双曲线的简单几何性质的教学反思

2025-01-01 版权声明 我要投稿

双曲线的简单几何性质的教学反思(共5篇)

双曲线的简单几何性质的教学反思 篇1

双曲线的简单几何性质教学反思

圆锥曲线是高考的热点和高考试题的压轴题,主要是对圆锥曲线几何性质的考查,因此,课堂教学时应重视对圆锥曲线几何性质的归纳和运用.有效教学要在学生已有认知基础上,寻找学生最近发展区促进学生更深层面上思维和理解。本节课学习活动是以学生对椭圆几何性质的认知基础上进行的,利用方程讨论曲线的性质的这种方法,学生在学习讨论椭圆的性质时已经尝试探讨过,所以这节课主要是对照椭圆几何性质,让学生通过类比的思想方法得出双曲线的几何性质.充分调动学生学习的积极性,使学生更清楚地区分两者曲线,找出“共性”和“个性”.有效教学要使学生建立良好的知识网络体系。良好知识结构应把知识及知识形成发展的脉络及蕴含的数学思想方法、知识间的内在联系、结论的推导证明线索融合成一个有机整体,也只有这样的知识才有利于转化成长期记忆,才能够在需要时被自如调用。本课突出展现了双曲线几何性质的获得过程.当然在课堂教学的实际活动中,有一些不尽人意,一是与椭圆的类比不到位,二是知识网络的形成欠缺,三是由于应用多媒体,客课容量是增加了,但个别知识容易造成一带而过,引不起足够重视,四是时间分配上存在误差,练习时间减少。

在教学活动中,学生的思维活动主要是在问题的驱动下进行的。能有效促进学生数学思维发生的问题应具备如下特点:(1)从学生知识可接受性的实际出发,确定合理的难度和适当的思维强度,即,问题使学生处于似会非会、似能解决又不能解决的感觉。(2)问题要有利于引起学生的认知冲突和学习心向,激发学生学习兴趣,促进学生积极参与。(3)问题的序列设置要使数学内容的呈现合理、自然,有情理之中的感觉,要有利于学生领悟数学的本质,提炼数学思想方法,灵活运用所学。(4)从数学方法论的角度出发,问题要具有启发性,如:你认为该问题可能涉及哪些知识?解决该问题需要什么条件?我们还疏漏了什么没有?…….促进学生自己提出问题、发现问题,对数学有所感悟,实现学生思维深度参与的自动发生机制。(5)问题要有利于引领、促进学生有效反思自己的学习行为,及时整理、内省自己的思维过程,提升对知识、方法的认识。如:问题是怎样得到解决的?使用了哪些思维方法?该问题的解决方法有推广价值吗?可推广到哪些方面?……..这在实际教学活动确实有所体现,但是还有一定的欠缺,这需要在教学实践中不断的去摸索经验,此外在教学设计中还应更加细致,预先设置的更细致些,会有更好的效果。

双曲线的简单几何性质的教学反思 篇2

162016202.渐近线为3x±2y=0,且与x2-y2=0无公共点的双曲线方程是()A.C.y218x2x28y21 B.1 D.y24x2x29y21 1

x24912273.双曲线的渐近线方程是y=±程是() A.B. C.D.y234x,两个焦点都在椭圆

100y2251上,则双曲线的方9y2x216x21或1或1或1或x216x2y29y21 1 1 1 9x216y29y216x264x236y29y216x216964364.焦点为(0,6)且与双曲线A.C.x2x22y21有相同渐近线的方程是()

y212y2y224x21 B.12x2x224y21

24121  D.x224121

5.已知双曲线16yb221的实轴的一个端点为A1,虚轴的一个端点为B1,且|A1B1|=5,则双曲线的方程是()

A.C.x216x2y225y21 B.x216x2y225y221 1 yb2221691 D.xa2216xa96.0<k<a,双曲线

kby221与双曲线k1有()

A.相同的虚轴 B.相同的实轴 C.相同的渐近线 D.相同的焦点 7.求与双曲线x29xa22y216yb1有共同的渐近线,并且经过点(-3,2322)的双曲线方程.8.证明:双曲线定值.1(a>0,b>0)上任意一点到两渐近线的距离的乘积是一个 9.双曲线x29y241与直线y=kx-1只有一个公共点,求k的值.参考答案:

1.B2.A3.C4.B5.C6.D7.x2y21

8.证明略.9.k23或k53

双曲线的简单几何性质的教学反思 篇3

北师大大兴附中数学组

韩颖 1、指导思想与理论依据:

以“培养学生的创新精神和实践能力”,“倡导自主探索,动手实践,合作交流,教 育教学理念”,采用“以学生为主体,以问题为中心,以活动为基础,以培养学生提出问 题分析问题和解决问题能力”的合自主探究、体验式教学模式,通过创设符合学生认知 规律的问题情景,挖掘学生内在的研究问题的巨大潜能,使学生在做的过程中学习,在 学的过程中思考,亲身体会创造过程,充分展示思维差异,培养学生的自主探究能力,逻辑推理能力,提高学生的思维层次,掌握获取知识的方法和途径,真正体现学生学习知识过程中的主体地位。让教师落实:授人于鱼不如授人于渔。让学生做到:临渊羡鱼 不如退而结网。2

、教学背景分析:

学习内容分析:

《椭圆的几何性质》教学反思 篇4

本节课是苏教版普通高中课程标准实验教科书《数学》选修1―1第二章第二节的内容,它是在学完椭圆的标准方程的基础上,通过研究椭圆的标准方程来探究椭圆的简单几何性质。利用曲线方程研究曲线的性质,是解析几何的主要任务。 通过本节课的学习,既让学生了解了椭圆的几何性质,又让学生初步体会了利用曲线方程来研究其性质的过程,同时也为下一步学习双曲线和抛

物线的性质做好了铺垫。本节课是围绕着探究椭圆的简单几何性质进行的。因此,依教材的地位与作用及教学目标,将之确定为本节课的重点;又因为学生第一次系统地按照椭圆方程来研究椭圆的简单几何性质,学生感到困难,且如何定义离心率,学生感到棘手,所以我将之确定为本节课的难点。

然而,课后的反思过程中我发现了几个问题:第一,在讲解“顶点”定义时,单纯定义为椭圆与坐标轴的交点,没把握住顶点的重要特征,即“顶点是椭圆与其对称轴的交点”,如果把握住这一点,在讲解时就应先讲“对称性”,再讲“顶点”;二是本节课对几何性质的导入,是由学生回顾上节所讲特征三角形的三边与的大小关系开始的,而多数人对特征三角形的记忆是很模糊的,上节课在这个知识点上学生吸收的并不好,如果把它放在本节课“顶点”之后再讲解,会显得更自然一些;三是“对称性”的讲解过于单薄,学生既然很快就观察出了这个性质,何不趁热打铁,再从代数的角度证明一下呢?过于避重就轻的做法不利于对学生数学思维能力的培养。以上的几点不足都提醒我今后要在研究教材上下更多的功夫。

还有在讲解完“对称性”、准备讲“离心率”之前,我穿插了一道“画椭圆的简图”的题目。并提圆相似吗?椭圆呢?引起了同学们注意。这道题起到了较好的承上启下的作用:既巩固了刚学的性质,又引发了一个问题:椭圆的“扁”的程度与哪些要素有关。大多数学生通过所画的两个椭圆长轴相同、短轴不同,从而“扁”的程度不同,很自然地回答这与有关,圆的形状是完全相同的,而椭圆的形状是否完全相同?如何刻画椭圆的“圆扁”度呢?

学生自主探究(预设:可以创造错误认识,a越大越扁?b越大越圆?联想椭圆定义 当2a定时,焦点逐渐靠近顶点,椭圆会怎么样?焦点逐渐靠近中心,又会怎么样?)

切入事先准备好的几何画板展示,固定长轴,移动交点,看变化。 教师通过多媒体展示椭圆随着离心率逐渐接近0越圆而越接近1而越扁的动画

过程。 e越大,椭圆越扁,越小越圆。讲清楚e是一个比值圆扁度用什么刻画? 为什么不b用。 a此外,在以下几个方面我还需要进一步改进:一是课堂的节奏还要稍微慢一点,比如对焦点在轴时椭圆的几个性质的给出,都是师提问生齐答,在这个过程中不少反应慢一点的同学没有足够的时间去思考,被忽略掉了,而如果把这个环节换成小组合作学习、讨论交流的方式来进行,放手把主动权交给学生,效果可能会更好,也更符合新课改的理念。二是教学语言还需要不断锤炼,因为数学老师的语言是否准确、精炼,会对学生的逻辑思维产生潜移默化的影响,要力图用清晰优美的语言艺术去感染学生。

比较过去自己曾经历过的刻板、严肃的灌输式教学,现在更提倡多给学生一点爱,让学生积极地参与到课堂活动中来;同时老师要做有效课堂的引导者,不断优化教学策略,教学中要关注学生是否积极地参与到发现问题、分析问题、解决问题的探索过程中去,是否能够达到掌握知识,提高能力的目的是否收到了理想的教学效果。教学过程中要尊重学生的自我发现,多角度的给学生以鼓励和肯定。

双曲线的简单几何性质的教学反思 篇5

1椭圆的一个顶点为A2,0,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当A2,0为长轴端点时,a2,b1,x2y21; 椭圆的标准方程为:41(2)当A2,0为短轴端点时,b2,a4,x2y21; 椭圆的标准方程为:

416说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.

例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.

a212

∴3c2a2,解:2cc3∴e13. 33说明:求椭圆的离心率问题,通常有两种处理方法,一是求a,求c,再求比.二是列含a和c的齐次方程,再化含e的方程,解方程即可.

例3 已知中心在原点,焦点在x轴上的椭圆与直线xy10交于A、B两点,M为AB中点,OM的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.

x22解:由题意,设椭圆方程为2y1,axy10222由x2,得1ax2ax0,22y1a1x1x21a22,yM1xM∴xM,1a22a kOMyM112,∴a24,xMa4x2y21为所求. ∴4说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.

x2y9例4椭圆1上不同三点Ax1,y1,B4,,Cx2,y2与焦点F4,0的2595距离成等差数列.

(1)求证x1x28;

(2)若线段AC的垂直平分线与x轴的交点为T,求直线BT的斜率k.

证明:(1)由椭圆方程知a5,b3,c4. 由圆锥曲线的统一定义知:2AFa2x1cc,a∴

AFaex15同理

CF54x1. 54x2. 59,5∵

AFCF2BF,且BF∴

54418x15x2,555即

x1x28.

(2)因为线段AC的中点为4,1yy2,所以它的垂直平分线方程为 2

yy1y2x1x2x4. 2y1y2又∵点T在x轴上,设其坐标为x0,0,代入上式,得

2y12y

2x04

2x1x2又∵点Ax1,y1,Bx2,y2都在椭圆上,925x12 2592225x2

y2 25922x1x2x1x2. ∴ y1y225∴ y12将此式代入①,并利用x1x28的结论得

x0436 2∴ kBT 9055.

4x04x2y例5 已知椭圆1,F1、F2为两焦点,问能否在椭圆上找一点M,使M到43左准线l的距离MN是MF1与MF2的等比中项?若存在,则求出点M的坐标;若不存在,请说明理由.

解:假设M存在,设Mx1,y1,由已知条件得

2a2,b3,∴c1,e∵左准线l的方程是x4,∴MN4x1. 又由焦半径公式知:

1. 21x1,21MF2aex12x1.

2MF1aex12∵MN2MF1MF2,2∴x142211x12x1. 22整理得5x132x1480. 解之得x14或x112.

① 5另一方面2x12.

则①与②矛盾,所以满足条件的点M不存在. 说明:

(1)利用焦半径公式解常可简化解题过程.

(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.

(3)本例也可设M2cos,3sin存在,推出矛盾结论(读者自己完成).

x211例6 已知椭圆y21,求过点P,且被P平分的弦所在的直线方程.

222分析一:已知一点求直线,关键是求斜率,故设斜率为k,利用条件求k. 解法一:设所求直线的斜率为k,则直线方程为y整理得

11kx.代入椭圆方程,并2212kx2k222132kxk2k0.

222k22k由韦达定理得x1x2. 212k∵P是弦中点,∴x1x21.故得k所以所求直线方程为2x4y30.

分析二:设弦两端坐标为x1,y1、x2,y2,列关于x1、x2、y1、y2的方程组,从而求斜率:

1. 2y1y2.

x1x21122解法二:设过P,的直线与椭圆交于Ax1,y1、Bx2,y2,则由题意得

x122y,1122x22y21,2x1x21,y1y21.①② ③④2x12x22y12y20.

⑤ ①-②得2将③、④代入⑤得

1y1y21,即直线的斜率为.

2x1x22 所求直线方程为2x4y30.

说明:

(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.

(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.

例7 求适合条件的椭圆的标准方程.

(1)长轴长是短轴长的2倍,且过点2,6;

(2)在x轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.

x2y22分析:当方程有两种形式时,应分别求解,如(1)题中由221求出a148,abx2y2y2x21. 1后,不能依此写出另一方程b37,在得方程

14837148372x2y2y2x2解:(1)设椭圆的标准方程为221或221.

abab由已知a2b.

① 又过点2,6,因此有

22662221或221.

② a2bab22由①、②,得a148,b37或a52,b13.故所求的方程为 2222x2y2y2x21. 1或521314837x2y22(2)设方程为221.由已知,c3,bc3,所以a18.故所求方程abx2y21. 为189说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置

x2y2y2x2是否确定,若不能确定,应设方程221或221.

abab

x2y21的右焦点为F,例8 椭圆过点A1点M在椭圆上,当AM2MF,3,1612为最小值时,求点M的坐标.

分析:本题的关键是求出离心率e最小值.一般地,求AM1,把2MF转化为M到右准线的距离,从而得21MF均可用此法. e1解:由已知:a4,c2.所以e,右准线

2l:x8.

过A作AQl,垂足为Q,交椭圆于M,故显然AM2MF的最小值为AQ,即MMQ2MF.为所求点,因此yM3,且M在椭圆上.故xM23.所以M23,3.

说明:本题关键在于未知式AM2MF中的“2”的处理.事实上,如图,e1,2即MF是M到右准线的距离的一半,即图中的MQ,问题转化为求椭圆上一点M,使M到A的距离与到右准线距离之和取最小值.

x2y21上的点到直线xy60的距离的最小值. 例9 求椭圆3分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.

x3cos,解:椭圆的参数方程为设椭圆上的点的坐标为

ysin.直线的距离为

3cos,sin,则点到d2sin63cossin63. 221时,d最小值22. 3当sin说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.

例10 设椭圆的中心是坐标原点,长轴在x轴上,离心率e33,已知点P0,到22这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P的距离等于7的点的坐标.

分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d的最大值时,要注意讨论b的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.

x2y2解法一:设所求椭圆的直角坐标方程是221,其中ab0待定.

abc2a2b2b212可得 由e2aa2a2b311e21,即a2b. a42设椭圆上的点x,y到点P的距离是d,则

3y2922dxya1y3y 224b22291

4b3y3y3y4b23

42222其中byb. 如果b12,则当yb时,d(从而d)有最大值. 2由题设得731137b,由此得b7,与b矛盾.

222222因此必有b由题设得112成立,于是当y时,d(从而d)有最大值. 2224b23,可得b1,a2.

x2y21. ∴所求椭圆方程是41由y111及求得的椭圆方程可得,椭圆上的点3,,点3,到点222 3P0,的距离是7. 2解法二:根据题设条件,可取椭圆的参数方程是xacos,其中ab0,待定,ybsin02,为参数.

c2a2b2b2由e21可得 2aaab311e21,即a2b. a42设椭圆上的点x,y到点P0,的距离为d,则

2223233d2x2ya2cos2bsin

22

4b3bsin3bsin22229 41

3b2sin4b23

2b如果111,即b,则当sin1时,d2(从而d)有最大值. 2b2由题设得成立. 311137b,由此得b7,与b矛盾,因此必有12222b222于是当sin由题设知12时d(从而d)有最大值. 2b724b23,∴b1,a2.

∴所求椭圆的参数方程是x2cos.

ysin由sin 1311,cos,可得椭圆上的是3,,3,. 2222例11 设x,yR,2x3y6x,求xy2x的最大值和最小值. 分析:本题的关键是利用形数结合,观察方程2x3y6x与椭圆方程的结构一

222222致.设x2y22xm,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.

解:由2x23y26x,得

3xy221

9324可见它表示一个椭圆,其中心在,0点,焦点在x轴上,且过(0,0)点和(3,0)点.

设x2y22xm,则

x1y2m1 2232它表示一个圆,其圆心为(-1,0)半径为m1m1.

在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即m11,此时m0;当圆过(3,0)点时,半径最大,即m14,∴m15.

∴xy2x的最小值为0,最大值为15. 22

x2y2例12 已知椭圆C:221ab0,A、B是其长轴的两个端点.

abb如何变化,APB120.(1)过一个焦点F作垂直于长轴的弦PP,求证:不论a、(2)如果椭圆上存在一个点Q,使AQB120,求C的离心率e的取值范围.

 分析:本题从已知条件出发,两问都应从APB和AQB的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e满足

的不等式,只能是椭圆的固有性质:xa,yb,根据AQB得到120a222ay22b、3,将xa2y代入,消去x,用a、以便利用ybc表示y,bx2y2a2列出不等式.这里要求思路清楚,计算准确,一气呵成.

解:(1)设Fc,0,Aa,0,Ba,0.

xcb2Pc,

222222 abxayab于是kAPb2b2,kBP. acaaca∵APB是AP到BP的角.

b2b22a2acaaca∴tanAPB2

b4c122aca2∵ac ∴tanAPB2

故tanAPB

3∴APB120.(2)设Qx,y,则kQA22yy,kQB. xaxa由于对称性,不妨设y0,于是AQB是QA到QB的角.

yy2aya∴tanAQBxax 2222yxya12xa2∵AQB120,∴2ay3

x2y2a2整理得3x2y2a22ay0 a22∵xa2y

b22 a22∴31b2y2ay0

2ab2∵y0,∴y 23c2ab2∵yb,∴b 23c2ab3c2,4a2a2c23c2

∴4c4ac4a0,3e4e40 ∴e2422442362或e2(舍),∴e1. 231x2y21的离心率e,求k的值. 例13 已知椭圆

2k89分析:分两种情况进行讨论.

解:当椭圆的焦点在x轴上时,ak8,b9,得ck1.由e当椭圆的焦点在y轴上时,a9,bk8,得c1k.

2222221,得k4. 211k15,即k.,得29445∴满足条件的k4或k.

4由e说明:本题易出现漏解.排除错误的办法是:因为k8与9的大小关系不定,所以椭圆的焦点可能在x轴上,也可能在y轴上.故必须进行讨论.

x2y2例14 已知椭圆221上一点P到右焦点F2的距离为b(b1),求P到左准线4bb的距离.

分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.

x2y23解法一:由221,得a2b,c3b,e.

24bb由椭圆定义,PF1PF22a4b,得

PF14bPF24bb3b.

由椭圆第二定义,PF1d1e,d1为P到左准线的距离,∴d1PF1e23b,即P到左准线的距离为23b.

解法二:∵PF2d2PF2ee,d2为P到右准线的距离,e23b. 3c3,a2∴d2a283又椭圆两准线的距离为2b.

c3∴P到左准线的距离为

8323bb23b. 33说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.

椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.

x4cos,例15 设椭圆(为参数)上一点P与x轴正向所成角POx,求

3y23sin.P点坐标.

分析:利用参数与POx之间的关系求解.

解:设P(4cos,23sin),由P与x轴正向所成角为

,3∴tan323sin,即tan2.

4cos525,sin,55而sin0,cos0,由此得到cos∴P点坐标为(45415,). 55x2y2例16 设P(x0,y0)是离心率为e的椭圆221(ab0)上的一点,P到左焦

ab点F1和右焦点F2的距离分别为r1和r2,求证:r1aex0,r2aex0.

分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.

a2a2解:P点到椭圆的左准线l:x的距离,PQx0,cc由椭圆第二定义,PF1PQe,∴r1aex0. 1ePQaex0,由椭圆第一定义,r22ar说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y轴上的焦半径公式.

x2y21内有一点A(1,1),F1、F2分别是椭圆的左、右焦点,点例17 已知椭圆95P是椭圆上一点.

P坐标;(1)求PAPF1的最大值、最小值及对应的点(2)求PA3PF2的最小值及对应的点P的坐标. 2分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.

解:

(1)如上图,2a6,F2(2,0),AF22,设P是椭圆上任一点,由,∴PF1PF22a6,PAPF2AF2PAPF1PF1PF2AF22aAF262,等号仅当PAPF2AF2时成立,此时P、A、F2共线.

由PAPF∴PAPF1PF1PF2AF22aAF262,等2AF2,P、A、F2共线. 号仅当PAPF2AF2时成立,此时建立A、F2的直线方程xy20,解方程组xy20,5x9y4522得两交点

9***P(2,2)P(2,2).、127***P点与P2重合时,综上所述,P点与P1重合时,PAPF1取最小值62,PAPF2取最大值62.

(2)如下图,设P是椭圆上任一点,作PQ垂直椭圆右准线,Q为垂足,由a3,c2,∴ePF2232.由椭圆第二定义知,∴PQPF2e32PQ3,∴3PF2PAPQ,要使其和最小需有A、P、Q共线,即求A到右准线距离.右29准线方程为x.

2PA∴A到右准线距离为

7.此时P点纵坐标与A点纵坐标相同为1,代入椭圆得满足条2

件的点P坐标(65,1). 51PF2的最小值,就是用第二定义转化后,过A向相应准线作垂线段.巧e说明:求PA用焦点半径PF2与点准距PQ互化是解决有关问题的重要手段.

x2y21的参数方程; 例18(1)写出椭圆94(2)求椭圆内接矩形的最大面积.

分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.

x3cos解:(1)(R).

y2sin(2)设椭圆内接矩形面积为S,由对称性知,矩形的邻边分别平行于x轴和y轴,设

(3cos,2sin)为矩形在第一象限的顶点,(0),2则S43cos2sin12sin212

故椭圆内接矩形的最大面积为12.

说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.

例19 已知F1,F2是椭圆的两个焦点,P是椭圆上一点,且F1PF260.(1)求椭圆离心率的取值范围;

(2)求证PF1F2的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为

x2y221(ab0),P(x1,y1)(y10). 2ab思路一:根据题设容易想到两条直线的夹角公式,即tan60KPF2KPF11KPF2KPF13,设P(x1,y1),F1(c,0),F2(c,0),化简可得3x13y12cy13c20.又x1y1222,两方程联立消去得1x3cy12b2cy13b40,由y1(0,b],可以122ab确定离心率的取值范围;解出y1可以求出PF1F2的面积,但这一过程很繁.

思路二:利用焦半径公式PF在PF1F2中运用余弦定理,1aex1,PF2aex1,求x1,再利用x1[a,a],可以确定离心率e的取值范围,将x1代入椭圆方程中求y1,便可求出PF1F2的面积.

思路三:利用正弦定理、余弦定理,结合PF1PF22a求解. 2222

x2y2解:(法1)设椭圆方程为221(ab0),P(x1,y1),F1(c,0),F2(c,0),abc0,则PF1aex1,PF2aex1. 在PF1F2中,由余弦定理得

1(aex1)2(aex1)24c2,cos6022(aex1)(aex1)4c2a2解得x1. 23e2(1)∵x1(0,a2],24c2a2a2,即4c2a20. ∴023e∴ec1. a212故椭圆离心率的取范围是e[,1).

4c2a2x2y2(2)将x1代入221得 2ab3e2b4b2y12,即y1.

3c3c2∴SPF1F211b232F1F2y2cb. 2233c即PF1F2的面积只与椭圆的短轴长有关.

(法2)设PF2F1,PF1F2,1m,PF2n,PF则120.

(1)在PF1F2中,由正弦定理得

mn2c. sinsinsin60 ∴mn2c sinsinsin60∵mn2a,∴2a2c,sinsinsin60∴ecsin60sin60 asinsin2sincos2211. 22cos2当且仅当时等号成立.

故椭圆离心率的取值范围是e[,1).(2)在PF1F2中,由余弦定理得:

12(2c)2m2n22mncos60

m2n2mn (mn)23mn

∵mn2a,22∴4c4a3mn,即mn424(ac2)b2. 33∴SPF1F2132mnsin60b. 23即PF1F2的面积与椭圆短轴长有关.

说明:椭圆上的一点P与两个焦点F1,F2构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现PF1PF2的结构,这样就可以应用椭圆的定义,从而可得到有关a,c的关系式,使问题找到解决思路.

x2y2例20 椭圆221(ab0)与x轴正向交于点A,若这个椭圆上总存在点P,ab使OPAP(O为坐标原点),求其离心率e的取值范围.

分析:∵O、A为定点,P为动点,可以P点坐标作为参数,把OPAP,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a、b、c的一个不等式,转化为关于e的不等式.为减少参数,易考虑运用椭圆参数方程.

上一篇:挂职锻炼协议书下一篇:小学生作文蚂蚁写字