一元一次方程实际应用(精选8篇)
今天上午听了郭老师的一堂关于方程在实际生活中的应用的数学课,感触颇深。其中不乏亮点。
一、本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力。
二、数学来源于生活,反过来指导我们的生活。在教学过程中,所讲的三个例题,都与我们的生活息息相关,无论是手机话费的问题,还是游泳是否购买月票的问题,抑或是在商店购买会员卡的问题,无不充斥着生活的气息。对于这样的问题,学生很容易理解,同时也指导着他们的生活实际,培养学生建立方程模型来分析、解决实际问题的`能力以及探索精神、合作意识。
三、本节课根据七年级学生的心理特征和认知特征,采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识。教师参与、适当提示;师生互动、得到决策.这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成.这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验。
在学习一元一次方程的过程中,有的同学有时会产生困惑, 或遇到一些困难。其实,我们只要了解一元一次方程的特点,了解其解题步骤,许多困难会迎刃而解。
列一元一次方程解决实际问题的一般步骤,一般可概括为“审、设、找、列、解、答”六步。即:①第一步,审:审题,分析题中已知什么,要求什么。②第二步,找:找出能够表示应用题全部含义的一个相等关系,根据实际情况来定,先用语言描述写到一边。③第三步,设:一般求什么就设什么为未知数,有时根据等量关系必须先间接设一个未知数,设时一般带单位。④第四步,列:把等量关系用含有未知数的方程表示,注意单位互化。⑤第五步,解:解所列的方程,求出未知数的值。⑥第六步,答:作答前先检验所求出的解是否合乎实际意义,且是不是方程的解,再写答(包括单位名称)。
一、商品利润问题
在这类问题中,要明确几个概念:进价和标价是不同的,标价往往比进价高许多,商家一般是把进价按一定比例提高后,作为标价。为了吸引顾客购买,他们有时又打“几折”销售,而所谓“几折”就是按标价的百分之几十卖出。如打七折也就是售价变为标价的70%,由于标价往往高于进价(成本价),故打折后一般商家不会赔本。这类问题的等量关系是:商品的售价 = 商品的标价×折扣率;商品的利润 = 商品的售价 - 商品的进价;利润率 = 利润÷成本。
例1:某家电城将某品牌的超级VCD按进价提高35%后,打出“九折酬宾,外送50元”的广告,结果每台仍然盈利208元。那么,每台超级VCD的进价是多少元?
分析:首先要弄清楚标价是按进价提高了35%,即标价 = 进价×(1+35%),售价是标价打九折后减去50元。其方程模型是:超级VCD的售价 - 超级VCD的进价 = 超级VCD的利润。解:设每台超级VCD的进价是x元,则 [0.9 (1+35%)x-50]-x=208,解得x=1200。答:每台超级VCD的进价是1200元。
二、利息问题
这类问题的基本等量关系是:利息 = 本金×利率×期数,其中期数是指存入的时间,本金 + 利息 = 本息和。
例2:某年1年期储蓄年利率为1.98%,所得利息要交纳20% 的利息税。某储户有一笔1年期定期储蓄,到期纳税后得利息396元,问储户有多少本金?
分析:本题中的数学模型是利息减去交纳的税金后得现金是396元,若设储户有本金x元,则年利息为1.98%元,交纳税金为20%×1.98%x元,故根据题意可进行解答。
解:设储户有本金x元,则1.98%x-20%×198‰=396,解得x=25000。答:储户有本金25000元。
三、工程问题
这类问题的基本等量关系是:工作量 = 工作效率×工作时间。一般把总工作量看作“1”,各个工作量之和等于总工作量。
例3:一项工作,甲独立完成要3小时,乙独立完成要5小时, 若两人合作完成这项工作的4/5,需要几小时?
分析:本题中有三个基本量:甲、乙独立完成此项工作的时间和两人合作完成的工作量。甲、乙两人完成的工作量之和等于两人合作完成的工作量,这是解题的关键所在。
解:设合作完成这项工作的4/5需要x小时,由题意,得 (1/3+1/5)x=4/5,解这个方程,得x=1.5。答:需要1.5小时完成。
四、行程问题
这类问题是研究在匀速运动条件下的路程、速度和时间三个量之间的关系。这里有一个固有的相等关系:路程 = 速度×时间。这类问题又分为相向而行(即相遇问题)、同向而行(即追及问题)和反向而行等常见类型。
例4:甲、乙两人在笔直的跑道上练习长跑,两人相距100米, 甲的速度为7米 / 秒,乙的速度为6米 / 秒。①若两人同时出发, 相向而行,经过多长时间相遇?②若两人同时出发,同向而行,经过多长时间甲追上乙?③若两人同时出发,反向而行,经过多长时间两人相距360米?
分析:可画线段图,找等量关系。①画出问题1的线段分析图 (篇幅所限,图略),得等量关系:甲走的路程 + 乙走的路程 =100米。②画出问题2的线段分析图(篇幅所限,图略),得等量关系: 甲走的路程 - 乙走的路程 =100米。③画出问题3的线段分析图 (篇幅所限,图略),得等量关系:甲走的路程 + 乙走的路程 +100米 =360米。
在行程问题中,只要画出了线段分析图,就可以根据图示列出方程解决实际问题了。
1. 掌握把实际问题转化为数学问题,建立数学模型的解题方法,同时能够对所求出的方程的解进行分析判断;
2. 通过探究球赛积分表问题,渗透数学建模思想;
3. 经历数学建模的过程,提高处理图表信息、分析问题、解决问题的能力,增强创新精神和应用数学的意识,认识到数学的科学价值和应用价值.
二、 探究过程设计
问题1 通过观察你能在这张表中获取到什么信息(能否利用表格信息得知积分规则)?
由表中最后一行可以看出,负一场积1分,再利用第一行的数据可以算出胜一场积2分. (如果不能顺利算出积分规则,应注意最后一行的信息能传递给我们什么信息,怎样利用其他行所给数据,根据等量关系可以最终算出积分规则吗?)
【意图】引导学生运用表格信息帮助自己解决问题,合理梳理表格中所隐含的信息,从而找到对自己有价值的信息,进而使问题得解.
用不同行的数据计算,所得结果相同吗?(相同). 那么这个结果是可以通过验证符合事实的.
小结:通过钢铁队的积分情况,很明显地看出负一场的积分,又通过其他任意一队的积分情况可以算出胜一场的积分,由此看出,我们要善于发现表格的特殊之处所传达的特殊的或重要的信息.
问题2 我们通过观察得出了积分规则,请同学们继续观察,能否写出总积分与胜负场数之间的关系?
一个队的总积分=胜1场得分×胜场数+负1场得分×负场数(得到需要的重要等量关系,它是后续问题的研究基础).
小结:由这个等量关系我们看出,总积分与胜、负场数有着紧密的联系,同时只要胜场数确定了,那么负场数通过(14-m)的关系也确定了,所以也可以说总积分与胜场数有着紧密的关系.
【意图】由生活中的常识性问题抽象出等量关系,避免学生感到数学建模的抽象性,同时渗透应用数学的意识,提高应用能力,这种处理方法也符合7年级学生的认知,使学生更易于接受,降低了数学抽象性的难度.
问题3 若一个队胜了m场,能否用含m的式子表示总积分?
解:一个队胜了m场,则负(14-m)场,那么,总积分=2m+(14-m)=m+14.
【意图】完成课本第一问,也是本节课的关键一问,实现了第一个难点的突破,同时第一问的思考内容与第二问紧密相关,顺利解决第一问是完成第二问的保障.
问题4 如果一个队的总积分是19分,你能算出它胜了多少场吗?(5场)
小结:到此我们已经可以根据胜场数算出一个队的总积分了,当然我们也可以通过一个队的总积分算出它的胜场数,在这个等量关系中有两个量(总积分、胜场数)是不确定的,但是当我们给定其中一个量的值时,比如总积分为19,那么等式就变为19=m+14,那么m作为我们要求的未知量,这个等式就是我们所学的一元一次方程,m有唯一解. 反过来,当我们胜场数是确定的,那么总积分也是唯一解.
问题5 某队的胜场积分能等于它的负场积分吗?请列式说明. (如果学生有困难,引导学生思考题目中是否隐含了等量关系?利用这个等量关系可以列出方程吗?)
(小组讨论,代表发言,使用学案,展示学案)
解:不能,设一个队胜了x场,则负了(14-x)场.
列方程得2x=(14-x),解得x=14/3 .
因为x(所胜场数)的值必须是整数,所以所得解不符合实际意义,由此判定没有某队的胜场积分能等于它的负场积分.
小结:用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.
【意图】要用反证法检验方程的结果是否符合实际,这是一种常用数学方法
小结:1. 生活中数据信息的传递形式是多样的.
2. 解决有关表格问题,首先根据表格中给出的有关信息,找出数量间的关系,再运用数学知识解决有关问题.
3. 利用方程不仅可以求得实际问题的具体数值,还可以进行推理判断.
4. 运用方程解决实际问题,要检验方程的解是否符合实际意义.
三、 拓展与提高
问题6 请大家思考如果表格中钢铁队的积分情况没有给出(即,没有最后一行信息),你还能求出积分规则吗?(积分规则涉及两个未知量,考虑设两个未知数. )
【分析】可以设胜一场积x分,负一场积y分. 设两个未知数时我们需要列几个方程?(两个)你能根据表格数据列出两个方程吗?
这是个方程组,是几元几次的呢?(二元一次方程组)解法我们以后再讲.
练习:足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中共比赛14场,现已比赛了8场,输了一场,得17分.请问:
(1) 前8场比赛,这支足球队共胜了多少场?
(2) 这支球队踢满14场比赛最高能得多少分?
(3) 通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.那么,在后面的6场比赛中,这支球队至少还要胜几场,才能达到预期目标?
(2) 35分.
后面6场全胜得分最高,所以:17+6×3=35.
(3) 3场.
小结:这样我们就知道了在解决实际问题时不但可以用一元一次方程的知识,还可以用方程组,甚至还有其他的方法,让我们拭目以待吧!
(作者单位:江苏省如皋市实验初级中学)
销售问题是我们生活中经常遇到的问题,学生比较了解,但对其中的一些概念并不是很理解,因此教学中应该对这些概念作出解析。比如什么是进价,什么是售价,什么是利润与利润率等等,教学中必须让学生搞清楚,否则进难于进行教学。对于公式:
利润=售价—进价、利润=进价×利润率。教学中必须举例说明,才能让学生理解。
对于例题方面,学生对于盈利25%是什么意思?是表示进价的25%还是售价的25%?有的学生不理解。同样亏损25%是什么意思也不太理解,教师在此必须作出解析。否则教学效果很不理想。因此教学中要预见到学生什么地方会不理解,这是我们必须研究的一个方向。只有这样为学生所想,帮他们解决疑问教学才能有效果。
总的来说,按上面的设计,学生的学习效果的还可以,但对一些变式问题学生的应变能力还不够。
二、教师的教案设计方面
本节课的设计能吸引学生的兴趣,从开头的幻灯片的有关的销售广告语“跳楼价、大放血、5折酬宾、入手,能吸引学生的兴趣。这是本节课的一个兴趣点,在课件中,利用图文并冒的方法让学生感觉到生活离不开数学,总的来说学生比较容易接受。
三、不足的方面
案
一、教学目标
【知识与技能】能利用方程解决实际问题。
【过程与方法】通过分类讨论将电话计费问题转化为方程问题、解决方程问题、利用方程问题的结论解释各个分类区间的花费变化情况。
【情感态度与价值观】体验方程模型解决问题的一般过程,体会分类思想和方程思想,增强应用意识和应用能力。
二、教学重难点
【重点】建立电话计费问题的方程模型。
【难点】建立电话计费问题的方程模型。
三、教学过程
导入新
前面我们已经对一元一次方程解决实际问题进行了初步的探究,接下来我们继续研究一元一次方程在实际生活中的应用。
2对问题的初步认识
问题1:下面表格给出的是两种移动电话的计费方式:
黑龙江教师招聘考试教学设计:《实际问题与一元一次方程》
你了解表格中这些数字的含义吗?
师生活动:教师提问,学生思考,回答。
教师对回答的方式适当给予提示,如“月使用费的比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过计算回答相应的费用。
问题2:你觉得哪种计费方式更省钱呢?
师生活动:教师提出问题,学生思考回答。根据学生的回答情况,教师适当加以引导:
若学生回答计费方式以一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;
若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的关键点、分类后各区间的变化趋势作进一步的探究。
讨论后安排学生再次思考,可适当讨论。
3对问题的深入探究
问题3:通过大家的讨论,你对电话计费问题有什么新的认识?
师生活动:教师提出问题,学生思考回答。根据学生的回答教师适当加以归纳引导:
若学生还没有明确的分类,则引导学生思考“你可以确定哪一个时间区间内两种计费的比较结果?”,从而引导学生进行分类;
若学生已经对问题进行了分类,则追问“你为什么这样分类?”以及“在每一个时间区间内你是怎么分析的?”从而引导学生更合理地解决问题。
(一)-------传播问题和比赛问题
列方程解应用题的一般步骤:(1)__________(2)__________(3)__________(4)__________(5)__________(6)__________。
1、有一人患了流感,经过两轮传染后共有
点121人患了流感,(1)每轮传染中平均一个人传染了几个
人?
(2)如果按照这样的传染速度,三轮传
染后有多少人患流感?
2、有一人患了流感,经过两轮传染后共有
100人患了流感,那么每轮传染中平均一个人传染的人数是_________,如果不及时控制,第三轮将又有_________人被传染?
3、某种植物的主干长出若干数目的枝干,每个枝干又长出相同数目的小分支,若小分支、枝干和主干的总数是73,则每个枝干长出_________个分支?
4、某生物实验室需培养一群有益菌。现有
60个活体样本,经过两轮培植后,总和达到目24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌。(1)每轮分裂中平均每个有益菌可分裂
出多少个有益菌?、(2)按照这样的分裂速度,经过三轮后
有多少个有益菌?
5、(1)参加一次足球比赛的每两队之间都
进行两次比赛,共要比赛90场,共有多少个队参加比赛?
(2)参加一次篮球比赛的每两队之间都进行两次比赛,共要比赛15场,共有多少个队参加比赛?
6、生物兴趣小组的同学将自己制作的标本
向本组其他成员各赠送一件,全组共互赠了182件,则该兴趣小组共有多少名同学?
7、在某次聚会上,每两个人都握了一次手,所有人共握手10次,则有多少个人参加这次聚会?
8、某航空公司有若干个飞机场,每两个飞
机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场多少个?
(一) 数学模型:数学模型就是把实际问题用数学语言抽象概括, 再从数学角度来反映或近似地反映实际问题时, 所得出的关于实际问题的数学描述, 数学模型的形式是多样的, 它们可以是几何图形, 也可以是方程式, 函数解析式等等.
(二) 数学模型方法:数学模型方法, 是把实际问题加以抽象概括, 建立相应的数学模型, 利用这些模型来研究实际问题的一般数学方法.
(三) 求解实际问题的基本步骤:以函数为数学模型解决实际问题是数学应用的一个重要方面, 主要研究它的定义域、值域、单调性、最值等问题。
(四) 使用数学模型解决实际问题的基本步骤如下
1、审题:通过阅读, 理解关键词的意义, 明确变量和常量, 理顺数量关系, 弄清题意, 明白问题讲的是什么。
2、建模:将文字语言转换成数学语言, 用数学式子表达。
数量关系, 利用数学知识建立相应的数学模型。
3、求模:求解数学模型, 得到数学结论。
4、还原:将用数学方法得到的结论, 回归实际, 还原为实际问题的意义。
下面是几个一元二次函数实际应用的典型例题的详解
例1、.某学校先准备了可以建24米长的墙的建筑材料, 想利用一面墙设计修建如图所示的两矩形花台ABEF, FECD (其中墙EF共用) 。设矩形ABCD的宽AB为x米, 面积为S平方米:
(1) 写出S与x的函数关系式及x的取值范围;
(2) 若矩形ABCD的面积为45平方米, 求AB的长度;
(3) 能修建比面积为45平方米更大的矩形花台吗?如果能, 求出此最大
面积;如果不能, 请说明理由。
分析:根据矩形的面积公式建立起函数关系式。
例2、某旅行社准备在某地组织旅游团到北京观看奥运会, 每人往返机票食宿和门票等费共需3000元, 如果把每人收费标准定为4000元, 则只有20人参加旅游团;高于4000元时, 没有人参加。如果每人收费标准从4000元每降低100元, 则参加旅游团人数就增加10人, 试问:每人收费标准定为多少时, 该旅行社所获利润最大?此时参加旅游团人数是多少?
分析:关健词有利润、每人收费标准、参团人数。每人收费标准在4000元的基础上下降, 参团人数在20人的基础上增加。
通常:利润=销售总额-成本
该题中:利润=每人收费标准×参团人数-3000×参团人数
答:每人收费标准定为3600元时, 该旅行社获利最大, 此时参团人数为60人。
例3、某地区有一种可食用的野生菌, 上市时, 某商家按市场价格每千克30元收购了1000千克存放入冷库中。据预测, 该种野生菌的市场价格每天每千克上涨0.5元;但冷冻存放这批野生菌时每天需要支出各种费用合计230元, 而且这类野生菌在冷库中最多保存160天, 同时, 平均每天有3千克的野生菌损坏不能出售。
(1) 设X天后每千克该野生菌的市场价格为Y元, 写出Y与X之间的函数关系式, 并写出X的取值范围;
(2) 若存放X天后, 将这批野生菌一次性出售, 设这批野生菌的销售总额为P元, 写出P与X之间的函数关系式;
(3) 该商家将这批野生菌存放多少天后出售可获得最大利润W元?
(利润=销售总额—收购成本—各种费用)
所以该商家将这批野生菌存放60天后出售可获得最大利润5400元。
例4、有一种螃蟹, 从海上捕获后放养最多只能活两天, 如果放养在塘内, 可以延长存活时间, 但每天也有一定数量的蟹死去, 假设放养期内蟹的个体重量保持不变, 现有一经销商, 按市场价格收购了这种活蟹1000千克放养在塘内, 此时市场价格为每千克30元, 据测算, 以后每千克活蟹的市场价格每天可上升1元, 但是放养一天需各种费用支出400元, 且平均每天还有10千克蟹死去, 假定死蟹均于当天全部售出, 售价为每千克20元。
(1) 设天x后每千克活蟹的市场价格为P元, 写出p关于x的函数解析式。
(2) 如果放养x天后将活蟹一次性出售, 并记1000千克蟹的销售额为Q元, 写出Q关于x的函数解析式。
(3) 该经销商将这批蟹放养多少天后出售, 可获得最大利润是多少?
解: (1) 由题意得P=30+x
(2) 由题意得x天后, 活蟹有1000-10x (千克) , 活蟹的单价为, 死蟹有10x千克, 死蟹的单价为20元,
则1000千克蟹的销售额为Q= (1000-10x) (30+x) +20×10x
(4) 由题意得:利润=销售总额-收购成本-费用
所以放养25天后出售, 可获得最大利润是6250元。
例5、一场足球比赛中, 一球员从球门正前方17m处将球踢起正射向球门, 球飞行路线为抛物线, 当球飞行水平距离为10m时, 球到达最高点, 此时球高4m。在球门正前方1m处只有一名身高1.85m的后卫, 他的最大弹跳高度为0.8m, 若此时该后卫起跳及时, 他能否拦住球?为什么?若没有这名后卫, 球能否射进球门 (在不考虑守门员等情况下) ? (球门高2.44m)
解:建立如图所示的直角坐标系,
后卫拦球的最高高度为1.85+0.8=2.65>2.56
所以该后卫起跳及时, 能拦住球。
例6、国家收购某农副产品的单价为1.2元/公斤, 预计可收购50吨, 其所得税征收标准为8%, 为了减轻农民负担, 国家决定将所得税税率下浮x个百分点 (即降低x%) , 这样, 实际收购量可比预计收购量增长2x个百分点。
(1) 求出在实际收购量比收购量增长2x个百分点的条件下, 国家应征收的所得税税额y (单元:元) 与x的函数关系式。
(2) 若要使实际收购时的所得税不低于预计收购时收取的所得税的78%, 那么, 税率降低值x应控制在怎样的范围内?
一、 名题欣赏:李白买酒
诗仙李白嗜酒、豪放、旷达,斗酒诗百篇,是唐代“饮中八仙”之一.民间流传李白买酒的歌谣:
李白街上走,提壶去打酒;
遇店加一倍,见花喝一斗;
三遇店和花,喝光壶中酒.
试问酒壶中,原有多少酒?
【分析】设壶中原有x斗酒.
一遇店和花后,壶中酒为:2x-1;
二遇店和花后,壶中酒为:2(2x-1)-1;
三遇店和花后,壶中酒为:2[2(2x-1)-1]-1.
因此,有关系式:2[2(2x-1)-1]-1=0;
解得:x=8/7.
二、 名题欣赏:九章算术·共买鸡
今有共买鸡,人出九,盈十一,人出六,不足十六,问人数、物价各几何?
【分析】设有x人共同买鸡,则共用钱可用二个式子表示,一个是9x-11,另一个是6x+16,则得方程9x-11=6x+16,解得x=9,9x-11=70,答:人数9,鸡价70钱.
三、 名题欣赏:四元玉鉴·及时梨果
九百九十九文钱,及时梨果买一千,
一十一文梨九个,七枚果子四文钱.
问:梨果多少价几何?
此题的题意是:用999文钱买得梨和果共1 000个,梨11文买9个,果4文买7个.问买梨、果各几个,各付多少钱?
答:买梨付款总价803文,买果付款总价196文.
许多数学问题,像陈年老酒,历久弥香,背后展现的是丰富的数学文化.
(作者单位:江苏省如皋市实验初级中学)
【一元一次方程实际应用】推荐阅读:
《实际问题与一元一次方程》教学设计06-10
《实际问题与一元二次方程》说课设计01-24
九年级《实际问题与一元二次方程》说课稿06-06
9.2实际问题与一元一次不等式06-28
一元一次方程应用学案01-02
一元二次方程应用教学反思01-19
4.4一元一次方程的应用例07-21
一元一次方程组的应用评课稿12-13
《一元二次方程的应用》教学设计12-06
一元一次不等式的应用01-29