高中数学不等式证明

2024-10-06 版权声明 我要投稿

高中数学不等式证明

高中数学不等式证明 篇1

一、教学重点

1、理解比较法、综合法、分析法的基本思路。

2、会运用比较法、综合法、分析法证明不等式。

比较法

(一)作差法

一开始我们就有定义: 对于任意两个实数有,也就是说,证明两实数

大小,我们可以作差,然后进行变形,判断其差的符号(将差和0作比较),从而证明不等式。

例1 求证:证明:

几何意义: 函数的图像始终在函数的图像之上

A1个单位B

训练作差法基本能力,并让学生从不同角度理解不等式 例2 设

求证:

证明:

作差

/ 6

这题让学生说,主要训练作差法,为之后作商铺垫

(二)作商法 设实数,则有

作商,与1比较 例2 设证明:

求证:

/ 6

在作差法的基础上提出作商,让学生体会这两者各自的优点

综合法

从已知条件出发,利用已知的命题和运算性质作为依据,推导出求证的结论。

例3 求证:若,则有

证明:

在教授综合法的同时,给出这个基本不等式

例4 已知(1),求证:

(2)

证:(1)

/ 6(2)

这题主要为1的妙用,为学生做题拓宽新的思路

分析法

从要证的结论出发,经过适当的变形,分析出使这个结论成立的条件,把证明结论转化为判定这些条件是否成立,从而判断原结论成立。

要证 例4 若,则有,如果有,那么只要证明了,就有

/ 6

在教授分析法的同时,给出这个基本不等式

例5 设,则有

先证

再证

/ 6

在教授分析法的同时,给出这个绝对值不等式,学生以后也能用

高中数学不等式证明 篇2

关键词:不等式,向量方向,构造则新

向量已进入中学数学, 它的进入为中学生提供了一种有别于数域的新的代数结构的模型, 它不但揭示了数学知识之间的纵横联系, 进一步发展和完善了中学数学知识结构体系, 而且也拓宽了研究和解决问题的思维空间.同时也为激发和培养学生探索精神、创新意识提供了一个崭新的平台.如何将向量的有关内容与中学数学的传统内容融会贯通、互为所用也就成为中学数学教学所面临的新的课题.

不等式是中学数学的重要内容之一, 对它的研究也几乎贯穿在整个中学数学中.本文试图构造向量对高中数学中有关不等式给出证明, 并在此基础上对所证不等式予以推广.

引理 设α, β是两个非零向量, 则|α·β|2≤|α|2|β|2, 当且仅当α, β共线时取等号.

证明略.

题1 (文献[1]第21页) 已知a, b都是正数, ab, 求证a3+b3>a2b+ab2.

证明 所给不等式等价于

a2b+b2aa+b. (1)

m= (abba) n= (ba) , 则由引理可得

(a+b) 2 (a2b+b2a) (a+b) .

从而不等式 (1) 得证.

类似地, 若设

m= (a1a2a2a3anan+1) n= (a2a3an+1)

规定a1=an+1, 可证得 (1) 的推广:

推广1 设a1, a2, …, an是不全相等的正数, 则有i=1nai2ai+1i=1nai (规定a1=an+1)

题2 (文献[1]第23页) a, b, c>0, 且不全相等, 求证a (b2+c2) +b (c2+a2) +c (a2+b2) >6abc.

观察欲证不等式的特点, 发现其等价于

b+ca+c+ab+a+bc6. (2)

而要证明 (2) , 只需证明

(a+b+c) (1a+1b+1c) 9. (3)

证明 设m= (abc) n= (1a1b1c) , 由引理知不等式 (3) 显然成立.类似地证明又可得 (2) 的推广:

推广2 设a1, a2, …, an是不全相等的正数, n≥2, 且i=1nai=k, 则i=1nk-aiain (n-1) .

题3 (文献[1]第41页) 已知a, b, c是互不相等的正数, 求证

2a+b+2b+c+2c+a9a+b+c.

证明 显然不等式等价于

ca+b+ab+c+bc+a32. (4)

m= (ca+bab+cbc+a) n= (a+bcb+cac+ab) (ab+c+bc+a+ca+b) (b+ca+c+ab+a+bc) 9ca+b+ab+c+bc+a9 (b+ca+c+ab+a+bc) .

再据题2可得 (4) 成立.

类似地证明可得 (4) 的推广:

推广3 设ai>0且互不相等, i=1, 2, …, n, n≥2, 又i=1nai=k, 则i=1naik-ainn-1.

题4 (文献[1]第35页) 已知a, b为实数, 证明

(a4+b4) (a2+b2) ≥ (a3+b3) 2. (5)

证明 设m= (a2, b2) , n= (a, b) , 由引理可得 (5) .类似地证明可得 (5) 的推广:

推广4 设a1, a2, …, an是不全相等的正数, n≥2, 则i=1nai4i=1nai2 (i=1nai3) 2.

题5 (文献[1]第25页) , 已知a, b, c>0, 求证a2b2+b2c2+c2a2a+b+cabc.

要证的不等式可以化为

a2b2+b2c2+c2a2≥a2bc+b2ac+c2ab. (6)

证明 设m= (ab, bc, ca) , n= (ac, ba, cb) , 由引理即得 (6) .类似地证明可得 (6) 的推广:

推广5 设ai>0, i=1, 2, …, n, n≥2, 则i=1nai2ai+12i=1nai2ai+1ai+2, 规定an+k=ak, k=1, 2.

题6 (文献[1]第41页) 设x1, x2, x3, …, xn∈R+, 且x1+x2+x3+…+xn=1, 求证

x121+x1+x121+x2++xn21+xn1n+1. (7)

证明 设m= (x11+x1x21+x2xn1+xn) n= (1+x11+x21+xn) , 由引理得

1= (x1+x2++xn) 2 (x121+x1+x221+x2++xn21+xn) (i=1nxi+n)

即 (7) 式得证.类似地证明可得 (7) 的推广:

推广6 (第二十四届全苏数学奥林匹克试题) 设x1, x2, x3, …, xn∈R+, 且x1+x2+x3+…+xn=1, 则

x11x1+x2+x22x2+x3++xn2xn+x112.

推广7 (1991年亚太地区数学竞赛题) 设x1, x2, …, xn;y1, y2, …, yn都是正实数, 且k=1nxk=k=1nyk, 则有k=1nxk2x+yk12k=1nxk.

题7 (文献[1]第40页) 已知a, b, c, d是不全相等的正数, 证明

a2+b2+c2+d2>ab+bc+cd+da. (8)

证明 设m= (a, b, c, d) , n= (b, c, d, a) , 由引理即得 (8) .类似地可得 (8) 的推广:

推广8 设x1, x2, …, xn是不全等的正数, 则有i=1nxi2i=1nxixi+1 (规定xn+1=x1) .

参考文献

用数学归纳法证明平均值不等式 篇3

【关键词】 平均值不等式 数学归纳法

一、引言

不等式历来是中学数学教学的重要内容。不等式涉及数量之间大小的比较,通过比较常能显出变量变化之间相互制约的关系,因而从某种意义上说,不等式的探讨在数学中甚至比等式的推演更为重要。本文试探讨一种比较特殊而又著名的不等式——“平均值不等式”。这种不等式不仅本身颇为有用,而且它的证法也可作进一步熟练不等式证明技巧之用,而且它在中学数学中有着更为广泛的应用。特别在高中数学中,我们频繁地接触到此类不等式的简化形式(如平均值不等式中: n=2,3,4,…的情形),但诸多教科书并未对它作更进一步的探讨。从历年高考考察的情况来看,虽然对平均值不等式未作很高的要求,但几乎每年高考均有题目涉及到此类不等式,可见平均值不等式及其相关教学在中学数学中有着其重要的地位和作用。

二、平均值不等式的证明

著名的平均值不等式如下:

现用数学归纳法证这个问题。

(i)当n=1 b1=1等号成立,故命题成立。

(ⅱ)若当n=k时命题成立,即若b1,b2,…,bk>0且b1·b2…bn=1, 则b1+b2+…+bk≥k。

当n=k+1时,设b1,b2,b3…,bk+1>0且b1·b2…bk·bk+1=1,b1,b2,…,bk+1若b1=b2=…=bk+1=1,命题显然成立。

若b1,b2,…bk,bk+1不全为1, 则由于b1·b2…bk·bk+1=1,b1,b2,…,bk+1中至少有一个大于1及小于1的bi 。不妨设bk<1,bk+1>1,于是由(1-bk)(1-bk+1)<0,推出bk+bk+1>bk·bk+1+1 (*)。

另一方面,由于b1·b2…bk+1(bk·bk+1)=1, 按归纳法假设有b1+b2+…+bk-1+(bk·bk+1)≥k,因而b1+b2+…+bk-1+bk+bk+1=b1+b2+…+bk-1+(bk+bk+1)>b1+b2+…+bk-1+bk·bk+1+1≥k+1。

因此当n=k+1时,命题成立。由(i)及(ⅱ)知,对任意自然数n,命题成立。

證法3 在证法1中,当n=k时,由不等式正确推导n=k+1时不等式正确,是比较困难的,但是由n=k时的正确性推导n=2k时的正确性却很简单,因此我们可先证明不等式对一切n=2k成立,再证明不等式对一切n>2 ,n≠2k成立。

由(i)及(ⅱ)知,对一切自然数n不等式成立。

证法4 证法3比起证法1要简便得多,还可在证法3基础上进一步简化,我们要用到柯西提出的一种证法。

(i)证当n=2k,不等式成立(同证法3)。

由(i)、(ⅱ)知,对任意自然数n,不等式成立。

三、小结

本文用数学归纳法证明了平均值不等式,事实上,这几种方法并非孤立,它们之间有一定的联系。比如证法2是在证法1的基础上将不等式作了一个变形,然后用了数学归纳法,而证法3走了一个捷径巧妙地运用了数学归纳法,至于证法4这种证法较难想到,它是在证法3的基础上巧妙地运用了柯西提出的一种数学归纳法。

参考文献:

[1]徐胜林,吴明确. 平均值不等式[J] 数学通讯, 2005年第20期.

[2]李炯生,黄国勋. 中国初等数学研究[M]. 北京:科学技术文献出版社,1992.54-55.

高中数学不等式证明 篇4

数列和不等式是高考的两大热点也是难点,数列是高中数学中一个重要的内容,在高等数学也有很重要的地位,不等式是高中数学培养学生思维能力的一个突出的内容,它可以体现数学思维中的很多方法,当两者结合在一起的时候,问题会变得非常的灵活。所以在复习时,我们在分别复习好两类知识的同时,一定要注意它们的相互渗透和交叉,培养灵活的思维能力。

数列和证明不等式的交叉,是这两大块知识的主要交叉点,它在数列的特殊情景下,巧妙的融合了不等式的证明,它所涉及的问题往往是灵活的应用了数列和不等式的知识,把这两者完美的结合在了一起。

例1设an和bn分别是等差数列和等比数列,且a1b10,a2b20,若a1a2,试比较an和bn的大小。

分析:这两个通项大小的比较,它们的未知量比较多,比容易直接完成。因通过它们的项数n把他们组合在一起。设an的公差为d,bn的公比为q。显然q0,因为a2b20,所以有,a1da1q,即a1q1d。anbna1n1da1qn1a1a1n1q1a1qn1。又因为a1a2,所以

1qn1a2q1。若q1时,anbna11qn1= a11q

=a11q1qq2qn2n1。因为1qq2qn1n1,1q0,所以有:anbn。若0q1时,1qq2qn1n1,1q0,所以也有: anbn。综上所述,当nN,且n2时,anbn。在证明过程,对等比数列求和公式的逆用,是本题证明的一个转折点,它避免了一些不必要的分类讨论,时问题得以简化。

例2已知递增的等比数列an前三项之积为512,且这三项分别减去1,3,9后成等差数列,求证:123n1。a1a2a3an

分析:要想证明这个不等式,首先要求出左边的和式。根据题意,an是等比数列,2所以左边的和式可以利用错位相减法来求和。先确定这个等比数列。由a1a3a2可

得,a1a2a3a2512,所以a28。再设等比数列an的公比为q。则根据条件可

a14

得:818q9283,解得,q2或q1(舍去)。所以,因此,q2q2123n

an2n1。令Sn123n=234n1----------①,则

a1a2a3an222

21S123n--------------②,2n2324252n2由①-②得,1S1111n,即,2n2223242n12n2

1111n11n

1= Sn

222232n2n12n2n1

例3在某两个正数x,y之间,若插入一个数a,使x,a,y成等差数列;若另插入两个数b,c,使x,b,c,y成等比数列,求证:a12b1c1

分析:不等式左边有字母a,右边有不同字母b、c,要比较两边的大小,必须寻找

xy,bx2y,cxy2。a、b、c三者之间的联系,利用数列的关系可得:a2为计算方便,我们再令mx0,n

33

mn则a,bm2n,cmn2,y0,m3n32

1m2n1mn21= 那么,a1b1c1

2m3n3

=m2n2mn0,得a12b1c1。

2

例4设an0,且ananan1,求证:对一切自然数n,都有an。





n

22分析:因为ananan1,所以an1ananan1an,由已知an0,所以有,an1an0,即0an1。又因为an1an1an,111,所以1111。则有,1

an1an1anan1anan1an1an

在上式中取n1,2,,n1,得n1个不等式,把它们相加得,11n1,于

ana1

是,1n11n11n,因此,an1。在此题的证明过程中,我们巧妙的nana1

利用了数列求和的累加法,时问题的解决有一种全新的感觉。本题由于和自然数有关,也可以利用数学归纳法来证明。

例5 设a2,给定数列xn,其中x1a,且满足xn1

xn1

1。xn

2xn

。

2xn1求证:xn2且

分析:这是1984年的高考题,当时难倒了绝大部分的学生,大家觉得无从着手。它给定的是数列,求证的是不等式,而且都是和通项有关,所以我们可以考虑求出数列的通项再来观察。

xnxn1xn1x1因为2,又因为2xn12xn4xn4xn2x2x11n1

xn

xnax1a,所以有,xn2a2

n1

2n,则xn

2a21a

2n1

。而a2,则有,a20a21,所以01

aa因此,xn2且

xn1

1。xn

2n1

a21,那么01a

2n1

a21a

2n

1,1例6求证:1352n1。

2462n3n1

分析:这是一道不等式的证明题,若我们总是在不等式的圈子里转悠,问题不能圆满的解决。跳出这个圈子,我们不难发现这是一个自然数有关的命题,那么,解决它的方法不外乎两种,一是利用数学归纳法;二是构造数列。我们来构造一个数列

a2n23n1=

an。令an1352n1n1,则n1

2462n2n123n4an

12n28n20n41。所以,aa,从而有,aaaa1。=n1nnn1n2112n328n219n4

因此原不等式得证。

lgSnlgSn2

lgSn1。

分析:这是在数列情景下的不等式证明,所以要交叉使用数列的性质和不等式的证

例7设an是正项的等比数列,Sn是其前n项的和.证明:

明技巧。要证不等式等价于SnSn2Sn1,因为an0,所以Sn1Sn0。

由等比数列的定义可得:

aaa2a3

n1n2。a1a2anan1

再用等比定理得:

SnSn2Sn1。

Sn2Sn1an2a2a3an1Sn1a1Sn1,因此有:

Sn1Snan1a1a2anSnSn

例8 数列an和bn都是正项数列,对任意的自然数都有an,bn,an1成等差数列,22,an1,bnbn1成等比数列。

(1)问:bn是不是等差数列?为什么?

222(2)求证:对任意的自然数p和q(pq),bpqbpq≥2bp。

分析:对于第(1)题,我们不难证明它一定是等差数列。问题(2)的证明方法很多,我们可以直接利用等差数列的通项公式,通过作差比较来完成。但是若我们仔细分

222

析题意,观察bp,bbqpqp的特点,我们不难发现它们三者之间有等量关系:

bpqbpq≥

bpqbpq2bp,所以bpqbpq

。此题充分体现了数列和2bp

不等式知识的交叉运用。

例9数列an中,前n项之和为Snan2bn,其中a和b为常数,且a0,ab1,nN。

(1)求数列an的通项公式an;并证明an1an1。(2)若cnloganan1,试判断数列cn中任意两项的大小。

分析:此题的已知条件,前n项之和为Snan2bn 告诉我们,数列an是一个等差数列,要证明an1an1成立,只要证明该数列是一个递增的数列,且a11即可。(1)由Snan2bn可知,a1S1ab1,anSnSn12anab,所以an1an2a0,即数列an是一个单调递增的数列,那么an1ana11。

cn1logan1an2

(2)由(1)可知,数列cn各项都为正。则=logan1an2logan1ancnloganan1

logan1an2logan1an≤2=1logan1an124

2aan

1logaan2an21logan1n2= n1424





1,所以cn1cn.例10 已知数列an中,对一切自然数n,都有an0,1且anan 12an1an0。

求证:(1)an11an;

(2)若Sn表示数列an的前n项之和,则Sn2a1。

分析:从题目的结构可以看出,条件anan12an1an0是解决问题的关键,必2须从中找出an1和an 的关系。(1)由已知anan可得an12an1an0,2an1

1an1,12

又因为an0,1,所以有,01an11,因此an2an1,即an1an。2

1a1aa(2)由结论(1)可知,an1an112an2n,即1n1,于是有,22212n1112112a1,即Sn2a1。Sna1a2ana1a1n1a1a1

12212

数学归纳法证明不等式 篇5

数学归纳法证明不等式的典型类型是与数列或数列求和有关的问题,凡是与数列或数列求和有关的问题都可统一表述成f(n)g(n)(nN)的形式或近似于上述形式。

这种形式的关键步骤是由nk时,命题成立推导nk1时,命题也成立。为了表示的方便,我们记左nf(k1)f(k),右ng(k1)g(k)分别叫做左增量,右增量。那么,上述证明的步骤可表述为

f(k1)f(k)左kg(k)左kg(k)右kg(k1)例1.已知an2n1,求证:

本题要证后半节的关键是证 an1a1a2nn(nN)23a2a3an12

2k111中k右k即证k2 212

而此式显然成立,所以可以用数学归纳法证明。

而要证前半节的关键是证

12k11左k中k即证k2 221

而此式显然不成立,所以不能用数学归纳法证明。如果不进行判断就用数学归纳法证前半节,忙乎半天,只会徒劳。

有时,f(n)g(n)(nN)中f(n),g(n)是以乘积形式出现,且f(n)0,g(n)0是显然成立的。此时,可记

左kf(k1)g(k1),右k f(k)g(k)

分别叫做左增倍,右增倍。那么,用数学归结法证明由nk时,成立推导

nk1成立,可表述为

f(k1)f(k)左kg(k)左kg(k)右kg(k1)

考研数学中的不等式证明 篇6

陈玉发

郑州职业技术学院基础教育处450121

摘要:在研究生入学考试中,中值定理是一项必考的内容,几乎每年都有与中值定理相关的证明题.不等式的证明就是其中一项.在不等式的证明中,利用函数的单调性,构造辅助函数是一种常用并且非常有效的方法.但是,有时这种方法非常繁琐.巧用中值定理可使一些不等式的证明简化.

关键词:考研数学不等式中值定理幂级数

(作者简介:陈玉发,男,汉族,出生于1969年5月工作单位:郑州职业技术学院,副教授,硕士,从事数学教育研究.邮编:450121)

微分中值定理是微积分学中的一个重要定理,在研究生入学考试中,几乎每年都会有与中值定理相关的证明题.不等式就是其中一项。下面就考研数学中的不等式证明谈一下中值定理的应用. 在不等式的证明中,利用函数的单调性,构造辅助函数是一种常用并且非常有效的方法.但是,有时这种方法非常繁琐.巧用中值定理可以使一些不等式的证明过程得到简化.下面就历年考研数学中的不等式证明题谈一下.

例1(1993年全国硕士研究生入学统一考试数学(一)试卷第六题)

(2)设bae,证明ab ba

xa对此不等式的证明,一般我们会想到构造辅助函数,f(x)ax,f(a)0,然后证明

在xa时,f(x)0.这个想法看似简单,而实际过程非常繁琐,有兴趣的读者可以试着证明一下.下面笔者给出几个简便的证明.

证:Ⅰ利用拉格朗日中值定理:abbabalogabbalnb lna

lnblna lna

lnblnalna baa

1lna,其中eablnabaa

1

1lna,其中eab. a

原命题得证.

证:Ⅱ 利用微分中值定理,abeblnaalnb

blnb alnablnblna1 alnab1b1ln alnaab1b1(lnln1)alnaablnln1lna(微分中值定理)1a

1

lna,(1b)a

原命题得证.

证明Ⅲ 利用幂级数展开:

设bax,原不等式等价于

aaxa (ax)aaaax(a)x

xa(1

而 xa),a

ln2a2a1lnaxx2!xlnnanxn!,xxa(a1)x2a(a1)(an1)xn(1)a1a()(). aa2!an!a

a(a1)(an1)n由于x0,ae,所以lna1,lna.通过比较以上两个级数可知原na

不等式成立.

对于不等式a(1

一下.

例2(1992年全国硕士研究生入学统一考试数学(一)试卷第六题)xxa)的证明仍可以利用拉格朗日中值定理证明,有兴趣的读者可以自己证a

设f(x)0,f(0)0,证明对任何x10,x20,有f(x1x2)f(x1)f(x2). 证:不妨设x1x2,f(x1x2)f(x1)f(x2)f(x1x2)f(x2)f(x1)

f(x1x2)f(x2)f(x1)f(0)(x1x2)(x2)x10

f(1)f(2),x21x1x2,02x1x2,显然21,而f(x)0,所以f(x)单调递减.原不等式得证.

例3(1999年全国硕士研究生入学统一考试数学(一)试卷第六题)

论证:当x0时,(x21)lnx(x1)2 .(x21)lnx

证:(x1)lnx(x1)(x1)21 22

(x1)lnx1 x1

(x1)lnx(11)ln11,(柯西中值定理)x1

ln(1)

1,(介于1与x之间)

1ln0. 当1时,上式显然成立;当01时,我们可以证明,

命题得证.

例4(2004年全国硕士研究生入学统一考试数学(一)试卷第三题)

(15)设eabe2,证明lnblna

22224(ba). 2e4ln2bln2a4证:lnblna2(ba)2 e(ba)e

142ln2,(eabe2)e

1

ln2,2e

因为eabe2,所以,lnelne222. eee

所以,原不等式成立.

例5(2006年全国硕士研究生入学统一考试数学三试题第(17)题)

证明:当0ab时,bsinb2cosbbasina2cosaa.

证:令f(x)xsinx2cosxx

bsinb2cosbbasina2cosaa

f(b)f(a) 0

f(b)f(a)0 ba

f()cossin0,0ab

令f(x)xcosxsinx,f()0,f(x)cosxxsinxcosxxsinx0,0axb,所以在(0,)内,f(x)单调减少,即f(x)0.

原命题得证.

例6(2010年全国硕士研究生入学统一考试数学(一)试卷第(17)题

(1)比较1

0lnt[ln(1t)]ndt与tnlnt的大小,说明理由。01

解:因为lnt[ln(1t)]n

tnlnt[ln(1t)]n tn

[ln(1t)nln(1t)ln(10)n][](拉格朗日中值定理)tt0

()1,0t1,1n

所以lnt[ln(1t)]tlnt。即nn1

0lntt)]dtn10tnlnt。

例7(2012年全国硕士研究生入学统一考试数学三试题第(18)题)

1xx2

cosx1,(1x1).证明:xln1x2

证:原不等式等价于:

x2

x[ln(1x)ln(1x)]1cosx 2

xx2

(仅当x0时取等号)x[ln(1x)ln(1x)]2sin222

[ln(1x)ln(1x)]1(当x0时)2xxx2sin222

11111,(柯西中值定理,其中0x1),sinx

21,0x1 2(sin)(1)x

因为(sin)(12)22x,所以不等式成立.

利用同样的方法可以证明当1x0时,不等式成立.

综上所述,原不等式成立.

xx例8 证明:当x0时,xe1xe.

证:当x0时,ex1xxe1xe1e xxx

exe0

1ex,(利用柯西中值定理)x0

1eex,其中0x.

原不等式成立.

例9 证明:当0x

2时,sinxtanx2x.

证明:sinxtanx2xsinxtanx2 x

sinxtanx(sin0tan0)2 x0

cossec22(柯西中值定理)1

cossec22,因为

cossec2所以,原不等式成立.

中值定理是证明不等式时常用的一个非常有效的工具.我们习惯于构造辅助函数,利用单调性来证明不等式.而函数的单调性还是通过拉格朗日中值定理进行证明的.因此,利用单调性证明不等式的基础还是微分中值定理.以上几例体现了中值定理在证明不等式时的效果.

浅谈高等数学中不等式的证明 篇7

一、利用数学归纳法证明不等式

若不等式中含有“变量为自然数”的条件, 可以尝试用数学归纳法.

例1 证明不等式undefined为自然数.

证明 当n=2时, 因为undefined,

故不等式成立.

设n=k时, 不等式成立, 即undefined

则对于n=k+1时, 有

undefined

由于undefined由贝努力不等式) , 从而有

undefined,

故原式获证.

二、利用取对数法证明不等式

若不等式中含有幂指函数, 可以考虑用取对数法.

例2 证明不等式undefined为自然数.

证明 由undefined, 不等式的两边取对数, 得

undefined, undefinedundefinedundefinedundefined, 即

undefined

所以undefined

于是undefined, 即undefined

下面证明undefined

设undefined, 则有

undefined,

所以 (注意到undefined, 从而证得undefined

三、利用无穷小的性质证明不等式

若x→+∞时, undefined为无穷小, 即undefined, 且g (x) >0 (x>M1>0) , 则存在M2>0, 当x>M2时, 有undefined, 从而f (x)

例3 试证:当x充分大时, x10ex

证明 因为当x→+∞时, undefined,

所以, 当x充分大时, 有undefined, 即x10ex

四、利用拉格朗日中值定理证明不等式

若f (x) 在[a, b]上连续、在 (a, b) 内可导, 则undefined.利用ξ与a, b的关系, 对ξ进行合理缩放即可得不等式.

例4 若0

证明 显然等式当且仅当a=b>0时成立.

下面证0

作辅助函数f (x) =lnx, 则f (x) 在[a, b]上满足拉格朗日中值定理, 即存在ξ∈ (a, b) 使undefined成立.

由于0

由上述两式可得undefined,

所以undefined

五、利用泰勒定理证明不等式

泰勒定理的适用范围是不等式中含有的函数易求出它的泰勒展开式 (或麦克劳林展开式) , 从而利用它的局部展开式证明不等式.

例5 证明:undefined

证明 令f (x) =ln (1+x) , 则

undefined

于是f (x) 在x=0处的三阶泰勒展开式为:

undefined

由于undefined,

所以undefined

六、利用函数的凹凸性证明不等式

通过函数在某区间上的二阶导数的正负来判定在该区间上的凹凸性, 从而证明一些不等式, 特别是含两个或两个以上变元的.

例6 证明:undefined

证明 设f (t) =tn, t>0, 则

f′ (t) =ntn-1, f″ (t) =n (n-1) tn-2.

当n>1, t>0时, 有f″ (t) >0, 所以f (t) 在 (0, +∞) 内是凹函数.

根据凹凸性的定义, ∀x, y∈ (0, +∞) , x≠y,

有undefined, 即undefined

七、利用变上限积分证明不等式

在不等式的两端取变上限积分, 可以得到新的不等式.

例7 设f (x) 在 (0, +∞) 上具有连续的可微函数, 且f (0) =1.当x≥0时, f (x) >|f′ (x) |.试证:ex>f (x) , (x>0) .

证明 由已知可得-f (x) 0时, f (t) >0, 故有undefined

两边从0到x积分, 得∫undefinedundefined∫undefineddt, 其中x>0.

注意到f (0) =1, 从而得到lnf (x) f (x) .

不等式的证明因题而异, 灵活多变.只有在多思考、多总结的基础上, 才能迅速把握问题的本质, 灵活运用各种证明技巧, 提高解题水平.

摘要:人们对高等数学的印象通常是复杂的公式和繁杂的计算, 事实上通过用心的总结和归纳, 高等数学中的许多知识点是有规律可循的.本文就以多年教学经验为依据, 通过一些实例, 对高等数学中不等式的证明方法进行了探讨, 希望能给读者以启迪.

关键词:高等数学,不等式,证明方法

参考文献

[1]邵瑞珍, 皮连生.教育心理学[M].上海:上海教育出版社, 1988.

[2]李士琦.PME:数学教育心理[M].北京:高等教育出版社.

[3]毛京中.高等数学概念教学的一些思考[J].数学教育学报, 2003, 12 (2) .

[4]陈琼, 翁凯庆.试论数学学习中的理解学习[J].数学教育学报, 2003, 12 (1) .

[5]张定强.剖析高等数学结构, 提高学生数学素质[J].数学教育学报, 1996, 5 (1) .

高中数学不等式证明 篇8

关键词: 高中数学 不等式教学 数学思维 教学有效性

高中数学不等式的探究往往需要借助严密的数学逻辑思维,以分析或证明两式之间的对比关系,在这一过程中,数学思维的应用,切入角度的准确性,以及严密的逻辑证明对于整个不等式的有效分析起着关键作用。因此在数学不等式教学及实际应用过程中,高中数学教师首先应当从分析的角度指导学生进行基本的判断,从数学的思考角度找寻整个不等式的内涵与切入点,进而寻找正确的方式,确保不等式解答的高效率与准确性。因此,数学不等式教学中探究数学思维的有效应用对于整个高中数学不等式教学效果的增强有着重要的现实意义。

1.高中数学不等式教学中的数学思维

高中数学思维包含数形结合、数学模型、函数方程、递推、化归等,其对于数学知识的理解及数学习题的解答有着显著的促进作用,因此在数学教学过程中运用好数学思维对于数学教学水平的提升有着显著的促进作用。而在不等式的教学过程中,数形结合、函数方程、分类讨论等思维又起着关键的影响作用。因此教师在高中不等式教学过程中一定要结合实际的知识点或者是相关的习题案例有效地融合入各类数学思维,进而指导学生在不等式学习过程中深入地理解各个知识点,并以数学思维进行习题的分析,以在数学知识应用之前帮助学生寻找正确的思考方向、确定最佳的解题方式。在这种环境下,数学思维与高中不等式的教学紧密结合,学生对于不等式的学习效率得到提高,数学思维在高中数学不等式教学中的重要性得到体现。

2.数学思维在高中数学不等式教学中的有效应用

根据文章之前的分析,在高中数学不等式教学过程中,数形结合、函数方程及分类讨论等思维对于不等式的教学有着显著的促进作用,因此本节及实际数学思维与不等式教学结合的探究分析数学思维在高中数学不等式教学中的重要性,进而为现阶段高中数学不等式教学中有效应用数学思维提供借鉴。

2.1数形结合数学思维对不等式标根法的重要指导

数学中数与形往往是相互联系的,这种联系被称为数形结合,其作为一种数学思维或者数学指导思想往往对数学中某些概念的精确化或者是明确某些数学变量之间的关系起到了很好的指导作用。在高中数学不等式教学中,标根法的解题方法往往需要数形结合的形式进行有效指导,标根法往往将不等式的解题分成三个步骤,即将不等式分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线,并注意奇穿过偶弹回;最后再根据曲线显示出来的符号变化规律,写出不等式的解集。通过这种数学思维的指导,学生在学习不等式区间解答的过程中能够有效掌握基本的思考方法,并得出正确的答案。

以x■+3x-4≥0这一不等式为例,首先整个不等式可以分解成为(x-1)(x+2)■≥0,然后根据这一分解式将根x=1和x=-2(重根)标注在函数图形上,这样整个不等式的解的区域就能够明显地被表示出来,为{x|x≥1或x=-2}。

2.2函数方程思维与不等式恒成立证明的相关关系探究

函数方程思维往往是借助函数的主要性质或者是函数的定义对相关的数学问题进行分析和解答,而在高中数学不等式求解或者证明的过程中,数学教师同样可以借助数学的函数思维进行不等式教学,并指导学生对相关问题进行深入解答。在这种情况下,数学教师一方面是要让学生分清此类数学思维与不等式结合的主要类型,另一方面是指导学生找到不等式解答的主要突破口,进而让学生在分析阶段找到有效运用解不等式的方法,在解题及知识点理解的过程中保障自身探究方向的准确性。

不等式恒成立问题常常应用函数方程思想,进而以求最值或者极值的方式确定相关参数的区间,以证明不等式的恒成立或者习题条件的完整化。虽然恒成立问题分析过程中,数形结合的思想也对其起着有效的指导作用,但函数方程思维在运算方面及避开作图难点方面有着显著的优势。例如对于不等式x■-2mx+2m+1>0,教师就可以指导学生将函数化解成为(x-m)■-m■+2m+1>0,进而将整个不等式右边化成开口向上,对称轴为x=m的抛物线函数,在函数方程思维的指导下,学生可以免去画图的工作,直接根据函数的单调性及最值的性质判断m的范围,最终求出m>-1/2。

2.3分类讨论对含绝对值不等式解题的重要影响

分类讨论的思想对于高中数学综合知识的探究有着显著的指导作用,而数学不等式知识的教学中,含有绝对值的不等式同样可以和分类讨论的数学思维进行密切的联系。如“分段讨论法”,通过各个集合上的讨论求出各种情况下不等式的答案,最后取解的并集,在这种方法下,不等式所包含的绝对值可以被准确地去除,整个习题的解答也会被简化。学生对于这一类知识的理解及应用有了更好的切入角度,教学效果也更好地得以体现。

结语

以上在讨论了数学思维与高中数学不等式教学结合有效性的前提下,列举了高中数学不等式教学过程中具有重要影响的几类数学思维的实际应用。现阶段的不等式教学过程中,教师要根据不等式教学中的主要知识点及习题类型有效运用数学思维的指导作用,以数形结合数学思维强化不等式标根法的有效分析,以函数方程思维探究函数恒成立证明或解答的准确方向,以分类讨论的思维指导学生对含绝对值的不等式进行简化分析,进而借助数学思维的有效指导不断提高学生对于不等式的理解程度,优化其对于习题的分析思路与解题方法,保障学生知识储备的拓展及考试竞争力的增强,最终突显数学思维在高中数学不等式教学中的重要性。

参考文献:

[1]顾敏智.探析数学思维在高中数学不等式教学中的重要性[J].新课程导学,2015,17:96.

数学归纳法证明不等式巩固学案 篇9

1.用数学归纳法证明“111111≥,(n∈N+)”时,由n=k到n=k+1n1n2n3nn2

4时,不等式左边应添加的项是()A.1111111111B.C D.2k12k2k1k22(k1)2k12k22k12k2k

1111++…+1)时,第一步需证()232n1

1111A.1<2B.1+<2C.1++<2D.1+<2 223

31113.用数学归纳法证明“1+++…+n1)”时,由n=k(k>1)不等式成立,23212.用数学归纳法证明1+

推证n=k+1时,左边应增加的项数是()

A.2k-1B.2k-1C.2kD.2k+1

4.关于正整数n的不等式2n>n2成立的条件是()

A.n∈N+B.n≥4C.n>4D.n=1或n>4

5、已知f(n)=(2n+7)·3n+9,存在自然数m,对任意n∈N,都使m整除f(n),则最大的m为()

A.306、若不等式B.26C.36D.6 111m对大于1的一切自然数n都成立,则自然数m的n1n22n2

4最大值为()

A.12B.13C.14D.不存在7、设n为正整数,f(n)=1+111357++…+,计算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,观23n222察上述结果,可推测出一般结论()

2n1n2n2B.f(n2)≥C.f(2n)≥D.以上都不对 22218、如果1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=n(n+1)(n+a)(n+b)对一切正整数n都成立,4A.f(2n)>

a,b的值应该等于()

A.a=1,b=3B.a=-1,b=1C.a=1,b=2D.a=2,b=

3anbnabn()(A.,B.是非负实数,n∈N)时,假设n=k命题

9、用数学归纳法证明2

2成立之后,证明n=k+1命题也成立的关键是__________.10、用数学归纳法证明11111,假设n=k时,不等式成立之2222n223(n1)

15(n2,nN)3n6后,证明n=k+1时,应推证的目标不等式是_______________.11、求证:11n1n2

12、互不相等正数a、b、c成等差数列,当n>1,n∈N*,试证明:an+cn>2bn.1113、已知,Sn12

314.证明:对一切大于1的自然数n,不等式(1+

立.15.设数列{an}满足a1=2,an+1=an+n1,nN,证明:S2n1(n2,nN)2n1112n1)(1+)…(1+)>成532n121(n=1,2,3,…)求证:an>2n1对一切正整数n成立.an

na2xa216.设f(x)=是奇函数如果g(n)=(n∈N+),比较f(n)与g(n)的大小(n∈N+).xn12

1n(n1)(n1)

2223n(n1)17.求证:(n∈N+)22

数学归纳法证明不等式拓展--数列、不等式中数学归纳法

1、已知数列{A.n}的各项都是正数,且满足:A.0=1,A.n+1=1A.n(4-A.n),n∈N.证明:

2A.n

(2)为保护生态环境,防止水土流失,该地区每年的森林木材量应不少于719a,如果b=a,972那么该地区今后会发生水土流失吗?若会,需要经过几年?(取lg2=0.30).3、已知数列{B.n}是等差数列,B.1=1,B.1+B.2+…+B.10=145.(1)求数列{B.n}的通项公式B.n;

(2)设数列{A.n}的通项A.n=logA.(1+1)(其中A.>0且A.≠1),记Sn是数列{A.n}的前n项和.bn

试比较Sn与

1logA.B.n+1的大小,并证明你的结论.34、已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145(n∈N+)

(1)求数列{bn}的通项.(2)设数列{an}的通项an=loga(1+1)(其中a>0且a≠1),记Sn是数列{an}的前n项和,试比bn

较Sn与

1logabn+1的大小,并证明你的结论.35、已知函数f(x)=x3(x≠-1).设数列{A.n}满足A.1=1,A.n+1=f(A.n),数列{B.n}满足x

1B.n=|A.n-3|,Sn=B.1+B.2+…+B.n(n∈N*).(1)n

(1)用数学归纳法证明:B.n≤;2n1

(2)证明:Sn<23.36、已知曲线Cn:x22nxy20(n1,2,).从点P(1,0)向曲线Cn引斜率kn(kn0)的切线ln,切点为Pn(xn,yn).

(1)求数列{xn}与{yn}的通项公式;(2)

证明:x1x3x5

x2n1xn.yn

x3f(x)(x1), 设数列{a}满足a1,af(a),7、已知函数n1n1nx

1{b

n}满足bn|an|,Snb1b2bn(nN*)

(Ⅰ)用数学归纳法证明bn(Ⅱ)证明Sn.8、已知不等式23n2[log2n],其中n为大于2的整数,[log2n]表示不超过log2n的最大整数.设数列{an}的各项为正,且满足a1b(b0),an

证明:an

高中数学不等式证明 篇10

耿杰

(安徽师范大学

数学与应用数学专业

0707046)

摘要:本文主要应用数学分析中的单调性,微分中值定理,Taylor公式,凸函数的定义,极值,极限以及积分等的相关知识来证明不等式,同时也通过应用一些著名的不等式证明不等式。通过以上方法的应用使我们对不等式证明的相关知识有更加深刻系统的理解,从而为数学中许多其他内容的学习提供了一个重要工具。

关键词:数学分析

不等式

证明

方法

The mathematical analysis of several methods to testify

inequality

Gengjie(Anhui normal university mathematics and applied mathematics

professional 0707046)

Abstract: In this paper, Monotonicity, differential mid-value theorem, Taylor formula, convex function is defined, extremum, limit and integral related knowledge to testify inequality,also through the application of some famous inequation inequality.Through the above application of this method to make the inequation relevant knowledge more profound understanding of the system,thus for mathematics in many other content of study provides an important tool.Key words:Mathematical analysis

Inequation

Method

1.引言

不等式是数学分析的基本内容之一,它是研究许多数学分支的重要工具。在数学领域中占有重要的地位,也是各个时期的数学教材的重要组成部分,在各种考试和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,方法也较多。通过不等式的证明,不仅可以检验基本的数学知识的掌握程度,而且也是衡量数学水平的一个重要标志。因此,掌握一些基本的证明不等式的方法是十分重要也是十分必要的。下面将对不等式的证明方法进行总结。

2.利用单调性证明不等式

利用函数的单调性证明不等式是一种较为重要的方法,同时又是一种行之有效的方法。

要点:若f(x)0(或f(x)0),则当x1x2时,有f(x1)f(x1)f(x2))。反之,若f(x)0(或f(x)0),则当x1x2f(x1)f(x2)(或f(x1)f(x2))。由此便可获得不等式。

f(x2)(或

时,有

ab例2.1 证明:

证明:记f(x)1aba1ab1b

11xx1x,则f(x)1(1x)20,所以f(x)在定义域内单调递增函数。又由于abab1abab可知

ab1aba1abb1aba1ab1b

例2.2 设bae,证明:ab分析:要证abbaba

lnaalnbb,只需证blnaalnb,也即证,则f(x)1lnxx2

证明:记f(x)即f(x)xlnxxlnx,所以当xe时,f(x)0;

lnaalnbb在时是单调减函xe数。又由于bae,所以ba,即证ab。

3.利用微分中值定理证明不等式

用微分中值定理来证明不等式要熟记各个中值定理的应用条件,将原不等式通过变形找到一个辅助函数使其满足中值定理条件,证明的关键是处理好点,分析函数或其导数在该点的性质即可证明得到结论。

要点:如果函数f(x)在区间a,b上连续,在开区间a,b内可导,那么在a,b内至少存在一点,使得f(x)(1)当f(a)0,在a,b内f(x)0f(b)f(a)babaf(a)f()(xa)。由此可得0时,有f(x)x(a,b]).(2)在上述条件下,有有f(a)f(),其中ab。因此,若f(x)单调递减,f(b)f(a)f(b)。以上原理在证明不等式时经常采用。

例3.1 设0x1,x2,平,p,q是正整数,pq1,证明:psinx1qsinx2sin(px1qx2)。

证明:当x1x2时,不等式两边都等于sin设x1x2,为确定起见,设x1x2x1,因而等号成立。,记x3px1qx2,由于pq1,故x3x1q(x2x1)x1。同理x3x2。

将原不等式改写为psinx1qsinx2(pq)sinx3,即q(sinx2sinx3)p(sinx3sinx1)。令f(x)qsinx,g(x)psinx,则f(x)qcosx,g(x)pcosx。根据积分中值定理:

q(sinx2sinx3)qcos1(x2x3)qcos1(xpx1qx2)=pq(x2x1)cos1;

p(sinx3sinx1)pcos2(x3x1)pcos2(px1qx2x1)=pq(x2x1)cos2。其中0x12x31x2cos1cos2。所以原不等式得证。,因而

4.利用Taylor公式证明不等式

依据f(x)的情形,使其按照Taylor公式展开,然后根据已知条件来进行证明不等式。

要点:若f(x)在a,b上有连续n阶导数,则f(a)f(n1)(a)0,f(n)(x)0(当x(a,b)时)。则f(x)f(n)()n!(xa)0(当x(a,b]时)。利用此原理,可以对一些不等式n进行证明。

例4.1 证明:

tanxxxsinx,x(0,2),证明:原式等价于f(x)sin2xtanxx0,因为f(0)f(0)02f(x)sinx(5secx1)bsin3xsecx0,所以f(x)sinxtanxx0

42(当x(0,2)时)。故tanxxxsinx,x(0,2)。

5.利用凸(或凹)函数的定义来证明不等式

利用函数的凸凹性来对不等式进行证明的方法首要是找到辅助函数f(x),利用辅助函数f(x)在区间a,b上的二阶导数来判定f(x)的凸凹性,然后根据凸函数或凹函数的性质来进行这证明。

要点:若f(x)0,则函数f(x)为凸函数即x1,x2a,b,(0,1),有f(x1(1)x2)f(x1)(1)f(x2)。

若f(x)0,则函数f(x)为凹函数即x1,x2a,b,(0,1),有f(x1(1)x2)f(x1)(1)f(x2)。

例5.1 证明:xlnxylny(xy)lnxy2,(x0,y0,xy)1t0,所以

证明:令f(t)tlnt(t0),f(t)lnt1,f(t)1xy)也即 是严格凸函数。于是[f(x)f(y)]f(f(t)tlnt在(0,)221xyxyxy[f(x)f(y)]ln即xlnxylny(xy)ln故得证。2222类似的我们也可证明:

ee2xyxye2,(xy)

6.用求极值的方法证明不等式

用求极值的方法来证明不等式最重要的也很就是构造相关函数,然后判断该函数的极值,这是证明不等式的一个最基本的方法。

要点:要证明f(x)g(x),只需求函数F(x)也就是证明minF(x)0。

f(x)g(x)的极值,例6.1 设n为自然数,试证:

证明:原始可转化为1(1t2et(1tn)nt2ne(当tn时)t。

tn)ett2n。所以只需证明

f(t)n2tn[1(1ttntn))e]0(tn),ntn1f(t)te[(1tn)n1(1)(1tn)]=

ntn[2e(1ttn)n1故我们用]。表示方程

2e(10的根。则极值的可疑点为t0,t,及tn。但[1(1f(0)0,f()2nn)e]=

n2n[12(1n)](1n)2n22(n1)0,f(n)n10,f().由此f(t)min所以问题f(t)f(0)0(tn时)。即得证。

类似的我们也可证明:设aln21为任意常数,试证:x2ax1e(当x0时)2x

7.利用单调极限证明不等式

利用单调极限来证明不等式主要的是求函数在某一点的极限值,然后根据单调函数的性质来进行判断。

要点:若xb时,f(x)在定义域上是单调增函数(或严格单调增函数),且xb0时f(x)A,则f(x)A(当xb)(或f(x)。A(当xb))反之,对于递减或严格递减的函数,也有类似的的结论。利用该原理可以来证明一些不等式,从而使证明过程简洁易懂。

例7.1 证明:x0,tx时,et(1tx)0。

x

证明:当t0或tx时不等式显然成立。故只需证明t0,tx,t0的情况。为此,我们只需证明当x时,f(x)(1事实上:

(1)当t0,t0,tx时,[lnf(x)][ln(1tx)]x[xln(1xtn)ext即可。

tx)]x=ln(xt)lnxtxt(应用Lagrange公)式)=

tttxttxttxt

(0

当0tx时,0xtx.当t0时,0xxt.

tx)xt(2)

f(x)(1tnxxlim(1tx)lim[(1xx]tet.所以当x时,)et。故原不等式即得证。

8.利用被积函数的不等式证明不等式

利用定积分定义来证明一些不等式是一种十分有效的手段,可以将原来较为复杂的证明转化为较为简洁易懂的证明。下面将利用积分的相关性质来证明不等式。

要点:若f(x)g(x)(或f(x)g(x)),则有baf(x)dxbag(x)dx(或f(x)dxa1bbag(x)dx),(x(a,b))。

1例8.1 证明:0cosx1x2dx1sinx1xcosx1xsinx1x222dx0

证明:令tarcsinx,则

0dx20cos(sint)dt

令tarccosx,则 01dx20sin(cost)dt要证的不等式转化为02cos(sint)dt20sin(cost)dt。所以我们只需证 cos(sint)sin(cost)

(当t(0,2)时)。由已知(0,2)上sinxx,cosx严格递减。所以有sin(cost)costcos(sint)。即证原不等式1cosx1x20dx1sinx1x20dx。

9.在不等式两端取变限积分证明新的不等式

利用在不等式两端取变限积分来证明不等式,此种方法要求较高,技巧性太强,难度较大。但对于一些不易证明的不等式应用此种方法则较为简便。

要点:若f(x)g(x)(或f(x)g(x)),则有baf(x)dxbag(x)dx(或f(x)dxabbag(x)dx),(x(a,b))。

例9.1 证明:x0时,xx36sinxxx36x5120。)。在此式两端同证明:已知cosx1(x0,只有x2n时等号才成立xx时取0,x上的积分,得sin1cosxx2

(x0)。再次取0,x上的积分,得

x32

(x0)。即可得到xxxx36sinx

(x0)。然后继续取0,x上的积分,得sinx36x5120。移项即可得所要证明的不等式:

x6sinxxx36x5120。

10.利用著名的不等式证明其他不等式

利用著名的不等式证明其他不等式要求我们应熟悉掌握数学分析中的一些常用的不等式,掌握了这些不等式我们可以利用他们来直接对其他一些难度较大不等式进行证明。此种方法对学生要求较高,难度也较大,技巧性更强。

要点:Cauchy不等式:设ai,bi为任意实数(i1,,n)则n(aibi)i12ab,其中当且仅当a,b成比例时等号才成立。22iiiinni1i1 Schwarz不等式:若f(x),g(x)在(a,b)上可积,则(f(x)g(x)dx)ab2baf(x)dxg(x)dxa2b2。若f(x),g(x)在(a,b)上连续,其中等号当且仅当存在常数,使得f(x)g(x)时成立(,不同时为零)。

Holder不等式:设a1,a2,,an及b1,b2,,bn是两个正整数序列,1p1q1,则当p1时,有(ai)(bi)ppqqi1i1n1n1ab当p0时,不等号

iii1n反向。其中当且仅当aip和biq成比例时取等号。

平均不等式:对任意n个实数ai0n(i1,2,,n)恒有ana1a2ana1a2ann。其中当且仅当a1a2b时等号成立。为任意实数,例10.1 已知f(x)0,在[a,b]上连续,a求证:(abf(x)dx1,kf(x)coskxdx)(f(x)sinkxdx)1。

22ab证明:所要证明的式子的左端第一项应用 Schwarz不等式

(f(x)coskx)[ab2baf(x)(2f(x)coskx)dx]2

(1)

同理可得 babaf(x)dxf(x)coskxdxa2bbaf(x)coskxdx2(f(x)sinkxdx)baf(x)sinkxdxb2

(2)

2b2a(1)+(2)得:(af(x)coskxdx)(f(x)sinkxdx)1。即得证。

总结

不等式是数学分析中的一个重点也是一个难点,也能为其他数学分支的学习提供一个重要工具。不等式的证明是数学领域的重要内容,也是学习中的一个难点。不等式作为一个系统,其内容较为复杂,其的证明方法也较多,以上只是简要介绍了不等式证明的几种常用方法,并用例题作一讲解,意在抛砖引玉。

参考文献:

上一篇:宜信小额信贷公司下一篇:折纸兴趣小组计划