动,下述情况可能是 [ ]

A.A、B质量相等,速率相等

B.A、B质量相等,A的速度小

C.A、B速率相等,A的质量大

D.A、B速率相等,B的质量大

15.在光滑水平面上有两辆车,上面分别站着A、B两个人,人与车的质量总和相等,在A的手中拿有一个球,两车均保持静止状态,当A将手中球抛给B,B接到后,又抛给A,如此反复多次,最后球落在B的手中,则关于A、B速率大小是 [ ]

A.A、B两车速率相等

B.A车速率大

C.A车速率小

D.两车均保持静止状态

二、填空题

16.如图6所示,A、B两物体的质量分别为3kg与1kg,相互作用后沿同一直线运动,它们的位移-时间图像如图6所示,则A物体在相互作用前后的动量变化是______kg·m/s,B物体在相互作用前后的动量变化是______kg·m/s,相互作用前后A、B系统的总动量______。

17.在光滑的水平面上有A、B两辆质量均为m的小车,保持静止状态,A车上站着一个质量为m/2的人,当人从A车跳到B车上,并与B车保持相对静止,则A车与B车速度大小比等于______,A车与B车动量大小比等于______。

18.一质量为0.1kg的小球从0.80m高处自由下落到一厚软垫上,若从小球接触软垫到小球陷至最低点经历了0.20s,则这段时间内软垫对小球的冲量为______。(取g=10m/s2,不计空气阻力)

19.沿水平方向飞行的手榴弹,它的速度是20m/s,在空中爆炸后分裂成1kg和0.5kg的那两部分。其中0.5kg的那部分以10m/s的速度与原速反向运动,则另一部分此时的速度大小为______,方向______。

三、计算题

20.火箭喷气发动机每次喷出m=200g的气体,喷出的气体相对地面的速度为v=1000m/s,设火箭初质量m=300kg,发动机每秒喷20次,在不考虑空气阻力及地球引力的情况下,火箭发动机1s末的速度多大?

21.一个稳定的原子核质量为M,处于静止状态,它放出一个质量为m的粒子后,做反冲运动,已知放出的粒子的速度为v0,则反冲核速度为多少?

22.平静的水面上有一载人小船,船和人的共同质量为M,站立在船上的人手中拿一质量为m的物体,起初人相对船静止,船、人、物以共同速度v0前进。当人相对于船以速度u向相反方向将物体抛出后,人和船的速度为多大?(水的阻力不计)

23.一辆列车总质量为M,在平直轨道上以v速度匀速行驶,突然后一节质量为m的车厢脱钩,假设列车所受的阻力与质量成正比,牵引力不变,当后一节车厢刚好静止时,前面列车的速度多大?

动量守恒定律及应用练习题答案

一、选择题

1.B C

2.B

3.B C

4.A D

5.B

6.A B D

7.A C

8.B

9.A C D

10.D

11.D

12.A

13.A

14.C

15.B

二、填空题

16.3,-3,守恒

17.3∶2,3∶

218.0.6N·s

19.35m/s,原速方向

三、计算题

20.13.5m/s

21.mv0/(M-m)

22.v0+mu/(M+m)

动量守恒练习题 篇2

关键词:动量守恒,角动量守恒,合力,合力矩

0 引言

在当今大学物理的教材中,没有对动量守恒和角动量守恒作出明显的比较。因此,学生在学习这点内容时,就容易出现做题的错误。针对子弹击入木棒问题与子弹击入沙袋问题的区别来说明动量守恒和角动量守恒问题。本文以动量守恒和角动量守恒的规律做出一些探讨。

1 动量守恒

1.1 动量守恒条件由质点系的动量定理得

若质点系所受的合外力则系统的总动量不变,即动量守恒。

1.2 动量守恒应注意的问题

(1)系统的总动量不变,但系统内任一物体的动量是可变的。

(2)守恒条件:合外力为零。

当时,可近似认为系统总动量守恒。(例如碰撞、爆炸)

(3)若系统所受的合外力的矢量和不为零,但合外力在某个坐标抽上的分矢量为零,此时系统的总动量不守恒,但在该坐标抽的分动量却是守恒的。

(4)动量守恒定律是物理学最普遍、最基本的定律之一。

2 角动量守恒

2.1 角动量守恒的条件由质点系的角动量定理得

2.2 角动量守恒应注意的问题

(1)刚体定轴转动的角动量守恒定律,若M=0,则L=Jω=常量

若J不变,ω也不变。若J改变,ω也改变,但L=Jω不变。

(2)内力矩不改变系统的角动量。

(3)在冲击等问题中∵Min>>Mex∴L≈常量。

(4)角动量守恒定律是自然界的一个基本定律。

3 动量守恒与角动量守恒的比较

3.1 经典例题

如图2一长为l,质量为M的竿可绕支点O自由转动。一质量为m、速率为v的子弹射入竿内距支点为a处,子弹刚停在棒中时棒的角速度ω。

解子弹、竿组成一系统,应用角动量守恒

在大学物理考试中,经常以上题来考察学生角动量守恒定理得掌握情况,而大多数学生还会用到动量守恒定理来解题,这是明显不对的。就这个问题,下面举出了例子来具体说明。

3.2 动量守恒与角动量守恒的例子

子弹击入沙袋(绳子的质量忽略不计)如图1,以子弹和沙袋为系统应满足动量守恒和角动量守恒。

子弹击入杆,以子弹和杆为系统应满足角动量守恒而动量不守恒。沙袋是用绳子悬挂的(绳子的质量忽略不计,当细绳处于竖直状态时,不会对沙袋提供水平方向上的作用力V。因此子弹和沙箱所组成的系统在水平方向上动量守恒。然而木棒是用轴悬挂的,只要木棒在水平方向上有运动趋势,就会受到轴对它水平方向的作用力,因而动量不守恒。虽然动量不守恒,但是角动量是守恒的,棒受到重力和轴对它的水平方向上的作用力,这两个力的作用线都通过作用点,所以合力矩为零,整个系统角动量守恒。

在讲授这两个守恒问题时,学生常有这样的思考,什么时候动量守恒而角动量不守恒?什么时候角动量守恒而动量不守恒?上面子弹与木棒所组成的系统恰好说明了角动量守恒而动量不守恒的问题。那么动量守恒而角动量不守恒的例子可以用图3来说明,一刚体在光滑无摩擦的水平地面运动,受到大小相等,方向相反的两个力的作用,很明显这时它在水平方向上所受的合外力为零,但是它所受到的合力矩不为零即M=2Fr,整个系统在水平方向上动量守恒而角动量不守恒。在做题时,大多数情况下如果两个物体碰撞完以后一起平动,那么应满足动量守恒。如果两个物体碰撞完以后一起转动,应满足角动量守恒,具体问题具体分析。

4 结语

上面分析了子弹击入木棒问题与子弹击入沙袋问题的区别,指出什么情况下系统的角动量守恒,什么情况下系统的动量守恒,希望所得的结论对学生理解此类问题有所帮助。

参考文献

[1]王宗昌.木棒和子弹组成系统的动量守恒问题[J].南阳师范学院学报,2004,4(9):36-37.

[2]马文蔚.物理学[M].北京:高等教育出版社,2006.

[3]苏艳丽.对一个力学角动量守恒问题的讨论[J].长春师范学院学报,2010,29(4):53-55.

动量守恒练习题 篇3

一、两守恒定律的比较

1.相似之处

(1)两个定律都是用“守恒量”表示自然界的变化规律,研究对象均为物体系.应用“守恒量”表示物体系运动状态变化规律是物理研究中的重要方面.我们学习物理,就要学会用守恒定律处理问题.

(2)两个守恒定律均是在一定条件下才成立,它们都是用运动前、后两个状态的守恒量的相等来表示物体系的规律特征的,因此,它们的表达式是相似的,且它们的表达式均有多种形式.

(3)运用守恒定律解题都要注意其系统性(不是其中一个物体)、相对性(表达式的速度和其他有关物理量必须对同一参考系)、同时性(物体系内各物体的动量和机械能都是同一时刻的)、阶段性(满足条件后,各过程的始末守恒).求解问题时,都只需考虑运动的初状态和末状态,而不必考虑两个状态之间的过程细节.

(4)两个定律都可用实验加以验证,都可用理论进行论证.动量守恒定律是将动量定理用于相互作用的物体,在物体系不受外力的条件下推导出来的;机械能守恒定律是将动能定理用于物体系(物体和地球组成的系统),在只有重力做功的条件下推导而成的.

2.不同之处

(1)守恒量不同.动量守恒定律的守恒量是动量,机械能守恒定律的守恒量是机械能,因此,它们所表征的守恒规律是有本质区别的,动量守恒时,机械能可能守恒,也可能不守恒;反之亦然.

(2)守恒条件不同.动量守恒定律的适用条件是系统不受外力(或某一方向系统不受外力),或系统所受的合外力等于零,或者系统所受的合外力远小于系统之间的内力.机械能守恒定律适用的条件是只有重力或弹力做功;或者只有重力或弹力做功,受其他力,但其他力不做功.

(3)表达式不同.动量守恒定律的表达式是矢量式,不论是m1v1+m2v2=m1v1′+m2v2′,还是p1+p2=p1′+p2′,或者Δp1=-Δp2均是矢量式,对于在一直线上运动的物体系,只要规定正方向,动量守恒定律可表示为代数式.机械能守恒定律的表达式为标量式,一般它表示为Ek1+EP1=Ek2+EP2,或ΔEP=-ΔEK;或者ΔEa=-ΔEb(将系统分成a、b两部分来研究).二、两守恒定律的应用 要正确解答物理问题,就须先对题目所提供的物理情景、物理过程进行认真细致的分析.只要过程分析正确了,解题就是水到渠成、顺理成章的事——应用有关的公式、定理、定律等进行运算.因此在解答习题中应将“重心”放在分析物理过程上.下面通过分析三个例子来说明两守恒定律的应用.

例1如图1所示,用长为l的轻细绳拴住一个质量为m的小球后,另一端固定在O点,将绳拉直后,将小球分别从位置Ⅰ、Ⅱ、Ⅲ由静止开始释放,求小球经过最低点时的速度及绳对小球的拉力.

图1讲析在运用机械能守恒定律解决问题时,关键是判断机械能是否守恒,根本依据是过程中物体受力情况及各力做功情况.

本题中,当小球分别从Ⅰ、Ⅱ释放后,绳就对小球有拉力作用,运动过程中小球只受重力和绳的拉力作用,但绳的拉力对小球不做功,只有重力做功,故过程中小球的机械能守恒.先用机械能守恒定律求出小球经过最低点的速度,再根据牛顿第二定律可求出绳在最低点的拉力.

如果认为小球从位置Ⅲ开始运动,机械能还守恒就大错特错了.小球从位置Ⅲ开始下落后,在一段时间内,绳对小球没有作用力(这时绳没有被拉直),小球做自由落体运动!(需要注意临界条件,从Ⅱ位置以下的各位置开始运动,机械能均守恒,从Ⅱ位置以上的各位置开始运动,出现了新情况,这时要认真研究因量变而发生质变的新情况)待小球下落了一个l长后,即小球到达位置Ⅰ时,绳开始对小球有作用力.所以,要注意临界条件往往会因量变而引起质变.在小球刚落至位置Ⅰ时,速度方向为竖直向下,大小为2gl (根据自由落体运动的公式v2t=2gl可得).由于绳的拉力作用,同时绳不可伸长,小球其后的运动,只能是圆周运动.这意味着其后不可能保留沿绳方向的速度,但这一速度在刚到达Ⅰ是存在的.这一项分速度的大小为122gl(根据速度分解如图1中所示,沿绳方向的分速度为vtcos60°=122gl),这一速度在绳拉力作用下迅速减为零.因此小球开始做圆周运动时的速度不是2gl,而是322gl

(垂直于绳方向的分速度为vtsin60°=322gl).换言之,小球在这一极短时间内,机械能有了损失.当小球从Ⅰ再运动至最低点时,机械能重新守恒.同样应用机械能守恒定律和牛顿第二定律可求出小球运动至最低点的速度及受到的拉力.(附答案:v1=gl,v2=2gl,v3=52gl,F1=2mg,F2=3mg,F3=3.5mg)

图2例2质量为M的斜劈A放在水平地面上,斜劈的斜面顶端放上一个质量为m的滑块B,如图2所示,当滑块从顶端滑向底端的过程中,如果不计一切摩擦,斜劈与滑块组成的系统动量是否守恒?

讲析本题研究对象是A和B组成的系统.在B沿A的斜面下滑时,系统所受的外力为A与B的重力及地面对A的支持力.有的学生在分析这个过程时,认为A与B的重力及地面对A的支持力相互平衡,因而系统所受合外力为零,进而合外力的冲量为零,所以系统的动量守恒,这种判断是缺乏根据的.当滑块B沿斜面下滑时是加速下滑,这时将发生失重现象.因此,水平地面对A的支持力将小于A与B的重力,系统所受合外力并不为零,系统的动量并不守恒!

应该看到,动量守恒定律反映的是矢量间的关系.当系统所受合外力不为零,系统的动量不守恒,但这时并不防碍在垂直于合外力的方向上的冲量为零,在这一特定的方向上动量是守恒的.在本题中,重力也好,支持力也罢,均为竖直方向上的外力.在水平方向上,系统是不受外力的,因此,系统在水平方向上的动量是守恒的.当B沿斜面下滑时,因A、B之间的弹力作用(此为内力),A将沿水平方向运动,A、B在水平方向的动量始终守恒.B在竖直方向的动量一直增加,系统在竖直方向的动量一直增加,并不守恒.所以,从总体上说,动量并不守恒,但在水平方向上动量是守恒的.

可见,今后在处理问题时,应该注意区分系统的动量守恒及系统在某个方向的动量守恒.图3例3如图3所示,质量为M的摆被两根长为l的轻细绳悬挂起来.一颗质量为m的子弹,以一定的速度水平射人摆内,并留在摆中,摆与子弹摆过的最大角为θ,求子弹的速度.

讲析在子弹射人摆的过程中,子弹与摆之间存在相互作用.这种作用既改变了子弹的动量也改变了摆的动量.实际上,这一作用时间是很短的,对于在这一极短时间内摆的运动可以忽略不计,因此,子弹与摆组成的系统在水平方向所受外力的冲量忽略不计,系统在水平方向的动量守恒.这一过程的最终结果是子弹与摆具有相同速度.但在这一过程中,系统的机械能不守恒,因为此过程中子弹克服巨大阻力做功,大量的机械能转化为内能.在子弹与摆以相同速度摆动过程中,系统所受外力为重力及绳拉力,但只有重力做功,拉力不做功,系统的动能转化为重力势能,机械能守恒.在这个过程中,因绳拉力的冲量作用,系统总动量减少,系统的动量不守恒.

前一阶段(子弹打入摆的过程),系统动量守恒而机械能不守恒;后一阶段(摆与子弹摆动过程)又发生了相反的情况,系统的机械能守恒而动量不再守恒.这种结果并不奇怪,是由于这两个守恒定律有着不同的守恒条件.

动量守恒定律教学反思 篇4

如何解决这一现象呢?我做了这样的教学设计。

一.回归课本,指导学生进行弹性碰撞特点的理论推导。本环节中强调守恒条件以及对弹性碰撞特点的理解。

二.归纳试题类型,找到解题模型。主要选择子弹模型、木板滑块模型、滑块碰撞模型、微观粒子碰撞模型、微观粒子衰变模型。采用讲一题练一题的方法,让学生熟悉这几个模型的解题思路和题中常见的隐含的条件。为学生解决类似题型打好基础。

三.针对多过程的运动模型,引导学生做好运动分析,逐一过程利用守恒条件分析研究对象是否动量守恒。

四.针对多物体多运动过程模型,引导学生做好受力分析,运动过程分段处理,围绕守恒条件逐一分析所选定的研究对象是否守恒。

质点系动量守恒的条件是什么 篇5

受外力作用和在运动状态变化时都不变形的物体(持续质点系)称为刚体。刚体、弹性体、流体都可看作质点系。同样,质点系是否成立也要考虑被描述物体所被研究的目的。

质点系性质

1、质点系的总动量的改变与内力无关;

2、质点系的角动量的改变与内力无关;

动量守恒练习题 篇6

一。重点知识精讲和知识拓展 1.动量守恒定律

如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律。

(i)动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,它是一个实验规律。相互间有作用力的物体体系称为系统,系统内的物体可以是两个、三个或者更多,解决实际问题时要根据需要和求解问题的方便程度,合理地选择系统.(ii)动量守恒定律适用条件

(1)系统不受外力或系统所受的外力的矢量和为零。(2)系统所受外力的合力虽不为零,但比系统内力小得多。

(3)系统所受外力的合力虽不为零,但在某个方向上的分力为零,则在该方向上系统的总动量保持不变——分动量守恒。

(4)在某些实际问题中,一个系统所受外力和不为零,内力也不是远大于外力,但外力在某个方向上的投影为零,那么在该方向上也满足动量守恒的条件。(iii)动量守恒定律的四性:(1).矢量性

动量守恒方程是一个矢量方程,对于作用前后物体的运动方向都在同一直线上的问题,应选取统一的正方向。凡是与选取的正方向相同的为正,相反为负。若方向未知,可设为与正方向相同来列动量守恒方程,通过解的结果的正负,判定未知量的方向。(2).瞬时性

动量是一个瞬时量,动量守恒是指系统在任一瞬时的动量守恒。m1v1+m2v2=m1v1′+m2v2′,等号左边是作用前的各物体动量和,等号右边是作用后的各物体动量和,不同时刻动量不能相加。(3).相对性

七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载 七彩教育网 免费提供Word版教学资源

动量大小与选择的参考系有关,应注意各物体的速度是相对同一惯性系的速度,一般选取地面为参考系。(4).普适性

它不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。2.动量定理与动能定理的区别

动量定理:物体所受合外力的冲量等于物体动量的变化。即F△t=mv2-mv1。

反映了力对时间的累积效应,是力在时间上的积累。动量定理为矢量方程,动量和冲量都是既有大小又有方向的物理量。

22动能定理:合外力做功等于物体动能的变化。即W=△Ek。或Fx=1mv2-1mv1。

22反映了力对空间的累积效应,是力在空间上的积累。动能定理为标量,动能、功都是只有大小没有方向的物理量。

3.碰撞

(1)碰撞是指物体间相互作用时间极短,而相互作用力很大的现象。在碰撞过程中,系统内物体相互作用的内力一般远大于外力,故碰撞中的动量守恒,按碰撞前后物体的动量是否在一条直线区分,有正碰和斜碰。

按碰撞过程中动能的损失情况区分,碰撞可分为三种: ①弹性碰撞

碰撞前后系统的总动能不变,对两个物体组成的系统的正碰情况满足: m1v1+ m2v2= m1v1’+ m2v2’;(动量守恒)2

2(动能守恒)1m1v1+ 1m2v2= 1m1v1’+1m2v2’;2222两式联立可得:v1’=m1m2v12m2v2;

m1m2v2’=m2m1v22m1v1。

m1m2七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载 七彩教育网 免费提供Word版教学资源

当v2=0时,v1’=m1m2v1;v2’=m1m22m1v1。m1m2此时:若m1= m2,这时v1’=0;v2’=v1,碰后实现了动量和动能的全部交换。

若m1>> m2,这时v1’≈ v1;v2’≈2 v1;,碰后m1的速度几乎未变,仍按照原方向运动,质量小的物体以两倍m1的速度向前运动。

若m2>> m1,这时v1’≈-v1;v2’≈0,碰后m1按原来的速度弹回,m2几乎不动。②非弹性碰撞

碰撞中动能不守恒,只满足动量守恒,两物体的碰撞一般都是非弹性碰撞。③完全非弹性碰撞

两物体碰后合为一体,具有共同速度,满足动量守恒定律,但动能损失最大:

m1v1+ m2v2=(m1+ m2)v。

(2)在物体发生相互作用时,伴随着能量的转化和转移。相互作用的系统一定满足能量守恒定律。若相互作用后有内能产生,则产生的内能等于系统损失的机械能。(3)碰撞过程的三个制约因素:

①动量制约——动量守恒。由于碰撞过程同时具备了“相互作用力大”和“作用时间短”两个特征,其它外力可忽略,取碰撞的两个物体作为系统,满足动量守恒定律。②动能制约——系统动能不增加。③运动制约——运动变化合理。

4.反冲现象和火箭

系统在内力作用下,当一部分向某一方向的动量发生变化时,剩余部分沿相反方向的动量发生同样大小变化的现象。.喷气式飞机、火箭等都是利用反冲运动的实例.若系统由两部分组成,且相互作用前总动量为零。一般为物体分离则有 :0=mv+(M-m)v’,M是火箭箭体质量,m是燃气改变量。参考系的选择是箭体。喷气式飞机和火箭的飞行应用了反冲的原理,它们都是靠喷出气流的反冲作用而获得巨大速度的。现代的喷气式飞机,靠连续不断地向后喷出气体,飞行速度能够超过l000m/s。5.爆炸与碰撞的比较

(1)爆炸,碰撞类问题的共同特点是物体的相互作用突然发生,相互作用的力为变力,作用时间很短,作用力很大,且远大于系统所受的外力,故可用动量守恒定律处理。

七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载 七彩教育网 免费提供Word版教学资源

(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能在爆炸后可能增加;在碰撞过程中,系统总动能不可能增加,一般有所减少转化为内能。

(3)由于爆炸,碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理,即作用后还从作用前的瞬间的位置以新的动量开始运动。6.力学规律的优选策略

力学规律主要有:牛顿第二运动定律,动量定理和动量守恒定律,动能定理和机械能守恒定律,功能关系和能量守恒定律等。

(1)牛顿第二定律揭示了力的瞬时效应,其表达式是:F=ma。据此可知,在研究某一物体所受力的瞬时作用与物体运动的关系时,或者物体受到恒力作用,且又直接涉及物体运动过程中的加速度问题时,应选用牛顿第二定律和运动学公式。若物体受到变力作用,对应瞬时加速度,只能应用牛顿第二定律分析求解。

(2)动量定理反映了力对时间的积累效应,其表达式是:Ft=Δp=mv2-mv1。据此可知,动量定理适合于不涉及物体运动过程中的加速度而涉及运动时间的问题,特别对于冲击类问题,因时间短且冲力随时间变化,应选用动量定理求解。

(3)动能定理反映了力对空间的积累效应,其表达式是:W=ΔEk=112。据

mvmv12222此可知,对于不涉及物体运动过程中的加速度和时间(对于机车恒定功率P运动,其牵引力的功W牵=Pt,可以涉及时间t),而涉及力和位移、速度的问题,无论是恒力还是变力,都可选用动能定理求解。

(4)如果物体(或系统)在运动过程中只有重力和弹簧的弹力做功,而又不涉及物体运动过程中的加速度和时间,对于此类问题应优先选用机械能守恒定律求解。

(5)如果物体(或相互作用的系统)在运动过程中受到滑动摩擦力或空气阻力等的作用,应考虑应用功能关系或能量守恒定律。两物体相对滑动时,系统克服摩擦力做的总功等于摩擦力与相对位移的乘积,也等于系统机械能的减少量,转化为系统的内能。

(6)在涉及碰撞、爆炸、打击、绳绷紧等物理过程时,必须注意到一般这些过程中均隐含着系统中有机械能与其它形式能量之间的转化。例如碰撞过程,机械能一定不会增加;爆炸过程,一定有化学能(或内能)转化为机械能(动能);绳绷紧时动能一定有损失。对于上述问题,作用时间一般极短,动量守恒定律一般大有作为。典例精析

七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载 七彩教育网 免费提供Word版教学资源

典例1.(15分)一质量为M的平顶小车,以速度v沿水平的光滑轨道作匀速直线运动。现

0将一质量为m的小物块无初速地放置在车顶前缘。已知物块和车顶之间的动摩擦系数为。

1.若要求物块不会从车顶后缘掉下,则该车顶最少要多长? 2.若车顶长度符合1问中的要求,整个过程中摩擦力共做了多少功? 参考解答

2.由功能关系可知,摩擦力所做的功等于系统动能的增量,即

(6)1122W(mM)vMv0222mMv0W2(mM)由(1)、(6)式可得(7)

典例2.如图所示,质量为m的b球用长为h的细绳悬挂于水平轨道BC的出口C处。质量也为m的小球a,从距BC高为h的A处由静止释放,沿ABC光滑轨道滑下,在C处与b球正碰并与b粘在一起。已知BC轨道距水平地面ED的高度为0.5h,悬挂b球的细绳能承受的最大拉力为2.8 mg。试问:(1)a球与b球碰前瞬间的速度为多大?(2)a、b两球碰后,细绳是否会断裂?若细绳断裂,小球在DE水平面上的落点距C处的水平距离是多少?若细绳七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载 七彩教育网 免费提供Word版教学资源

不断裂,小球最高将摆多高?(小球a、b均视为质点)

典例3.(16分)(2013天津市五区调研)在光滑的水平面上,一质量为mA=0.1kg的小球A,以8m/s的初速度向右运动,与质量为mB=0.2kg的静止小球B发生正碰。碰后小球B滑向与水平面相切、半径为R=0.5m的竖直放置的光滑半圆形轨道,且恰好能通过最高点N后水平抛出。g=10m/s2 求:(1)碰撞后小球B的速度大小。

(2)小球B从轨道最低点M运动到最高点N的过程中所受合外力的冲量。

七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载 七彩教育网 免费提供Word版教学资源

(3)碰撞过程中系统的机械能损失。

【解题探究】根据碰撞后B球沿竖直放置的光滑半圆形轨道,且恰好能通过最高点N后水平抛出,利用机械能守恒定律和相关知识解得碰撞后小球B的速度大小。应用动量定理解得小球B从轨道最低点M运动到最高点N的过程中所受合外力的冲量。两小球A与B发生正碰,应用动量守恒定律和能量关系列方程解答得到碰撞过程中系统的机械能损失。的机械能得满分。

典例4.(20分)(2013安徽省马鞍山市三模)如图所示,在光滑水平地面上有一固定的挡

v0AOB板,挡板上固定一个轻弹簧。现有一质量M=3kg,长L=4m的小车AB(其中O为小车的中七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载 七彩教育网 免费提供Word版教学资源

点,AO部分粗糙,OB部分光滑),一质量为m=1kg的小物块(可视为质点),放在车的最左端,车和小物块一起以v0=4m/s,的速度在水平面上向右匀速运动,车撞到挡板后瞬间速度变为零,但未与挡板粘连。已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内,小物块与车AO部分之间的动摩擦因数为μ=0.3,重力加速度g=10m/s。求:

(1)小物块和弹簧相互作用的过程中,弹簧具有的最大弹性势能;(2)小物块和弹簧相互作用的过程中,弹簧对小物块的冲量;(3)小物块最终停在小车上的位置距A端多远。

【解题探究】对小物块,应用牛顿第二定律和运动学公式、能量关系解得弹簧具有的最大弹性势能;根据动量定理解得弹簧对小物块的冲量;根据功能关系解得小物块最终停在小车上的位置距A端的距离。

2(3)小物块滑过O点和小车相互作用,由动量守恒定律 mv(mM)v(2分)

典例5(18分)如图所示,以A、B为端点的1/4光滑圆弧轨道固定于竖直平面,一足够长滑板静止在光滑水平地面上,左端紧靠B点,上表面所在平面与圆弧轨道相切于B点,离滑板右端R处有一竖直固定的挡板P.一物块从A点由静止开始沿轨道滑下,经B滑L02上滑板.已知物块可视为质点,质量为m,滑板质量M=2m,圆弧轨道半径为R,物块与滑板间的动摩擦因数为μ=0.5,重力加速度为g.滑板与挡板的碰撞没有机械能损失,滑板返回B点时即被锁定.

七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载 七彩教育网 免费提供Word版教学资源

(1)求物块滑到B点的速度大小;

(2)求滑板与挡板P碰撞前瞬间物块的速度大小;

(3)站在地面的观察者看到在一段时间内物块正在做加速运动,求这段时间内滑板的速度范围.

【解题探究】由机械能守恒定律解得物块滑到B点的速度大小;由动量守恒定律和动能定理列方程联立解得滑板与挡板P碰撞前瞬间物块的速度大小;通过分析,利用动量守恒定律和动能定理联立解得物块正在做加速运动这段时间内滑板的速度范围. 【参考答案】

(1)物块由A到B的运动过程,只有重力做功,机械能守恒.设物块滑到B点的速度大小为v0,有:

1①

(2分)

mgRmv02解得:v02gR

(1分)

(2)假设滑板与P碰撞前,物块与滑板具有共同速度v1,取向右为正,由动量守恒定律,有:

七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载 七彩教育网 免费提供Word版教学资源

(没有判断滑板与P碰撞前是否有共同速度,扣2分)

(没有判断滑板与P碰撞前是否第二次有共同速度,扣1分)设当物块的速度减为零时,滑板速度为v3,取向左为正,有:

Mv1mv1Mv

3⑦

七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载 七彩教育网 免费提供Word版教学资源

【得分要诀】第(1)问容易得分不要失去。第(2)问通过分析正确列出方程联立解答可多得分。第(3)问要列出相关方程,力争正确解答得满分。

探讨动量守恒定律演示实验的改进 篇7

关键词:动量守恒,实验,改进

优化方案2009高考总复习一轮用书《物理》(教师用书、张学宪主编,现代教育出版社)第181页关于探讨动量守恒定律的演示实验大致如下:

一、实验:验证动量守恒定律

1、实验目的

验证碰撞中的动量守恒。

2、实验原理

因小球从斜槽上滚下后做平抛运动,由平抛运动知识可知,只要小球下落的高度相同,在落地前运动的时间就相同,则小球的水平速度若用飞行时间作时间单位,在数值上就等于小球飞出的水平距离。所以只要测出小球的质量及两球碰撞前后飞出的水平距离,代入公式就可验证动量守恒定律。即

3、实验器材

斜槽、大小相等质量不同的小钢球两个,重锤线一条、白纸,复写纸,天平一台、刻度尺、圆规、三角板。

4、实验步骤

(1)先用天平测出两个小球的质量m1、m2。

(2)安装好实验装置,将斜槽固定在桌边,并使斜槽末端点的切线水平,把被碰小球放在斜槽前边的小支柱上,调节实验装置使两小球碰时处于同一水平高度,且碰撞瞬间,入射球与被碰球的球心连线与轨道末端的切线平行,以确保正碰后的速度方向水平。

(3)在水平地上铺一张白纸,白纸上铺放复写纸。

(4)在白纸上记下重锤线所指的位置O,它表示入射球m1碰前的位置,如图2所示。

(5)先不放被碰小球,让入射球从斜槽上同一高度处滚下,重复10次,用圆规作尽可能小的圆把所有的小球落点圈在里面,圆心就是入射球不碰时的落地点的平均位置P。

(6)把被碰球放在小支柱上,让入射小球从同一高度滚下,使两球发生正碰,重复10次,仿步骤(5)求出入射小球的落点的平均位置M和被碰小球落点的平均位置N。

(7)过O、N在纸上作一直线,直线上取OO'=2r,O'就是被碰小球碰撞时的球心投影位置(用刻度尺和三角板测小球直径2r)。

(9)整理实验器材放回原处。

5、注意事项

(1)斜槽末端点的切线必须水平。

(2)使小支柱与槽口间距离等于小球直径。

(3)认真调节小支柱的高度,使两小球碰撞时球心在同一高度上,球心连线与斜槽末端的延长线相平行。

(4)小球每次都必须从斜槽同一高度由静止释放。

(5)入射小球的质量应大于被碰小球的质量。

(6)实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变。

对于上述关于探讨动量守恒定律的演示实验,笔者在操作过程中发现存在下列两方面的问题:

(2)实验器材落后且实验设计不理想:实验中采用多次使用刻度尺、三角板和圆规等实验工具,导致学生不易操作且测量过程中人为误差大,除此之外,实验装置末端采用小支柱设计,导致需测小球直径,使学生在做实验时极为不便。该实验设计违背易操作性原则。

6、实验改进

(1)改进实验仪器:(1)用外层弹性较好的橡胶包裹小钢球制成的弹性钢球代替原实验中的钢球;并采用两个质量和尺寸都相同的小弹性铁球代替质量不等但尺寸相同的两个小钢球;(2)在水平地面上用TDE-7型高精度位移传感器和电子感应装置代替白纸和复写纸;

(2)改进实验设计:将斜槽末端部分拆除支柱,将其改为长度是小球直径的光滑水平气垫导轨,并使其与圆弧斜槽末端相切。

二、改进后的实验:验证动量守恒定律

1、实验目的

验证碰撞中的动量守恒。

2、实验原理

质量都为m的两个小弹性铁球A和B发生正碰,若A碰前运动,B静止,由于弹性碰撞两弹性小球质量相等,两者碰撞前后交换速度,根据动量守恒定律应有:

因小球从斜槽上滚下后做平抛运动,由平抛运动知识可知,只要小球下落的高度相同,在落地前运动的时间就相同,则小球的水平速度若用飞行时间作时间单位,在数值上就等于小球飞出的水平距离,所以只需测出两球碰撞前后飞出的水平距离,代入公式就可验证动量守恒定律。即

式中和分别指入射小球A平抛运动的水平距离和碰撞后被碰小球平抛运动的水平位移。

主要测量的物理量:

入射小球A平抛运动的水平距离,碰撞后被碰小球的水平位移。

3、实验器材

斜槽和气垫导轨、大小相等质量相同的弹性小钢球两个,重锤线一条、电源一个、TDE-7型高精度位移传感器和电子感应装置各一台。

4、实验步骤

(1)安装好实验装置,将斜槽固定在桌边,并使斜槽末端气垫导轨保持水平,把被碰小球放在斜槽末端气垫导轨边缘上,调节实验装置使两小球碰时处于同一水平高度,且碰撞瞬间,入射球与被碰球的球心连线与水平气垫导轨保持平行,以确保正碰后的速度方向水平。

(2)在水平地上放好电子感应装置,且连接好TDE-7型高精度位移传感器,将两仪器插上电源。

(3)在电子感应装置上记下重锤线所指的位置O,它表示气垫导轨末端边缘在电子感应装置上的投影,如图3所示。

(4)先不放被碰小球,让入射球从斜槽上同一高度处滚下,重复10次,由电子感应装置准确显示出入射小球不碰时的落地点的平均位置P。

(5)把被碰球B放在气垫导轨末端边缘处,让入射小球A从同一高度滚下,使两球发生正碰,重复10次,再由电子感应装置准确显示出被碰小球碰后的落地点的平均位置N。

(6)用TDE-7型高精度位移传感器精确测出线段和的长度并显示出来。观察线段和的长度是否相等,即看=是否成立。

(7)整理实验器材放回原处。

5、注意事项

(1)调整斜槽末端气垫导轨保持水平;

(2)将被碰小球放在斜槽末端气垫导轨边缘上,并让其静止,调节实验装置使两小球碰时处于同一水平高度,且碰撞瞬间,入射球与被碰球的球心连线与气垫导轨保持平行;

(3)小球每次都必须从斜槽同一高度由静止释放,可在斜槽适当高度处固定一挡板,使小球靠着挡板,然后释放小球;

(4)实验过程中实验桌、斜槽及气垫导轨、TDE-7型高精度位移传感器和电子感应装置不要动。

6、改进后的优点

怎样正确应用动量守恒定律解题 篇8

关键词 物理学科 动量 动量守恒

中图分类号:G633.7 文献标识码:A 文章编号:1002-7661(2014)06-0062-03

一、动量守恒定律的应用有三种情况

1.相互作用的物体所组成的系统,如果不受外力作用,或所受外力为零,则系统总动量守恒

动量守恒定律的研究对象是一个系统,在该系统内部,各个物体之间存在着内力的相互作用,而内力的冲量都是等大反向的,它的作用能使内部各个物体之间的动量好发生转移或传递,但系统的总动量不会发生改变,当系统不受外力作用,或所受外力为零时,就不存在外力的冲量,那么系统的总动量就保持不变。

2.分方向动量守恒

系统所受外力的合力虽不为零,但在某个方向上不受外力或所受外力的合力为零,则在该方向上系统的总动量的分量保持不变,就可以在这个方向上运用动量守恒定律。

3.系统所受外力的合力虽不为零,但如果比此系统内部相互作用的内力小得多,例如碰撞过程中的摩擦力、爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略掉外力不计,那么系统的总动量近似守恒。

二、对动量守恒定律的理解及应用

1.矢量性

动量守恒定律是一个矢量方程,因此该利用矢量运算和法则计算。但是对于系统内物体在相互作用前后的速度在同一直线上时,可选择一个正方向,就可以确定系统内物体初、末状态的动量。凡是与规定正方向相同的动量或速度用“+”号表示其方向,但“+”号一般不写上,凡是与正方向相反的动量或速度用“-”表示其方向,这样就把矢量运算转化为代数运算,若求得的动量或速度是正值,表明其方向与所选的正方向相同,若求得的动量或速度是负值,表明其方向与所选定的正方向相反。

2.相对性

由于速度的大小和参考系的选取有关,故动量的大小就与参考系的选取有关,因此应用动量守恒定律时,应注意各物体的速度必须是相对于同一参考系的速度,一般都以地面为参考系。

如果题目给出的速度不是相对同一参考系的速度,我们需要先把它转化为同一参考系的速度。

例如:平静的水面上有一载人小船,船和人的共同质量为M,站立在船上的人手中拿着一质量为m的小球,起初人相对于船静止,船、人球以共同的速度v0在水面上匀速前进,当人相对于船以速度u向相反的方向将小球抛出去后,人和船的速度为多大?

分析:以人、船、小球为一个系统,该系统匀速前进,表明系统所受的合力为零,系统动量守恒,以船的速度v0的方向为正方向,设抛出小球后,人和船的速度为v,则相对于静水的速度为v-u,方向与正方向相反。

根据动量守恒定律有

(M+m)v0=Mv+m(v-u)

故v=v0+方向与原方向相同。

三、动量守恒定律的两种模型

在运用动量守恒定律处理问题时,常常遇到以下两种模型:

1.人船模型

人船模型的适应条件是两个物体组成的系统在运动过程中动量守恒,并且总动量为零,两物体在其内力的相互作用下各物体的动量虽然都在变化,但动量仍为零,即0=Mv1-mv2。系统在运动过程中的平均动量也守恒,0=Mv1-mv2。进一步可得:,此式表明:在两个物体相互作用的过程中,如果物体组成的系统动量守恒,那么在运动过程中物体的位移之比就等于质量的反比。

2.子弹木块模型

这类问题的特点是:木块最初静止在光滑的水平面上,子弹射入木块后留在木块内和木块合为一体,此过程动量守恒,但机械能不守恒。

例如:在高为h=10m的高台上,放一质量为M=9.9kg的木块,它与平台边缘的距离L=1m,今有一质量为m=0.1kg的子弹以v0的水平向右的射入木块(作用时间极短)并留在木块中如图,木块向右滑行并冲出平台,最后落在离平台边缘水平距离为x=4m处,已知木块与平台的动摩擦因数为u=,g=10m/s2,求

(1)木块离开平台时的速度大小。

(2)子弹射入木块的速度大小。

解析:题中要以子弹和木块组成的系统为研究对象,子弹进入木块并留在木块的过程中,由于作用的时间极短,可认为木块的位置没有变,这一过程中系统竖直方向上合力为零,在水平方向,平台对木块的摩擦力是系统受到的外力,但是在这一瞬间,子弹对木块的作用力远远大于平台对木块的摩擦力,即内力远远大于外力,因此可认为这一过程中系统动量守恒。由动量守恒定律可求出作用结束时的速度大小,然后物体以这一速度在平台上滑动,最后离开平台做一平抛。

(1)设本块离开平台时的速度为V1

x=v1t,h=gt2

x=x=4€譵/s=4m/s

(2)设子弹射入木块后,子弹与木块的共同速度为V,则木块向右滑行到达平台边缘的速度为V1,在这一过程中木块向左的加速度大小为a==ug=4.5m/s2

由运动学公式有:v12-v2=2(-a)L

v==5m/s

在子弹与木块的作用过程中,由动量守恒定律得:

mv0=(M+m)v

v0==500m/s

四、爆炸与碰撞的比较

对爆炸和碰撞的比较如下:

1.爆炸、碰撞类问题的共同特点是物体之间的相互作用突然发生,相互作用的力是变力,作用力很大,且远远大于系统所受的外力,故都可以用动量守恒定律来处理。

2.在爆炸过程中,由化学能等其他形式的能转化为内能,所以爆炸后系统的动能会增加;在碰撞过程中,系统的总动能不可能增加,除了弹性碰撞外(弹性碰撞过程动能守恒),系统的总动能会减少,减少的动能一般转化为内能。

3.由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程处理,即作用后还从作用前瞬间的位置以新的动量开始运动。

(责任编辑 刘 馨)endprint

摘 要 对动量守恒定律的理解及应用,主要有三种情况:相互作用的物体所组成的系统,如果不受外力作用,或所受外力为零,则系统总动量守恒;分方向动量守恒;系统所受外力的合力虽不为零,但如果比此系统内部相互作用的内力小得多的情况下动量守恒。

关键词 物理学科 动量 动量守恒

中图分类号:G633.7 文献标识码:A 文章编号:1002-7661(2014)06-0062-03

一、动量守恒定律的应用有三种情况

1.相互作用的物体所组成的系统,如果不受外力作用,或所受外力为零,则系统总动量守恒

动量守恒定律的研究对象是一个系统,在该系统内部,各个物体之间存在着内力的相互作用,而内力的冲量都是等大反向的,它的作用能使内部各个物体之间的动量好发生转移或传递,但系统的总动量不会发生改变,当系统不受外力作用,或所受外力为零时,就不存在外力的冲量,那么系统的总动量就保持不变。

2.分方向动量守恒

系统所受外力的合力虽不为零,但在某个方向上不受外力或所受外力的合力为零,则在该方向上系统的总动量的分量保持不变,就可以在这个方向上运用动量守恒定律。

3.系统所受外力的合力虽不为零,但如果比此系统内部相互作用的内力小得多,例如碰撞过程中的摩擦力、爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略掉外力不计,那么系统的总动量近似守恒。

二、对动量守恒定律的理解及应用

1.矢量性

动量守恒定律是一个矢量方程,因此该利用矢量运算和法则计算。但是对于系统内物体在相互作用前后的速度在同一直线上时,可选择一个正方向,就可以确定系统内物体初、末状态的动量。凡是与规定正方向相同的动量或速度用“+”号表示其方向,但“+”号一般不写上,凡是与正方向相反的动量或速度用“-”表示其方向,这样就把矢量运算转化为代数运算,若求得的动量或速度是正值,表明其方向与所选的正方向相同,若求得的动量或速度是负值,表明其方向与所选定的正方向相反。

2.相对性

由于速度的大小和参考系的选取有关,故动量的大小就与参考系的选取有关,因此应用动量守恒定律时,应注意各物体的速度必须是相对于同一参考系的速度,一般都以地面为参考系。

如果题目给出的速度不是相对同一参考系的速度,我们需要先把它转化为同一参考系的速度。

例如:平静的水面上有一载人小船,船和人的共同质量为M,站立在船上的人手中拿着一质量为m的小球,起初人相对于船静止,船、人球以共同的速度v0在水面上匀速前进,当人相对于船以速度u向相反的方向将小球抛出去后,人和船的速度为多大?

分析:以人、船、小球为一个系统,该系统匀速前进,表明系统所受的合力为零,系统动量守恒,以船的速度v0的方向为正方向,设抛出小球后,人和船的速度为v,则相对于静水的速度为v-u,方向与正方向相反。

根据动量守恒定律有

(M+m)v0=Mv+m(v-u)

故v=v0+方向与原方向相同。

三、动量守恒定律的两种模型

在运用动量守恒定律处理问题时,常常遇到以下两种模型:

1.人船模型

人船模型的适应条件是两个物体组成的系统在运动过程中动量守恒,并且总动量为零,两物体在其内力的相互作用下各物体的动量虽然都在变化,但动量仍为零,即0=Mv1-mv2。系统在运动过程中的平均动量也守恒,0=Mv1-mv2。进一步可得:,此式表明:在两个物体相互作用的过程中,如果物体组成的系统动量守恒,那么在运动过程中物体的位移之比就等于质量的反比。

2.子弹木块模型

这类问题的特点是:木块最初静止在光滑的水平面上,子弹射入木块后留在木块内和木块合为一体,此过程动量守恒,但机械能不守恒。

例如:在高为h=10m的高台上,放一质量为M=9.9kg的木块,它与平台边缘的距离L=1m,今有一质量为m=0.1kg的子弹以v0的水平向右的射入木块(作用时间极短)并留在木块中如图,木块向右滑行并冲出平台,最后落在离平台边缘水平距离为x=4m处,已知木块与平台的动摩擦因数为u=,g=10m/s2,求

(1)木块离开平台时的速度大小。

(2)子弹射入木块的速度大小。

解析:题中要以子弹和木块组成的系统为研究对象,子弹进入木块并留在木块的过程中,由于作用的时间极短,可认为木块的位置没有变,这一过程中系统竖直方向上合力为零,在水平方向,平台对木块的摩擦力是系统受到的外力,但是在这一瞬间,子弹对木块的作用力远远大于平台对木块的摩擦力,即内力远远大于外力,因此可认为这一过程中系统动量守恒。由动量守恒定律可求出作用结束时的速度大小,然后物体以这一速度在平台上滑动,最后离开平台做一平抛。

(1)设本块离开平台时的速度为V1

x=v1t,h=gt2

x=x=4€譵/s=4m/s

(2)设子弹射入木块后,子弹与木块的共同速度为V,则木块向右滑行到达平台边缘的速度为V1,在这一过程中木块向左的加速度大小为a==ug=4.5m/s2

由运动学公式有:v12-v2=2(-a)L

v==5m/s

在子弹与木块的作用过程中,由动量守恒定律得:

mv0=(M+m)v

v0==500m/s

四、爆炸与碰撞的比较

对爆炸和碰撞的比较如下:

1.爆炸、碰撞类问题的共同特点是物体之间的相互作用突然发生,相互作用的力是变力,作用力很大,且远远大于系统所受的外力,故都可以用动量守恒定律来处理。

2.在爆炸过程中,由化学能等其他形式的能转化为内能,所以爆炸后系统的动能会增加;在碰撞过程中,系统的总动能不可能增加,除了弹性碰撞外(弹性碰撞过程动能守恒),系统的总动能会减少,减少的动能一般转化为内能。

3.由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程处理,即作用后还从作用前瞬间的位置以新的动量开始运动。

(责任编辑 刘 馨)endprint

摘 要 对动量守恒定律的理解及应用,主要有三种情况:相互作用的物体所组成的系统,如果不受外力作用,或所受外力为零,则系统总动量守恒;分方向动量守恒;系统所受外力的合力虽不为零,但如果比此系统内部相互作用的内力小得多的情况下动量守恒。

关键词 物理学科 动量 动量守恒

中图分类号:G633.7 文献标识码:A 文章编号:1002-7661(2014)06-0062-03

一、动量守恒定律的应用有三种情况

1.相互作用的物体所组成的系统,如果不受外力作用,或所受外力为零,则系统总动量守恒

动量守恒定律的研究对象是一个系统,在该系统内部,各个物体之间存在着内力的相互作用,而内力的冲量都是等大反向的,它的作用能使内部各个物体之间的动量好发生转移或传递,但系统的总动量不会发生改变,当系统不受外力作用,或所受外力为零时,就不存在外力的冲量,那么系统的总动量就保持不变。

2.分方向动量守恒

系统所受外力的合力虽不为零,但在某个方向上不受外力或所受外力的合力为零,则在该方向上系统的总动量的分量保持不变,就可以在这个方向上运用动量守恒定律。

3.系统所受外力的合力虽不为零,但如果比此系统内部相互作用的内力小得多,例如碰撞过程中的摩擦力、爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略掉外力不计,那么系统的总动量近似守恒。

二、对动量守恒定律的理解及应用

1.矢量性

动量守恒定律是一个矢量方程,因此该利用矢量运算和法则计算。但是对于系统内物体在相互作用前后的速度在同一直线上时,可选择一个正方向,就可以确定系统内物体初、末状态的动量。凡是与规定正方向相同的动量或速度用“+”号表示其方向,但“+”号一般不写上,凡是与正方向相反的动量或速度用“-”表示其方向,这样就把矢量运算转化为代数运算,若求得的动量或速度是正值,表明其方向与所选的正方向相同,若求得的动量或速度是负值,表明其方向与所选定的正方向相反。

2.相对性

由于速度的大小和参考系的选取有关,故动量的大小就与参考系的选取有关,因此应用动量守恒定律时,应注意各物体的速度必须是相对于同一参考系的速度,一般都以地面为参考系。

如果题目给出的速度不是相对同一参考系的速度,我们需要先把它转化为同一参考系的速度。

例如:平静的水面上有一载人小船,船和人的共同质量为M,站立在船上的人手中拿着一质量为m的小球,起初人相对于船静止,船、人球以共同的速度v0在水面上匀速前进,当人相对于船以速度u向相反的方向将小球抛出去后,人和船的速度为多大?

分析:以人、船、小球为一个系统,该系统匀速前进,表明系统所受的合力为零,系统动量守恒,以船的速度v0的方向为正方向,设抛出小球后,人和船的速度为v,则相对于静水的速度为v-u,方向与正方向相反。

根据动量守恒定律有

(M+m)v0=Mv+m(v-u)

故v=v0+方向与原方向相同。

三、动量守恒定律的两种模型

在运用动量守恒定律处理问题时,常常遇到以下两种模型:

1.人船模型

人船模型的适应条件是两个物体组成的系统在运动过程中动量守恒,并且总动量为零,两物体在其内力的相互作用下各物体的动量虽然都在变化,但动量仍为零,即0=Mv1-mv2。系统在运动过程中的平均动量也守恒,0=Mv1-mv2。进一步可得:,此式表明:在两个物体相互作用的过程中,如果物体组成的系统动量守恒,那么在运动过程中物体的位移之比就等于质量的反比。

2.子弹木块模型

这类问题的特点是:木块最初静止在光滑的水平面上,子弹射入木块后留在木块内和木块合为一体,此过程动量守恒,但机械能不守恒。

例如:在高为h=10m的高台上,放一质量为M=9.9kg的木块,它与平台边缘的距离L=1m,今有一质量为m=0.1kg的子弹以v0的水平向右的射入木块(作用时间极短)并留在木块中如图,木块向右滑行并冲出平台,最后落在离平台边缘水平距离为x=4m处,已知木块与平台的动摩擦因数为u=,g=10m/s2,求

(1)木块离开平台时的速度大小。

(2)子弹射入木块的速度大小。

解析:题中要以子弹和木块组成的系统为研究对象,子弹进入木块并留在木块的过程中,由于作用的时间极短,可认为木块的位置没有变,这一过程中系统竖直方向上合力为零,在水平方向,平台对木块的摩擦力是系统受到的外力,但是在这一瞬间,子弹对木块的作用力远远大于平台对木块的摩擦力,即内力远远大于外力,因此可认为这一过程中系统动量守恒。由动量守恒定律可求出作用结束时的速度大小,然后物体以这一速度在平台上滑动,最后离开平台做一平抛。

(1)设本块离开平台时的速度为V1

x=v1t,h=gt2

x=x=4€譵/s=4m/s

(2)设子弹射入木块后,子弹与木块的共同速度为V,则木块向右滑行到达平台边缘的速度为V1,在这一过程中木块向左的加速度大小为a==ug=4.5m/s2

由运动学公式有:v12-v2=2(-a)L

v==5m/s

在子弹与木块的作用过程中,由动量守恒定律得:

mv0=(M+m)v

v0==500m/s

四、爆炸与碰撞的比较

对爆炸和碰撞的比较如下:

1.爆炸、碰撞类问题的共同特点是物体之间的相互作用突然发生,相互作用的力是变力,作用力很大,且远远大于系统所受的外力,故都可以用动量守恒定律来处理。

2.在爆炸过程中,由化学能等其他形式的能转化为内能,所以爆炸后系统的动能会增加;在碰撞过程中,系统的总动能不可能增加,除了弹性碰撞外(弹性碰撞过程动能守恒),系统的总动能会减少,减少的动能一般转化为内能。

3.由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程处理,即作用后还从作用前瞬间的位置以新的动量开始运动。

上一篇:书包里的童话作文下一篇:法院干部述职述廉报告