第九单元《数学广角——鸡兔同笼》名师教学设计片段

2024-07-07 版权声明 我要投稿

第九单元《数学广角——鸡兔同笼》名师教学设计片段

第九单元《数学广角——鸡兔同笼》名师教学设计片段 篇1

金星教育原创资源·版权所有·禁止转载

名师教学设计片段

自主探究,合作交流,掌握多种解题方法(教学重点)

师:“鸡兔同笼”问题出自我国古代数学名著《孙子算经》,请同学们翻开教材103页,看一看古代原题。谁来读一读。

生:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? 师:谁来说说它的意思。

生:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?

师:谁会用我们学过的方法来解答这道题?(生独立解答)

师:谁来说说你是用什么方法解答的。

生1:我是用假设法解答的。我假设都是鸡,那么一共有70只脚,比原来少了24只脚,鸡和兔相差2只脚,所以兔有24÷2=12(只),鸡有23只。

生2:我也是用假设法解答的。我假设都是兔,那么一共有140只脚,比原来多了46只脚,兔比鸡多2只脚,所以鸡有46÷2=23(只),兔有12只。

师:大家听懂了吗?谁是用其他方法解答的?

生1:我是用列表法解答的,也得出兔有12只,鸡有23只。生2:我是用方程法解答的,也得出兔有12只,鸡有23只。„„

师:大家解答得都对,你们想不想知道古人是怎样解答这道题的? 生:想。

师:下面请同学们和老师一起来体验一下《孙子算经》中一些巧妙的解法。首先我们来认识“半足法”。

师:所谓“半足法”就是假设让所有的鸡单脚着地,所有的兔前两脚立起,只用后两脚着地,这时,地上只有一半的脚数,也就是多少只脚呀?

生:就是94÷2=47(只)脚。

师:对,也就是47只脚着地。大家想一想,一只鸡一脚着地,一只兔两脚着地,笼子里只要有一只兔,脚的只数就会比头数多1,也就是多多少只着地,就说明有多少只兔。那么着地的脚的只数47比35多出多少呀?

金星教育淘知网:http:///

客服电话: 400-885-1290/ 2 金星国际教育集团

金星教育原创资源·版权所有·禁止转载

生:多出47-35=12(只)。

师:所以,就得出笼子里有12只兔。根据兔的数量,就可以知道有几多少鸡。生:有23只鸡。

师:你们说这种解法巧不巧呀? 生:巧。

师:请把这个计算过程用算式完整地表示出来。

生:94÷2=47(只),兔:47-35=12(只),鸡:35-12=23(只)。师:下面我再来介绍一下“砍足法”。

师:所谓的“砍足法”,就是假设将所有兔都砍掉2只脚,那么鸡和兔就都只有2只脚了,笼子里就剩下多少只脚?

生:剩下35×2=70(只)脚。师:这说明一共砍了多少只脚? 生:一共砍了94-70=24(只)脚。

师:每只兔砍掉2只脚,共砍掉24只脚,这说明笼子里有多少只兔? 生:有24÷2=12(只)兔。

师:关于这道题,巧妙地解法还有很多,有兴趣的同学可以通过上网等方式查一下相关资料,希望下节课能从大家那里听到更有趣、更巧妙、更新奇的解法。

赏析:教学时先化繁为简,引导学生用不同的方法解决例题,然后让学生在理解、掌握各种解法的基础上,完成对古代“鸡兔同笼”问题的解答,最后简介其他方法,使学生在体会代数方法的一般性的基础上,知识面得到拓宽。

金星教育淘知网:http:///

第九单元《数学广角——鸡兔同笼》名师教学设计片段 篇2

人教版《课程标准实验教科书·数学》六年级上册第112~115页内容

教学目标

知识目标:了解“鸡兔同笼”问题, 感受古代数学问题的趣味性。尝试用不同的方法解决“鸡兔同笼”问题, 并使学生体会假设法的一般性。

能力目标:培养学生动脑筋, 解决实际问题的意识, 增强学生的数学应用能力。

情感目标:了解我国古代数学的光辉成就, 增强民族自豪感;提高学生对数学的好奇心和求知欲;增强学数学的自信心。

教学重点

用假设法来解决鸡兔同笼问题。

教学难点

在解决问题的过程中培养学生的逻辑推理能力和对用假设法解决鸡兔同笼问题的理解与体会。

教学过程

一、创设情境, 引出新课

1. 师:我们伟大的祖国具有五千年的文明史, 在历史的长河中, 为科学知识的创新和发展作出了巨大贡献, 仅在数学领域就有《九章算术》、《孙子算经》等古代名著流传于世, 《孙子算经》中的“雉兔同笼”问题, 更漂洋过海传到日本等国。

2. 课件出示主题图和原题:今有雉兔同笼, 上有三十五头, 下有九十四足, 问雉兔各几何?师:你能说说这道题是什么意思吗? (说明:雉指鸡)

出示:笼子里有若干只鸡和兔。从上面数, 有35个头, 从下面数, 有94只脚, 鸡和兔各有几只?

3. 揭示课题:这就是我们今天要研究的问题“鸡兔同笼”的问题。 (板书课题:鸡兔同笼的问题)

【设计意图】从学生们非常感兴趣的话题入手, 又有生动的故事情节, 能深深吸引学生的积极性和探索欲望。

二、自主探究, 学习新知

师:为了便于同学们用多种方法探究问题, 我们先来研究一道数据较小的“鸡兔同笼”的问题。

出示:笼子里有若干只鸡兔。从上面数, 有8个头, 从下面数, 有26只脚, 鸡和兔各有几只?

1. 理解题意

师:“从上面数, 有8个头;从下面数, 有26只脚”分别是什么意思?

2. 探索策略

师:请大家想一想, 怎样解决这个问题?然后小组进行讨论。

师:好, 刚才各小组进行讨论, 谁愿意把你们的研究成果向大家汇报? (指名汇报。)

(1) 猜想法

师:鸡和兔各有几只呢?我们不妨猜猜看。

(2) 列表法

所以我们得出来结论就是:鸡有3只, 兔有5只。

(3) 假设法

(1) 假设全是鸡

师:我们先从表格中右起的第一列, 8和0是什么意思?

(让学生自主探究)

师:大家明白吗?不明白的, 请大家看…… (课件演示) 。

师:算出来后, 我们还要检验算的对不对, 谁愿意口头检验?

(2) 假设全是兔

师:我们再回到表格中, 看看左起第一列中的8和0是什么意思?

(让学生自主探究)

课件演示:“假设法”中假设全是兔的情况。

师:在列表的基础上, 我们想到了两种算术方法。回头看看这两种方法的第一步, 一个假设全是鸡, 另一个假设全是兔, 我们给这两种方法起个名字吧。

【设计意图】运用假设法是本节课的教学重点, 也是教学难点。为此, 教师以表格中数据变化规律为探究基础, 以小组合作、师生互动为探究方式, 以课件动态演示为探究辅助手段, 巧妙地将认知经验和思维过程转化成了数学语言, 即数学算式, 从而形成了解决问题的全新的一般策略, 发展了学生的思维水平和推理能力。

3. 小结方法

师:请同学们回忆一下, 在解决鸡兔同笼问题时, 用到了哪些方法?

哪种方法比较简便?你喜欢用哪一种方法?

【设计意图】先让学生独立思考, 再进行小组讨论, 最后全班汇报。在学习过程中, 尽量地为学生多提供讨论和探究的空间, 鼓励学生自主探究与合作交流。通过教师创设的现实情境, 让学生投入到解决问题的实践活动中去, 自己去探究、去交流, 并且经历数学学习的全过程, 找出解决问题的方法, 体会假设的数学思想的应用与解决数学问题的关系。

三、巩固练习, 强化新知

1. 师:你能用假设法或者方程解来解答“孙子算经”里的问题吗?

课件再出示:笼子里有若干只鸡和兔。从上面数, 有35个头, 从下面数, 有94只脚, 鸡和兔各有几只? (独立练习, 小组交流自己的算法。指名板演)

2. 师:想知道古人在解答这道题时是怎么做的吗? (让学生看课本第114页的“阅读资料”, 了解“抬脚法”。)

【设计意图】在交流探讨中, 学生可能采用不同的解题方法, 师有意识地重点介绍他们都能接受的一种解题方法——假设法, 使学生明确解题时掌握一种基本的解答方法。

四、推广应用, 拓展新知

师:生活中像“鸡兔同笼”的情况是很多的, 我们重在掌握其中的数学思想、方法来帮助我们解决类似的问题。

出示:

(1) 有龟和鹤共40只, 龟的腿和鹤的腿共有112条。龟、鹤各有几只?

(2) 全班一共有38人, 共租了8条船, 每条船都坐满了。大小船各租了几条?

请同学独立列式解答。 (讲评时重点解释算术解的每步的算理)

(3) 小红参加数学知识竞赛, 共10道题, 每做对一道题得10分, 做错一道题扣2分。小红每道题都做了, 共得64分。她做对了几道题?

【设计意图】通过学生的独立解决, 旨在加深学生对鸡兔同笼问题的理解, 也让学生体会到数学就在我们身边。

【总评】本节课为学生提供了讨论和探究的空间, 鼓励学生自主探究与合作交流。让学生从侧面、从多角度思考, 运用多种解题方法, 去探究、去解决鸡兔同笼的问题。

1. 注重解题策略的多样化。

教学中, 教师引导学生通过小组讨论交流探究问题, 引导学生从多角度、多侧面进行研究, 采取猜测法、列表法、假设法等分析和解决问题, 从而获得了分析问题和解决问题的基本方法, 体验了解决问题策略的多样性。在注重解决问题策略多样化的同时, 教师还注重了解决问题策略的优化。

2. 注重思维能力的培养。

让学生在参与观察、猜想、列举、验证等数学活动中, 发展合情推理和演绎推理能力, 用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初的随意猜想到表格中的有序猜想, 从一般验证到表格中数据变化规律的发现, 从列表法很快自然联想到假设法、方程解方法, 学生的思维经历了从无序到有序、从特殊到一般、从肤浅到深刻等方面的巨大变化, 学生的思维能力也随之得到了极大的提升。

3. 注重数学思想的渗透与应用。

“数学广角”是人教版课程标准实验教科书中新增的教学内容之一, 通过它渗透出一些基本的数学思想和方法。本节课要求教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题, 渗透了转化的思想和方法;用“列表法”解决问题, 渗透了函数的思想和方法;用“算术法”解决问题, 渗透了假设的思想和方法等等。这些为学生以后的学习奠定了坚实基础。

4. 注重数学文化的继承。

第九单元《数学广角——鸡兔同笼》名师教学设计片段 篇3

东莞市大朗镇新民小学 叶巧如

在教学数独前,我认真地解读了教材,教参,经过备课,我知道了要解决这样的问题不仅要看行还要看列,即要先考虑什么还要考虑什么。经过一番思量之后,我打算从游戏引入,告诉所有的孩子们只要你认识1、2、3、4,你就能学会它,从而让孩子们放轻松,以最好的状态进入学习中。

一、以游戏为主线,层层引入,引导思考

在新授课前,我设计了入门级密码破译和初级密码破译,孩子们玩得津津有味,但是只有游戏是不够的,游戏后要有思考,从第一个游戏中,学生们发现了要想填上类似这样的密码,需要至少知道三个数学。在初级密码破译后,学生思考的结果是,要想填好密码,应该先找到字母所在的行或列,再进行思考。

二、给学生以缓冲,互助学习,发现规律

讲授到高级密码破译时,面对例2,有些同学手足无措了。在交流过程中,学生们明白了做这种题最重要的一条原则,就是先找到字母所在的行和列,然后看哪个给了三个数字,再写出字母所表示的数字。这样层层深入,水到渠成,丝毫看不出老师教学的痕迹,完全是学生自己思考的结果,教师只是在关于的时候给予必要的指导,帮助孩子们学会用数学语言来表述自己的思考过程。

虽精心备课,但由于能力原因,也有不足之处:

1、评价语言不及时

这节课比较开放,有的孩子回答得非常好,思维很敏捷,我的评价语没有及时地跟上,有的孩子回答得不够简洁,也不够清楚,但是想法是正确的,我也没有给予适当的鼓励。

2、引导针对性不强

当学生表述思考过程不简洁时,我说:谁能像老师这样说?然后开始按自己的方式说,虽很简洁,却不是孩子的思考,我可以说,“同学们听听,老师这样说好不好?”

六年级数学广角鸡兔同笼教案 篇4

教学目标:

1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和代数方法的一般性。

3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。

教学重点:用假设法解决“鸡兔同笼”问题。

教学具准备:课件。

教学过程:

一、创设情境,激情导入

1.出示原题

师:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题(课件出示《孙子算经》中的原题):今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

2.理解题意

师:同学们知道这道题的意思吗?请试着说一说。

生:这道题的意思是——现在,鸡和兔在一个笼子里,从上面数有35个头,从下面数有94只脚,问鸡和兔各有多少只?

师:这道题的意思正如同学们所想的一样,也就是:(课件出示)笼子里有若干只鸡和兔,从上面数有35个头,从下面数有94只脚,鸡和兔各有多少只?

3.揭示课题

师:这就是著名的“鸡兔同笼”问题,也正是这节课要研究的问题。

[评析:教学即对文化的传承与弘扬,数学教学也不例外。课初,教师利用我国古代数学名著中的数学趣题直接导入新课学习,让学生感受到了数学文化的悠久与魅力,激发了探究的兴趣和动机,明确了本节课学习的目的与要求。导入新课的方式多种多样,惟有适合学生学习所需的才是最佳。]

二、合作探索,主动构建

1.出示例1

师:为便于研究,我们可先从简单问题入手,把题中的“35个头”和“94只脚”分别换成“8个头”和“26只脚”,就变成了例1:笼子里有若干只鸡兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?

2.理解题意

师:“从上面数,有8个头;从下面数,有26只脚”分别是什么意思?

生:“从上面数,有8个头”是说鸡和兔一共有8只;“从下面数,有26只脚”是说鸡脚和兔脚数共是26只。

3.探索策略

(1)猜想法

师:鸡和兔各有几只呢?我们不妨猜猜看。

生1:3只兔,5只鸡。

生2:6只鸡,2只兔;7只鸡,1只兔;5只兔,3只鸡。

师:伟大的科学家牛顿曾说:“有了大胆的猜想才会有伟大的发明和发现”。同学们猜的对不对,不妨验证一下。

生1:一只兔4只脚,3只兔就有12只脚;一只鸡2只脚,5只鸡就有10只脚,一共就是22只脚,看来没猜对。

生2:6只鸡、2只兔一共20只脚,也没猜对;7只鸡、1只兔共18只脚,也不对;5只兔、3只鸡共26只脚,猜对了。

师:在4次猜想中,只有1次猜对了,你们觉得用猜想法解决鸡兔同笼问题好不好?

生:不是很容易猜出正确答案,而且当头和脚的只数越多时,越不容易猜出答案。

师:看来,我们还有研究新方法的必要。

[评析:既鼓励学生大胆猜想,又能让学生体会到猜想法的局限性,还能激发学生探索解决问题新策略的兴趣,这样的教学正是新课程所需要的高效教学。]

(3)假设法

①假设全是鸡

师:我们先从表格中右起的第一列,8和0是什么意思?

生:就是有8只鸡和0只兔,也就是假设笼子里全是鸡,这样就有16只脚。

师:实际脚的只数是26只,这样就笼子里就多出了10只脚,该怎么办呢?

生: 用刚才我们发现的规律:在鸡兔总只数不变的情况下,每增加1只兔、减少1只鸡,脚的只数就会增加2只,应该增加5只兔,脚的只数才变成26只,即10里面有5个2。

师:上面的过程能用算式表示出来吗?请同学们试试看。

(学生试着列算式,请一个学生到黑板上去板演。)

师:孩子们都写完了吗?多聪明啊!这是一个同学写的算式,我们来听听他是怎么想的。

生:(对着自己写的算式说想法)假设笼子里全是鸡,就有2×8=16只脚,而笼子里实际有26只脚,这样就多出了26-16=10只脚,而1只兔比1只鸡多2只脚,这样就有10÷2=5只兔,鸡的只数就是8-5=3只了。

师:说得多好哇!为了让大家进一步理解这种方法,下面我们边看图边分析(课件演示)。

师:算出来后,我们还要检验算的对不对,谁愿意口头检验。

生:3×2+5×4=26(只),5+3=8(只)。

师:看来做对了,最后写上答语。

②假设全是兔

师:我们再回到表格中,看看左起第一列中的8和0是什么意思?

生:假设笼子里全是兔。

师:先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?请同桌边讨论边写算式。

(学生讨论写算式,然后指名板演。)

师:这是一位同学写的算式,我们来听听他是怎么想的。

生:假设笼子里全是兔,就有4×8=32只脚,这样笼子里实际的脚数就比假设的脚数少了32-26=6只脚,1只鸡比1只兔少2只脚,这样就有6÷2=3只鸡,也就知道有8-3=5只兔了。

课件演示:“假设法” 中假设全是兔的情况。

师:在列表的基础上,我们想到了两种算术方法。回头看看这两种方法的第一步,一个假设全是鸡,另一个假设全是兔,我们给这两种方法起个名字吧。

生:假设法。

师:我们都认为猜想法和列表法有局限性,假设法还有局限性吗?

生:(讨论后)用假设法应该没有局限性了。

[评析:让学生认识、理解、运用假设法是本节课的教学重点,也是教学难点。为此,教师以表格中数据变化规律为探究基础,以小组合作、师生互动为探究方式,以课件动态演示为探究辅助手段,巧妙地将认知经验和思维过程转化成了数学语言,即数学算式,从而形成了解决问题的全新的一般策略,发展了学生的思维水平和推理能力。]

(4)代数法

师:在解决鸡兔同笼问题时,除了假设法没有局限性外,还有别的也没有局限性的一般方法吗?

生:方程的方法。

师:那么就请同学们用列方程的方法试一试。

(全班尝试,一名学生板演。)

师:我们来听听这个同学的想法。

生:设有x只兔,鸡就有(8-x)只。列出方程4x+2(8-x)=26,解是x=5,即有5只兔,8-3=5只鸡。

师:老师想问你,这里的 4x和2(8-x)分别表示是什么?

生:4x是兔脚的总数,2(8-x)是鸡脚的总数。

师:方程解完了也要注意检验,列方程的解法还有个名字也就叫代数法。

[评析:代数法是学生在五年级已学的旧方法,但运用到解决鸡兔同笼问题之中又是新策略。教师以旧知识和旧方法为基础,放手让学生大胆尝试、自主探究,并抓住其中的疑难点设问,帮助学生真正理解过程、掌握方法、提升技能。]

4.小结方法

师:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?

生:猜想法,列表法,假设法和代数法。

师:要你们解决《孙子算经》中原题,你现在会选用哪种方法呢?

生1:我选择假设法,假设法比较简便。

生2:我选择代数法,代数法也好理解。

师:下面同学们就用自己喜欢的方法解决这个问题。

[评析:在计算教学中,需要算法多样化,更需要算法的优化;同样,在解决问题教学中,需要策略多样化,更需要策略的优化。发散思维与收敛思维应该兼顾并进。但优化并不等于强加,优化也强调自主和需要过程。在这里,教师对此都恰倒好处地予以了关照。]

三、分层练习,深化认识

1.解决原题

生:先独立完成《孙子算经》中的原题,后相互评议。

师:刚才我们用自己的方法解决了这个问题,那么《孙子算经》中又是怎样解决这个问题的呢?同学们想知道吗?我们一起去看看?(课件演示“抬腿法”)同学们古人的解法巧妙吗?如果大家对这种解法感兴趣,课后可以再研究。请同学们想一想,在日常生活中还有哪些情况类似于鸡兔同笼问题?

2.举出实例

生1:买了一些苹果和梨子,告诉苹果和梨子的单价和总数量,还有总的价钱,求苹果和梨分别买了多少千克。

生2:自行车和汽车一共有几辆,一共有多少个轮子,求汽车和自行车分别有几辆。

„„

师:可见生活中类似于鸡兔同笼的问题有很多,这些问题都可用不同的数学方法来解决,课后可用我们喜欢的方法解决这些问题。

3.课堂作业

从第115页“做一做”中自选1~2道题完成。

[评析:《孙子算经》中原题的解决,让学生排除了课初的悬念;作为特殊而巧妙的古代“抬腿法”的课件简介,让学生进一步感受到了我国古代数学的魅力;放手让学生对生活中类似于鸡兔同笼问题的列举,让学生体会到了此类问题在现实中的广泛存在,进而凸显了本节课的学习价值;书面作业的当堂完成和自由选择,足以体现了教学的高效和学生解决问题技能的及时训练与提升,以及对学生学习自主性的尊重。]

[总评:鸡兔同笼问题过去是少数精英学生学习的竞赛内容,如今是全体学生学习的一般内容。如何能较好地达成教学目标,让全体学生学得了、学得好、学得乐,广大教师都在密切关注。从本节课的教学效果来看,学生的表现还的确如此。究其原因,主要是教师特别注重了以下主要方面。

1.注重解题策略的多样

教学中,教师组织学生多手段、多层面、多角度地探索问题,学生先后运用猜测法、列表法、假设法、代数法等分析和解决问题,从而获得了分析问题和解决问题的基本方法和一般方法,体验了解决问题策略的多样性,发展了创新意识。在注重解决问题策略多样化的同时,教师还注重了解决问题策略的自主优化,注重了不同策略间的相互联系和影响,注重了解决问题策略的局限性和一般性。

2.注重思维能力的培养

让学生在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初的随意猜想到表格中的有序猜想,从一般验证到表格中数据变化规律的发现,从列表法很快自然联想到假设法、代数法,学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。

3.注重数学思想的渗透

“数学广角”是人教版课程标准实验教科书中新增的教学内容之一,主要渗透一些基本的数学思想和方法。本节课作为本册教材“数学广角”中的唯一教学内容,也要求教师有意识的向学生渗透数学思想和方法。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”解决问题,渗透了函数的思想和方法;用“算术法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。这些对于学生而言,无疑奠定了可持续发展的坚实基础。

4.注重数学文化的传承

《鸡兔同笼》数学教学反思 篇5

xx年12月3日至4日,全国名师小学数学有效课堂教学观摩会在德州举行,非常感谢学校给我们提供这么好的学习机会。在这次活动中,我领略了几位名师的教学风采,欣赏了他们高超的教学艺术,同时也感受到了他们对数学教学执着的追求,使我受益匪浅。无论是从他们的课堂上还是报告中,我都能深切地体会到数学教学是一门创造性的艺术。

在第一天上午的教学观摩活动中,我们就欣赏到了杭州特级教师刘松的课,让我们一饱眼福。刘老师幽默的语言,独特的教学风格不仅深深地吸引了学生,也吸引了在座的各位老师,当课堂结束,孩子们坐着还不想走的时候,我就被感动了,刘教师正是通过自己的“创造”,让他们“感觉”乘法分配律的本质,为学生展现出“活生生”的思维过程。杨秀清老师的鸡兔同笼以巧妙创新的设计让学生沉浸在探索研究的氛围中,真正达到了其乐融融的课堂效果。张冬梅老师是一个爱数学的老师,是一个爱钻研教材的老师,也正是如此,她可以用创造性的教学设计将抽象的概念具体化,可以在互相地配合与协作中,使师生关系变得融洽,创设民主和谐的学习活动气氛。钱守旺老师在数学教学中,大量地运用丰富多彩的多媒体素材辅助教学,还有他的20个课堂教学主张,都让我大开眼界,数学教学不仅仅是科学,更是一门创造性的`艺术。在深刻理解教材的基础上,创造性的使用教材才是最高境界。数学从表面上看来是枯燥乏味的,然而却具有一种隐蔽的、深邃的美,一种理性的美。数学美是数学科学本质力量的感性与理性的显现,是一种人的本质力量通过宜人的数学思维结构的呈现。是一种真实的美,是反映客观世界并能动地改造客观世界的科学美。最后王彦伟老师的《图形的旋转》将数学的这种美呈现的淋漓尽致,使数学教学过程成为了对数学美的一个反映过程。

小学数学鸡兔同笼教学设计 篇6

人教版《数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。

教材分析:

“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。通过两种方法的探究让学生感知解决问题的多样性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。

3、在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。

教学重点:

1、理解掌握解决问题的不同思路和方法。

2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。

教学难点:

理解掌握假设法,能运用假设法解决数学问题。

教学具准备:

表格

教学过程:

一、导入

师生谈话导入新知

(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。)

二、探究新知

1、质疑:提问:

(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?

(2)鸡和兔相比:什么比什么多?多多少?

(3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?

(4)尝试解决,交流想法;

(5)出示交换已知条件以后的题目。

(设计理念:通过对比两种动物的异同,引出基础题目,让学生经历观察、比较、分析、归纳概括的过程,同时也让学生了解鸡兔腿数数量的差别,每只兔比每只鸡腿数多2,这为下一教学环节,猜测、调整和有序整理探究列表法奠定基础,同时也为探究假设法做好铺垫。)

2、教学例1

(1)出示例题1。

师:请同学们读一读,和前面的题目一样吗?什么地方不一样?

请同学们大胆的猜一猜鸡兔各有几只?猜的时候要注意什么?(共有8个头)

(设计理念:通过对比两题的已知和未知条件的不同培养学生认真审题的良好学习习惯,同时也为后面的猜测、有序整理、验证做好铺垫。)

(2)学生自由猜测。

师:大家的猜测有很多种,听起来有点乱,我们按顺序整理一下(出示表格)。

(3)验证猜想。

(4)观察发现规律。

(5)总结概括:在数学中这种方法叫列表法。(板书)。

(设计理念:通过猜测让学生感知在解决类似问题时这是最基础的方法,然后通过列表法进行验证让学生感知有序整理可以找到问题的答案。最后通过观察、交流探讨发现鸡兔数量的变化引起腿数变化的规律,这样也积累了学生解决问题的经验。)

质疑:如果遇到鸡兔数目多的时候,这种方法行吗?怎么办呢?

3、探讨假设法:

a、假设全是兔。

1师以童话故事的形式引入全是兔的情境。

2集体探究,引导交流。

b、假设全是鸡。

1师再次继续童话故事引入全是鸡的情境。

2小组独立探究交流假设全是鸡的计算方法。

3指名小组展示并叙述计算过程。

4小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。(板书:假设法)

5延伸:其实解决“鸡兔同笼”的问题还有其它方法,同学们如果有兴趣的话下来以后可以了解一下。

(设计理念:通过情境假设,让学生感知数学的趣味性,提高了学生探究新知的兴趣,也为假设法的.探究增添了趣味。同时,学生又经历了自主探究、合作交流的学习过程,体验了解决问题的方法的多样性。为后面灵活的解决问题打下了基础。)

三、练习巩固

出示练习题。

四、课后总结

(设计理念:学生通过练习一方面加强了对列表法、假设法的巩固,另一方面学生运用所学知识灵活的解决问题,增强了学生的应用意识;通过小结收获整理课堂新知,培养学生归纳总结的能力。)

板书设计:

鸡兔同笼

1、列表法

小学数学《鸡兔同笼》教案 篇7

【知识与技能】

理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。

【过程与方法】

经历自主探索解决问题的过程,体验解决问题的策略的多样化;在解决问题的过程中,提高逻辑推理能力,增强应用意识和实践能力。

【情感态度价值观】

感受古代数学问题的趣味性。

二、教学重难点

【教学重点】

掌握运用列表法、假设法解决“鸡兔同笼”问题。

【教学难点】

理解掌握假设法,能运用假设法解决数学问题。

三、教学过程

(一)引入新课

PPT呈现课本的主题图,并提问:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?是什么意思?大家能不能算出各几何呢?

引出课题——《鸡兔同笼》

(二)探索新知

先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下

教师总结学生回答:3只兔子,5只鸡,22只脚;4只兔子,4只鸡,24只脚。均不对

追问:按顺序列表填写一下,应该是各有几只?

得出结论有3只鸡,5只兔子。

进一步追问:还有没有其他方法?

学生活动:前后四人一小组讨论。

教师总结:假设笼子里都是鸡,那么多出来的脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2=5只兔,3只鸡。

(三)课堂练习

PPT再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”

学生活动:学生自主选择喜欢的方法进行解决,一名学生到黑板上板演,其余学生独立完成,在黑板上板演的学生在结束后充当小老师给其他同学进行讲解

(四)小结作业

提问:今天有什么收获?

教师引导学生回顾解决鸡兔同笼问题的方法。

课后作业:思考还有没有其他方式能够解决鸡兔同笼问题?自己设计鸡兔同笼的问题去考考小伙伴或家人。

四、板书设计

六年级数学鸡兔同笼课件 篇8

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用不同方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。

3、经历探索解决问题的方法的过程,进行猜测、转化、列举、假设等数学活动,感受有关数学思想方法,进一步提高逻辑推理能力。

4、通过练习让学生进一步体会这类问题在日常生活中的应用,感受解决一个问题可以有不同的策略和方法。

5、在数学活动中进一步提高与人合作的意识和能力,能表达解决问题的过程,并尝试解释所的结果。

教学重点:

用假设法和方程法来解决鸡兔同笼问题。

教学难点:

掌握用假设法来解决这一相关问题。

教学具准备:

一组一张表格,每人各带两枚1角和5角的硬币.课件一组.

教学过程:

一、创设情境,提出问题

同学们我们中国有几千年的悠久文化,给我们留下许多数学著作和数学趣题.“鸡兔同笼”问题就是其中一道名题.这是从1500多年前孙子算经当中记载的、流传至今的一道数学趣题,我们一起来读读?

二、自主探索,解决问题

(一)、示题,理解题意

这道题目什么意思?说得非常好。今天我们就一起来研究下这“鸡兔同笼”,谁知道鸡兔各有几只呢?哦,这题数字太大了,老师将它的数据改小点,方便我们,研究,这就成了我们今天的例1。(课件)

现在请一位同学读读例1,其他同学边听边思考,从题目中知道了哪些信息?(鸡和兔共8只,鸡脚和兔脚共26只,(用上加和等于这两个词,把这个条件再说一遍,会吗?――-鸡的脚数+兔的脚数=26只)一只鸡2条腿,一只兔4条腿,一只兔的脚比一只鸡的脚多两只)

(二)、探究过程

1、由猜测引入各种方法。

师:是啊,到底鸡和兔各有几只呢?咱们先来猜猜看?(放手学生随意猜)

师:我先猜,我猜笼子里有8只鸡0只兔,你们也猜猜看?

师:谁的猜测是正确的呢?我们要怎样验证?(算一算鸡的脚数+免的脚数会不会26等于只)

可是刚才个人猜一种,有点乱,有没有更好的办法把各种猜测有顺序罗列,然后再从中找出正确的答案呢?

师:哦,这确实是个好方法。    除了这个好方法外,大家认为还有没有其他方法呢?(有)现在请小组长带领组员用你们自己的方法算出鸡兔各几只,请组长取出老师给的材料,看清其中的合作要求,如果有些同学需要的话,可以选用老师给的表格。

2、放手由学生自主探究

3、汇报,分享各种好方法,感受方法的优劣。

老师发现各组长带领组员用了不同的方法来解这道题,哪一组愿意展示一下自己小组的解法?现在我们一起来分享各组同学的好方法吧。

(1)、列表法汇报。

A、这位同学借用了老师的表格,你能你们组是怎么想的吗,你们是怎么填这张表格的?――第一行填鸡的只数,第二行填兔的`只数,第三行填的是鸡的脚数和兔脚数的总和。

B、你们是怎么有顺序列举的?――从8只鸡0只兔开始,渐渐的减少鸡的只数,增加兔的只数,再算出共有几只脚。

C、你们为什么认为这个是准确答案?

——因为3+5共8只,鸡脚+兔脚=26只,符合题意。

D、说得非常好,同学们,像刚才这组同学这样把各种情况有顺序列出来,再从来找出准确答案,这种方法,我们在数学上称为列表法(板书)还有哪些小组是和他们一样用这种列表法的?你们的想法和答案和他们是一样的吗?

E、很好,其实列的这张表格不仅让我们找到正确答案,还给大家提供了许多有用的信息呢!现在老师让它留在屏幕上让大家好好观察,你们从这张表格中发现什么了吗?

——为什么会少两只而不是三只脚?

——少一鸡多一只兔也就是说用一只鸡换成一只兔。

——从全是8只鸡,16只脚开始加两只脚两只脚,直到26只脚。加了几次才对?

——右看从全是兔,32只脚载去吧减两脚减两脚,直到26只脚。减了几次才对?

(2)假设法汇报。

大家的发现非常有价值,说不定对其他组的其他解法还有帮助呢!现在哪一组还愿意来展示一下不同的做法?

A、你们组是怎么做的?你们说老师帮你一步步写出来。但是你必须解释清楚每一步的理由,好吗?

B、同学们听明白吗?这样吧,我们一起来把XX的过程“画”出来,好吗?你再完整地说一遍,我们来画。如果用圆代表头,用小段代表脚

——假设8只全是鸡,共16只脚

——少了10只?为什么会少了?怎么知道是10只?那该怎么办?

——4-2=2,两只两只补上去。为什么是补2只,而不是3只?补完后有什么变化?

——老师我补,补,补,补,补,要补几次?为什么?

——你得到的5只就是谁的只数?假设鸡得到的就是兔的只数!

C、像XX组这样,先假设成全是鸡,再算出差了几条脚,再两只两只补上去,把鸡变成兔,补出几只,兔子就是几只。假设是鸡,得到的只数是兔子的!这种方法我们数学上称为假设法。

D、既然可以假设全是鸡,你们还有什么想法?你知道假设全是兔,得到的是谁的只数?有这样做的小组吗?如果老师要像刚才那样画出来,你会吗?在他画的过程中,同学在脑中试着列出式子,一会儿帮他核对一下对不对。

——全是兔,怎么表示?脚的情况怎么样?怎么办?请学生边看演示边说式子。

(3)方程法汇报

有哪些小组用了以上两种假设法呢?很好。那还有没有其他的解法?

方程确实是非常好的一种解题方法,你能说说你们组是怎么做的吗?

A、你是怎么想的?谁设为X?根据什么等量关系来列式?

B、说说每一项是什么意思?

(三)总结方法,尝试应用,回到原题。

非常感谢同学展示了这么多种方法解决了列1,其实在我们数学中,我们就是要学会用多种方法来解决问题,现在让我们回到1500多年前的这道数字稍大的“鸡兔同笼”,你们会解吗?

老师选了这两个同学的作业,你说说你是怎么解答的?先求?再算?怎么办?得到的是谁的只数?还有哪些同学像他一样用了假设法?

很好,这个同学用了方程,你说说你的想法。还有哪些同学用了这种方法?

有没有用了列表法的?为什么?说明假设法和方程法具有一般性

三、巩固拓展,构建模型,形成技能(我变我变我变变变)

1、在日本的民间,流传着这么一道数学题目——“龟鹤问题”,你觉得它跟我们中国的鸡兔同笼的题目有什么关系?(其实就是鸡兔同笼问题变式来的)谁相当于鸡?几条腿?谁相当于兔?几条腿?

2、这是某班同学的一次出游时,遇到的租船的问题,看到这道题,你们还有什么想法?

3、这是新星小学“环保”小队的植树情况,你们觉得本题跟我们今天学的鸡兔同笼问题有联系吗?

4、学生动手解决,集体展示汇报。

4、比较归纳。

今天我们共同探究解决“鸡兔同笼”问题,其实这只是一个特殊例子而已,它代表的是一种数学思想, 它在日常生活中还存在着许多变式,换成乌龟和仙鹤不同的脚只数,换成大船和小船上坐不同的人数,换成植树时男同学女同学种不同的棵树,它还仍然是鸡兔同笼的问题。其实生活中还存在许多“鸡兔同笼”变式题。

四、生活数学,解决问题

现在老师可要考考你们了,我手上握了5个硬币,全是5角和1角的,一共是1.3元,谁说最快算出各有几个5角和1角的硬币?

小组中都带了5角或1角的硬币吧,现在每人来一次代替老师随便从中取出5个,算出一共有多少钱,考考另外三个同学,看看谁算得又对又快,谁是你们组的冠军.

五、渗透思想,激发民族自豪感

同学们,中国的数学文化伟大而璀璨,杰出的数学家们为我们留下了很多宝贵的文化遗产,数学在古代曾文明于世界,作为炎黄子孙应感到骄傲,也激发我们为祖国日益强大而努力学习..

六、拓展延伸,布置作业

1、打开书本114页去研究。

第九单元《数学广角——鸡兔同笼》名师教学设计片段 篇9

那什么叫“鸡兔同笼”?妈妈分析说:“鸡有1个头,2只脚。兔子有1个头,4只脚。如果有5个鸡头,那么就有10只鸡脚,如果有5个兔头,那么就有20只兔脚。在解题过程中,我们要用到假设法,当我们碰到说鸡兔共35个头,94只脚这样的题目,就可以把鸡兔35个头,改成兔35个头,那么就有140只脚,可这里却说是94只脚,为什么会多出46只脚呢?原来我们还没算鸡呢,每只兔子比每只鸡多2只脚,这样一共多了46只脚,就有46÷2=23(只)。这是鸡,兔子就是12只。”妈妈又说:“这道题出现在我国古代的数学著作《孙子算经》里:‘今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?’”

再来看暑假作业上的题目,对于学会的我来说,已是小菜一碟,我用了不过5分钟就轻松搞定。我是这样答题的:鸡(100×4—320)÷(4—2)

=(400—320)÷2

=80÷2

=40(只)

兔:100—40=60(只)

小学四年级数学鸡兔同笼练习题 篇10

(八)鸡兔同笼问题

第九节 鸡兔同笼问题

基本公式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)

鸡兔同笼问题例题透析1

1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?

解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,也就是244÷2=122(只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式:总脚数÷2-总头数=兔子数.上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.还说此题.如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了 88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只).说明设想中的“鸡”,有34只是兔子,也可以列出公式兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.鸡兔同笼问题例题透析2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?

解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支).答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8×(11+19)=240.比280少40.40÷(19-11)=5.就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3。30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算.实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数19×10+11×6=256.比280少24.24÷(19-11)=3,就知道设想6只“鸡”,要少3只.要使设想的数,能给计算带来方便,常常取决于你的心算本领.鸡兔同笼问题例题透析3 一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?

解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).现在把甲打字的时间看成“兔”头数,乙打字的时间看成“鸡”头数,总头数是7.“兔”的脚数是5,“鸡”的脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题了.根据前面的公式 “兔”数=(30-3×7)÷(5-3)=4.5,“鸡”数=7-4.5=2.5,也就是甲打字用了4.5小时,乙打字用了2.5小时.答:甲打字用了4小时30分.鸡兔同笼问题例题透析4

今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?

解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作“鸡”头数,弟的年龄看作“兔”头数.25是“总头数”.86是“总脚数”.根据公式,兄的年龄是(25×4-86)÷(4-3)=14(岁).1998年,兄年龄是14-4=10(岁).父年龄是(25-14)×4-4=40(岁).因此,当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10)÷(3-1)=15(岁).这是2003年.答:公元2003年时,父年龄是兄年龄的3倍.鸡兔同笼问题例题透析5

蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只? 解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成“8条腿”与“6条腿”两种.利用公式就可以算出8条腿的 蜘蛛数=(118-6×18)÷(8-6)=5(只).因此就知道6条腿的小虫共18-5=13(只).也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式蝉数=(13×2-20)÷(2-1)=6(只).因此蜻蜓数是13-6=7(只).答:有5只蜘蛛,7只蜻蜓,6只蝉.鸡兔同笼问题例题透析6

某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人? 解:对2道、3道、4道题的人共有52-7-6=39(人).他们共做对 181-1×7-5×6=144(道).由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)÷2=2.5).这样兔脚数=4,鸡脚数=2.5,总脚数=144,总头数=39.对4道题的有(144-2.5×39)÷(4-1.5)=31(人).答:做对4道题的有31人.鸡兔同笼练习题

1.鸡兔共100只,共有脚280只,鸡兔各有多少只?

2.在一棵松树上有百灵鸟和松鼠共15只,总共有48条腿,百灵鸟和松鼠各有多少只?

3.56个学生去划船,共乘坐10只船恰好坐满,其中大船坐6人,小船坐4人,大船和小船各几只?

4.一辆卡车运矿石,晴天每天可运16次,雨天每天只能运11次,它一连运了17天,共运了222次,问这些天中有多少天下雨? 5.某食堂买来的面粉是米的5倍,如果每天吃30千克米,75千克面粉,几天后米吃完了,而面粉还剩下225千克,这个食堂买来的米和面粉各多少千克?

6.鸡和兔放在一只笼子里,共有29个头和92只脚,那么笼中有多少只兔?

7.15元钱买50分邮票和20分邮票共63张,那么20分邮票与50分邮票相差多少张?

8.人民路小学的教师和学生共100人去植树,教师每人栽3棵树,学生平均每3个人栽1棵,一共栽100棵。那么,有多少名学生参加植树?

9.张三买了两种戏票一共30张,付出200元,找回5元。甲种票每张7元,乙种票每张6元。张三买了多少张甲种票?

10.杨帆每学期的21次测验成绩全是4分或5分(老师采用5分评分制)。总共加起来是100分。他得了多少次5分? 11.给货主运2000箱玻璃。合同规定,完好运到一箱给运费5元,损坏一箱不给运费,还要赔给货主40元。将这批玻璃运到后收到运货款9190元,损坏了多少箱?

12.20分和50分的邮票共36枚,共值9元9角,那么两种邮票分别有多少枚?

13.有一堆土方共400方,有大小两辆汽车,大车一次拉了7方,小车一次拉4方,运完这堆土共拉了70车。那么大车拉了多少次? 14.电视机厂每天生产电视机500台,在质量评比中,每生产一台合格电视机记5分,每生产一台不合格电视机扣18分。如果四天得了9931分,那么这四天生产了多少台合格电视机?

15.松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个,它一连几天采了112个松子,平均每天采14个,那么这几天当中共有几个雨天?

16.有大小拖拉机共30台,今天一共耕地112公顷,大拖拉机每天耕地5公顷,小拖拉机每天耕地3公顷,大小拖拉机各有几台? 17.现有大小塑料桶共50个,每个大桶可装果汁4千克,每个小桶可装果汁2千克,大桶和小桶共装果汁120千克。问大小塑料桶各有多少个?

18.某运动员进行射击考核,共打20发子弹。规定每中一发记20分,脱靶一发扣12分,最后这名运动员共得240分。问这名运动员共打中几发?

19.某校在组织篮、排球联赛之前一次拿出720元人民币,准备购置一些比赛用球。已知一个篮球比一个排球要贵20元,6个篮球和8个排球的价格相等。请你算一算,如果用这些钱都买篮球能买多少个?如果都买排球能买多少个?

20.蜘蛛有8条腿,蜻蜒有6条腿和2对翅膀,蝉有6条腿和一对翅膀。现有这三种小虫16只,共有110条腿和14对翅膀。问:每种小虫各几只?

21.搬运1000只玻璃瓶,规定安全运到1只可得搬运费3角,但打碎1只,不但不给搬运费,还要赔5角。如果运完后共得运费260元,那么,搬运中打碎了几只玻璃瓶?

《鸡兔同笼》教学设计 篇11

——人教版小学数学六年级上册

教学目标:

1、通过游戏让学生初步感知腿与个数(头)的关系,从而实现课堂教学的有机生成。

2、由浅入深带领学生了解鸡兔同笼问题的本质。在学生解决问题中,重点理解列表法在解决问题中的实效性。

3、解决问题中通过师生互动,感受解决数学问题方法的多样性。培养学生合作、质疑、探究的学习品质。

4、通过学习对学生进行爱国主义、民族自信心的教育。激发学生的学习动力。教学重点:培养学生迁移类推,理解掌握运用列表法解答应用题的能力。教学难点:选用合理的方法,较快解决问题。教具准备:动物卡片(鸡、兔、龟、鹤)、投影仪

教学方法:引导学生在迁移类推、尝试探究中解决问题。学习方法:通过想、说、尝试、讨论等形式参与课堂教学。教学过程:

一、游戏探路,理解头与腿的关系

1、同学们一定知道这首儿歌。让我们来一起听听、唱唱。【PPT: 儿歌《青蛙歌》】 【PPT】:儿歌《青蛙歌》 一只青蛙一张嘴,两只眼睛四条腿,扑通一声跳下水。

两只青蛙两张嘴,四只眼睛八条腿,扑通、扑通跳下水。

„„

设计目的:通过儿歌,唤起孩子们儿时的记忆,引起学习兴趣。

2、同学们唱得真不错。下面我们先来填填空: 一只青蛙,()张嘴,()眼睛,()条腿。

3、下面我们按这个模式,分组接着往唱出2只、3只、4只、5只它们的个数与嘴、眼、腿的关系,我来比一比哪组唱的最好。预备,开始------

3、同学们真是厉害,可是,咱们反过来说,不知你们行不行?敢不敢来比一比。回答的好的有奖哟。

【PPT】:

1、8条腿,()只青蛙,()张嘴.2、10只眼睛,()只青蛙,()条腿。

3、16条腿,()只眼睛,()只青蛙。

„„

设计目的:通过游戏,使同学们了解头与脚的关系,同时通过比赛的设计,进一步的激发学生的兴趣和斗志。

4、这青蛙真是有趣,不知谁发现了这里面有什么数学知识吗?

设计目的:回答不求答案的唯一性,同学们可以说,每增加一只青蛙,就会增加一个脑袋,两只眼睛,四条腿;也可说脑袋数=只数×1,眼睛数=只数×2,腿数=只数×4得到等。其目的只是训练学生观察能力和发散思维。

5、你们真厉害,看来青蛙难不住你们了,可其它动物就不一定了,想看看是哪些动物吗? 投影出示:

1、2只兔子,()个头,()条腿。

2、4只鸡,()个头,()条腿。

3、20条腿,()只兔,()个头。

4、1只鸡3只兔,共()条腿。5、6条腿,是()只鸡和()只兔。6、12条腿,是只鸡和()只兔。【答案不唯一,生讨论为什么不唯一,得出结论总只数不确定】 7、5个头22条腿,()只鸡,()只兔。【自主探究后再讨论】

设计目的:通过逐步加深的引导,使学生初步形成如何去猜测正确的答案的方法。也使学生的探索兴趣不减少,以利于下一步的学习。

三、深化探究,总结规律

1、同学们,真不简单。老师还有更难的问题,你们想不想接受挑战。

投影出示:7个头,18条腿,有()只鸡,()只兔。(请把你的探究过程,写在本子上,以便于下一步的交流。

2、学生自主交流探究,教师引导学生用多种方法解答。

3、学生汇报,可以画图,可以列表,可以用算术方法,也可以用方程,教师相机指导,我们解决问题的方法越多越好,还是会一种就满足了。(生说)我们再学一种解决问题的方法。

设计目的:给学生充分思考时间,让学生体会成功的乐趣,更让学生认为是自己想出来的,而不是老师讲出来的,这样学生才能真正的体会到成功的喜悦,也才能真正成为学习的主人。分别让学生展示:画图法、列表法、算术法、列方程等方法。

并让讲解算术法和列方程的同学详细的讲解一下,他们的思考过程,并请同学们对不理解的地方进行提问。

设计目的:让一部分学生充分体验成功的乐趣,同时让学生引导学生,他们会更大胆,回答者使用的是孩子们自己的语言,比专业的数学语言更容易理解。当然作为老师要及时的加以引导。

4、出示例题:鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?

5、学生读题后,至少两种方法解答。

6、师巡视,相机指导。做完后展示典型错误,让同学们来说一说错在哪儿,为什么错了,这种面对面的交流能让同学们进一步加深理解。

四、知识拓展,灵活运用

1、同学们表现的真不错,希望同学们在解决问题时灵活运用我们掌握的方法。比如解决刚才的问题,如果题目没有要求,就选择最擅长的方法,这样就提高了解题的效率。如果题目有要求,就必须按要求做。用列表法除了能解决鸡兔同笼问题,还能解决生活中的什么问题?(生说)下面我们用自己的方法,尝试解决这样的题。

投影出示:

1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少枚?

(投影出示:)大小卡车往城市运29吨蔬菜,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?(这道题答案不唯一,如果学生没想到,要引导。)

2、做完这两道题,同学们有什么感受。(生谈)

四、全课小结,升华情感

1、今天我们通过《鸡兔同笼》问题,学习了用列表法解决问题,同学们又多了一种解决问题的方法。《鸡兔同笼》这个问题产生于一千五百年前,后来传到日本,日本人把鸡改为鹤,把兔改为龟(出示龟兔图),日本叫“龟鹤问题。”著名数学著作《孙子算经》里有一道题:投影出示:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何? 看谁能用最快的速度做出这道题,针对学生完成情况小结,鼓励学生课后至少用3种方法完成这道题,好吗?

2、同学们,这节课我们和知识对话,和古人对话,探讨了鸡兔同笼问题,你有什么收获。

3、希望同学们做生活的有心人,也能发现生活中的数学问题,像祖先一样为人类数学的发展留下辉煌的一笔。

五、作业设计(分层作业)

1、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?

2、有100枚硬币,把其中2分硬币全换成等值的5分硬币,硬币总数变成79个,然后又把其中的1分硬币换成等值的5分硬币,硬币总数变成63个.求原有2分及5分硬币共值多少钱?

上一篇:大班语言教案:顽皮的小雨点下一篇:百年孤独概述