实数教案

2024-06-14 版权声明 我要投稿

实数教案(精选10篇)

实数教案 篇1

1、了解实数的意义,能对实数按要求进行分类。

2、了解实数范围内,相反数、倒数、绝对值的意义。

3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。学习重点:理解实数的概念。学习难点:正确理解实数的概念。

一、学前准备

1、填空

2、探究 使用计算器计算,把下列有理数写成小数的形式,你有什么发现?,,二、探究新知

1、归纳: 任何一个有理数都可以写成_______小数或________小数的形式。反过来,任何______小数或____________小数也都是有理数

观察 通过前面的探讨和学习,我们知道,很多数的_____根和______根都是____________小数,____________小数又叫无理数,也是无理数 结论: _______和_______统称为实数 你能举出一些无理数吗?

2、试一试 把实数分类

像有理数一样,无理数也有正负之分。例如,是____无理数,,是____无理数。由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:

3、我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?

从图中可以看出OO′的长时这个圆的周长______,点O′的坐标是_______ 这样,无理数 可以用数轴上的点表示出来(2)

总结 ①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________ 当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数

② 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______

4、讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?

总结 数 的相反数是______,这里 表示任意____________。一个正实数的绝对值是______;一个负实数的绝对值是它的______;0的绝对值是______

三、学以致用

1、把下列各数分别填入相应的集合里:

正有理数{ } 负有理数{ } 正无理数{ } 负无理数{ }

2、下列实数中是无理数的为()A.0 B.C.D.3、的相反数是,绝对值

4、绝对值等于 的数是,的平方是5、6、求绝对值

练习:

一、判断下列说法是否正确:

1.实数不是有理数就是无理数。()2.无限小数都是无理数。()3.无理数都是无限小数。()4.带根号的数都是无理数。()

5.两个无理数之和一定是无理数。()

6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。(二、填空1、2、3、比较大小

4、_________

四、总结反思 这节课你有什么新发现?知道了哪些新知识?

无理数的特征: 1.圆周率 及一些含有 的数

2.开不尽方的数

3.有一定的规律,但循环的无限小数 注意:带根号的数不一定是无理数

五、自我测试

1、把下列各数填入相应的集合内:

有理数集合{ } 无理数集合{ })

整数集合{ } 分数集合{ } 实数集合{ }

2、下列各数中,是无理数的是()A.B.C.D.3、已知四个命题,正确的有()

⑴有理数与无理数之和是无理数 ⑵有理数与无理数之积是无理数 ⑶无理数与无理数之积是无理数 ⑷无理数与无理数之积是无理数 A.1个 B.2个 C.3个 D.4个

4、若实数 满足,则()A.B.C.D.5、下列说法正确的有()

⑴不存在绝对值最小的无理数 ⑵不存在绝对值最小的实数 ⑶不存在与本身的算术平方根相等的数 ⑷比正实数小的数都是负实数 ⑸非负实数中最小的数是0 A.2个 B.3个 C.4个 D.5个

6、⑴ 的相反数是_________,绝对值是_________

⑵ ⑶若,则 _________ ⑷ _______

实数数学初二上册教案 篇2

●过程与方法目标

在探究、合作活动中,发展学生探究能力和合作意识.

●情感与价值观要求

通过对公式的逆运用,感受数学的严谨性以及数学结论的确定性.

教学重点

两个公式的`逆运用.

教学难点

灵活地运用公式进行实数运算.

教学准备:教材、课件、电脑.电脑软件:Word,Powerpoint.

教学过程

第一环节:复习引入(2分钟,引导学生复习旧知,导入新课,学生思考解答)

内容:复习算术平方根的概念,并提出问题:下面正方形的边长分别是多少?

2.6实数:同步测试

1.与数轴上的点一一对应的数是( ).

A.整数B.有理数C.无理数D.实数

2.下列叙述中,不正确的是( ).

A.绝对值最小的实数是零

B.算术平方根最小的实数是零

C.平方最小的实数是零

D.立方根最小的实数是零

3.下列说法中①有理数包括整数、分数和零; ②无理数都是开方开不尽的数;③不带根号的数都是有理数;④带根号的数都是无理数;⑤无理数都是无限小数;⑥无限小数都是无理数.正确的个数是( ).

A.0个B.1个C.2个D.3个

4.下列说法中,正确的是( ).

A.任何实数的平方都是正数

B.正数的倒数必小于这个正数

C.绝对值等于它本身的数必是非负数

D.零除以任何一个实数都等于零

《2.6实数》课时练习含答案

4.如果一个实数的平方根与它的立方根相等,则这个数是( )

A.0 B.正整数C.0和1 D.1

答案:A

解析:解答:0的平方根是0,0的立方根还是0,故只有0的平方根和它的立方根相等

分析:考察特殊数的平方根和立方根,注意0的平方根和立方根.

5.有下列说法正确的是:( )

A无理数就是开方开不尽的数;B无理数是无限不循环小数;

C带根号的数都是无理数D无限小数都是无理数

答案:B

解析:解答:根据无理数的定义可以判断,无理数是无限不循环小数;A选项中无理数不仅仅包含开方开不尽的数,还包括如等的数;C选项带根号的数不一定都是无理数;D选项中无限循环小数不是无理数;故答案选B

初中七年级下册《实数》教案优质 篇3

问题 学校要举行美术作品比赛,小鸥很高兴.想裁出一块面积为25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?

师:∵52=25,

∴这个正方形画框的边长应取5 dm.

二、讲授新课

师:请同学们填表:

正方形面积 1 9 16 36 425

边长 1 3 4 6 25

师:上面的问题,实际上是已知一个正数的平方,求这个正数的问题.

师:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记作a,读作“根号a”,a叫做被开方数.

规定:0的算术平方根是0.

师:我们一起来做题.

展示课件:

【例】 求下列各数的算术平方根:

(1)100; (2)4964; (3)0.0001.

学生活动:尝试独立完成.

教师活动:巡视、指导,派一生上黑板板演.

师生共同完成.

解:(1)∵102=100,

∴100的算术平方根是10.

即100=10.

(2)∵(78)2=4964,

∴4964的算术平方根是78,即4964=78.

(3)∵0.012=0.0001,

∴0.0001的算术平方根是0.01,

即0.0001=0.01.

三、随堂练习

课本第41页练习.

四、课堂小结

本节课你学到了哪些知识?与同伴交流.

师生共同归纳算术平方根的定义及其表示方法.

教师首先利用例子提出问题:请你说出上面等式右边各数的平方根,通过学生动脑动口加深对算术平方根概念的初步理解;然后在上面叙述的基础上提出算术平方根概念的符号表示方法,同时用练习巩固所学新知,由量变到质变,使学生能牢固掌握本节内容.

6.1平方根(2)

能用夹值法求一个数的算术平方根的近似值,会用计算器.

重点

夹值法估计一个数的算术平方根的大小.

难点

夹值法估计一个数的算术平方根的大小.

一、创设情境,引入新课

师:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

运用多媒体,展示课件:

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

学生活动:小组合作操作、观察、交流.

二、讲授新课

师:将两个小正方形沿对角线剪开,得到几个直角三角形?

生:4个.

师:大正方形的面积多大?

生:面积为2的大正方形.

师:这个大正方形的边长如何求?

学生活动:尝试独立完成.

教师活动:启发,适时点拨.

师生共同归纳:设大正方形的边长为x,则x2=2,由算术平方根的意义可知:x=2.

∴大正方形的边长为2.

师:小正方形的对角线的长为多少?

生:对角线长为2.

师:很好,2有多大呢?

学生活动:小组合作交流.

教师活动:适时启发,点拨.

师生共同归纳:

∵12=1,22=4,

∴1<2<2.

∵1.42=1.96,1.52=2.25,

∴1.4<2<1.5.

∵1.412=1.9881,1.422=2.0164,

∴1.41<2<1.42.

∵1.4142=1.999396,1.4152=2.002225,

∴1.414<2<1.415.

……

如此进行下去,可以得到2的更精确的近似值.

其实,2=1.41421356……它是一个无限不循环小数,无限不循环小数是指小数位数无限,且小数部分不循环的小数.

师:你能举出几个例子吗?

生:能,如:3、5、7等.

师:如何用计算器求出一个正有理数的算术平方根(或其近似值).

学生活动:尝试独立完成例2.

师:请同学们用计算器求出引言中的第一宇宙速度、第二宇宙速度.

学生活动:用计算器小组合作完成.

第一宇宙速度:v1≈7.9×103 m/s;

第二宇宙速度:v2≈1.1×104 m/s.

展示课件:

1.利用计算器计算,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?

… 0.0625

0.625

6.25

62.5

625

6250

62500

… …

2.用计算器计算3(精确到0.001),并利用你发现的规律说出0.03,300,30000的近似值,你能根据3的值说出30是多少吗?

师:你能说出其中的规律吗?

学生活动:小组讨论交流.

师生共同归纳:

求算术平方根时,被开方数的小数点要两位两位地移动,当被开方数向左(右)每移动两位时,它的算术平方根相应地向左(右)移动一位.

新知应用:

师:我们一起来做题:

展示课件.运用多媒体:

【例】 小丽想用一块面积为400 cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?

解:设长方形纸片的长为3x cm,宽为2x cm.

根据边长与面积的关系得

3x•2x=300,

6x2=300,

x2=50,

x=50.

因此长方形纸片的长为350 cm.

因为50>49,所以50>7.

由上可知350>21,即长方形纸片的长应该大于21 cm.

因为400=20,所以正方形纸片的边长只有20 cm.这样,长方形纸片的长将大于正方形纸片的边长.

【答】 不能同意小明的说法.小丽不能用这块正方形纸片裁出符合要求的长方形纸片.

三、随堂练习

课本第44页练习.

四、课堂小结

通过本节课的学习,你有哪些收获?与同伴交流.

1.使每个学生都参与用计算器求一个正有理数的算术平方根,由于有的同学没有带计算器,所以没有很好地理解所学的知识.

2.平方根移动的规律,须让学生通过查表、探索、发现、总结,最好是自己找出其中所蕴含的规律.

实数教案 篇4

1、了解实数的意义,能对实数按要求进行分类。

2、了解实数范围内,相反数、倒数、绝对值的意义。

3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。重点、难点:

重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。

难点:用数轴上的点来表示无理数。教学过程:

一、创设问题情景,引出实数的概念

1、什么叫无理数,什么叫有理数,举例说明。

2、把下列各数分别填入相应的集合内。

,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)

教师引导学生得出实数概述并板书:有理数和无理数统称实数(real number)。教师点明:实数可分为有理数与无理数。

二、议一议

1、在实数概念基础上对实数进行不同分类。

无理数与有理数一样,也有正负之分,如 是正的,是负的。教师提出以下问题,让学生思考:

(1)你能把,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中? 正有理数: 负有理数: 有理数: 无理数:

(2)0属于正数吗?0属于负数吗?

(3)实数除了可以分为有理数与无理数外,实数还可怎样分?

让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数、0、负实数。

2、了解实数范围内相反数、倒数、绝对值的意义:

在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么。在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。例如,和 是互为相反数,和 互为倒数。,。

三、想一想

让学生思考以下问题

1、a是一个实数,它的相反数为,绝对值为 ;

2、如果,那么它的倒数为。

让学生回答后,教师归纳并板书:实数a的相反数为,绝对值为,若 它的倒数为(教师指明:0没有倒数)

四、议一议。探索用数轴上的点来表示无理数

1、复习勾股定理。如图在Rt△ABC中AB= a,BC = b,AC = c,其中a、b、c满足什么条件。

当a=1,b=1时,c的值是多少?

2、出示投影(1)P45页图2—4,让学生探讨以下问题:(A)如图OA=OB,数轴上A点对应的数是多少?

(B)如果将所有有理数都标到数轴上,那么数轴上被填满了吗? 让学生充分思考交流后,引导学生达成以下共识:(1)A点对应的数等于,它介于1与2之间。

(2)如果将所有有理数都标到数轴上,数轴未被填满,在数轴上还可以表示无理数。(3)每一个褛都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。

(4)一样地,在数轴上,右边的点比左边的点表示的数大。

五、随堂练习

1、判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数。

2、求下列各数的相反数、倒数和绝对值:

(1)3.8(2)(3)

(4)(5)

3、在数轴上作出 对应的点。

六、小结

1、实数的概念

2、实数可以怎样分类

3、实数a的相反数为,绝对值,若,它的倒数为。

4、数轴上的点和实数一一对应。

七、作业

课本P46习题2—8 板书设计:略

教学反思:本节内容并不复杂,大部分同学都能很好的掌握。很大部分是借助新知识回顾旧内容。2.6 实数(2).(二)能力训练要求

1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力.2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识.(三)情感与价值观要求

通过探索规律的过程,培养学生学习的主动性,敢于探索,大胆猜想,和同学积极交流,增强学习数学的兴趣和信心。教学重点:

1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.2.发现规律:

.并能用规律进行计算.教学难点:

1.类比的学习方法.2.发现规律的过程.教学方法: 类比法.教学过程: Ⅰ.新课导入

上节课我们学习了实数的定义、实数的两种分类,还有在实数范围内如何求相反数、倒数、绝对值,它们的求法和在有理数范围内的求法相同.那么在有理数范围内的运算法则、运算律等能不能在实数范围内继续用呢?本节课让我们来一起进行探究.Ⅱ.新课讲解

1.有理数的运算法则在实数范围内仍然适用.[师]大家先回忆一下我们在有理数范围内学过哪些法则和运算律.[生]加、减、乘、除运算法则,加法交换律,结合律,分配律.[师]好.下面我们就来验证一下这些法则和运算律是否在实数范围内适用.我们知道实数包括有理数和无理数,而有理数不用再考虑,只要对无理数进行验证就可以了.如:,所以说明有理数的运算法则与运算律对实数仍然适用.下面看一些例题.计算:(1);(2);(3)(2)2;(4).2.做一做 填空:

(1)=_________,=_________;(2)=_________,=_________;(3)=_________,=_________;(4)_________,=_________.[师]通过上面计算的结果,大家认真总结找出规律.如果把具体的数字换成字母应怎样表示呢?

(a≥0,b≥0);(a≥0,b>0)并作一些练习.化简:

(1);(2)-4;(3)(-1)2;(4);(5).3.例题讲解 [例题]化简:

(1);(2);(3)(+1)2;(4).Ⅲ.课堂练习(一)随堂练习

化简:(1);(2);(3)(1+)(2-);(4)()2.(二)补充练习1.化简:

(1);(2)(1+)(-2);(3);(4);(5);(6)2.一个直角三角形的两条直角边长分别为 cm和 cm,求这个直角三角形的面积.解:S=

答:这个三角形的面积为7.5 cm2.Ⅳ.课时小结

本节课主要掌握以下内容.1.在实数范围内,有理数的运算法则、运算律仍然适用,并能正确运用.2.(a≥0,b≥0);(a≥0,b>0)的推导及运用.Ⅴ.课后作业习题2.9 1.化简:

(1);(2);(3);(4)-21.Ⅵ.活动与探究

下面的每个式子各等于什么数?.由此能得到一般的规律吗?

对于一个实数a、一定等于a吗? 当a≥0时,=a.当a<0时,有

所以当a<0时,有 =-a.板书设计:

§2.6.2 实数(二)

一、有理数的运算法则在实数范围内仍然适用

二、找规律(a≥0,b≥0);(a≥0,b>0)

三、例题讲解

四、课堂练习

五、课时小结

六、课后作业 教学反思:这节内容是两个公式的推导与运用。当然计算的熟练始终是初中阶段的一个大的环节,只有让学生多做练习才能熟练。有待另外花时间加大训练。2.6 实数(3)教学目标:(一)教学知识点

1.式子(a≥0,b≥0);

(a≥0,b>0)的运用.2.能利用化简对实数进行简单的四则运算.(二)能力训练要求

1.让学生能根据实际情况灵活地运用两个法则进行有关实数的四则运算.2.让学生能根据实例进行探索,同学们互相交流合作,培养他们的合作精神和探索能力.(三)情感与价值观要求 1.通过对法则的逆运用,让学生体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.能运用实数的运算解决简单的实际问题,提高学生的应用意识,发展学生解决问题的能力,从中体会数学的使用价值.教学重点:

1.两个法则的逆运用.2.能运用实数的运算解决简单的实际问题.教学难点:

灵活地运用法则和逆用法则进行实数的运算.教学方法: 指导探索法.教学过程: Ⅰ.导入新课

请大家先回忆一下算术平方根的定义.下面我们用算术平方根的定义来求下列两个正方形的边长,以及边长之间的关系.设大正方形的边长为a,小正方形的边长为b.请同学们互相讨论后得出结果.[生]由正方形面积公式得a2=8,b2=2.所以大正方形边长a=,小正方形边长b=.[师]那么a与b之间有怎样的倍分关系呢?请观察图中的虚线.[生]大正方形的面积为小正方形面积的4倍,大正方形的边长是小正方形边长的2倍.所以 =2.[师]非常棒,那么 根据什么法则就能化成2 呢?这就是本节课的任务.Ⅱ.新课讲解

[师]请大家回忆一下上节课学的两个法则是什么? [生](a≥0,b≥0);(a≥0,b>0)[师]请大家根据上面法则化简下列式子.(1);(2);(3);(4).[师]请大家思考一下,刚才这位同学的步骤反过来推是否成立?即从右往左推.如(1)3= 能否成立?

[师].下面再分析这些式子:

并和上节课的两个法则相比较,有什么不同吗?请大家交流后回答.[生]正好和上节课的法则相反.[师]大家能否用式子表示出来? [生]能.[师]没有条件限制吗?

[生]有.第一个式子加条件a≥0,b≥0.第二个式子加条件a≥0,b>0.[师]那现在能否把 化成2 呢? [生]行..[师]下面我们进行简单的练习.化简:(1);(2);(3);(4);(5);(6).[师]被开方数中能分解因数.且有些因数能开出来.这时就需要对其进行化简.那么像下面的式子 叫不叫化简呢? [生]叫化简.[师]能否说一下它的特征呢?

[生]原来被开方数中含有分母,化简后被开方数中没有了分母.[师]如果被开方数中含有分母,要把分子分母同时乘以某一个数,使得分母变成一个能开出来的数,然后把分母开出来,使被开方数中没有了分母.这也叫化简.根据刚才我们的讨论,对于两种情形可通过法则的逆运算进行化简,那么究竟是哪两种情形呢?其实在刚才的分析中我已作过介绍,大家可否记得?

[生]记得.如果被开方数中含有分母,或者含有开得尽的因数,则可通过逆运算进行化简.如:

但是这也不是绝对的,有时法则的运用和法则的逆运算要相互结合才能达到化简的目的.如: 例题讲解

[例1]化简:(1);(2);(3).[例2]化简:

(1)-2 ;(2)- ;(3)-(4);

Ⅲ.课堂练习

化简:(1);(2);(3).课堂测验1.化简:

(1);(2);(3);(4);(5);(6).2.化简:

(1);(2)2 ;(3);(4);(5)Ⅳ.课时小结:1.若被开方数中含有分母或者含有能开得尽的因数的式子的化简.2.一般情况下应用法则

实数的教学反思 篇5

从合作学习中得到,研究什么是实数,整数?小数?首先可以利用底数越大平方越大的方法确定它不是整数,用同样的方法进一步研究它的小数部分。在研究的过程中,我们可以猜测是一个无限不循环小数,可以从书本上得到证实,也可以用计算器验证。给了无理数的概念后,让学生举出几个无理数,以巩固无理数的概念。最后从有理数的分类引导他们对实数进行分类。

⒈无理数在数轴上的表示是难点,对教学的重难点没有把握住,以后应认真、仔细读教材,教参,思考为什么是在这里安排,它的作用是什么?

⒉想到问题却没有很好的解决,能跨过去就跨过去。如表示集合过程中,学生对实数分类未掌握,遇到问题应积极思考,在得不到解决时应请教其他老师,向他们学习。

⒊对于一种新的概念(或问题),要考虑到学生的思维水平,他们不一定会按照我们的方式去思考,这就往往容易会出现与我们预计结果相差很远,甚至相背离的情况。让学生回答的问题一定要自己十分清楚概念,思维过程,不要出现学生答不出来,你也不知道如何解释,或被学生反过来把你问住的情况。

⒋注意教学的规范性。像1.010010001…(两个1之间多个0)是无理数,括号里的内容不能省略。

实数教学设计[推荐] 篇6

教学目标: 知识与能力

1、了解无理数和实数的意义,能对实数按要求进行分类。

2、了解实数和数轴上的点一一对应,会用数轴上的点表示实数。

3、了解有理数范围内的运算法则、运算律、运算公式和运算顺序在实数范围内同样适用。

4、会进行实数的大小比较,会进行实数的简单运算。过程与方法

1、通过计算器与计算机的应用,形成自觉应用的意识,从而能应用与实数有关的运算。

2、经历作图和观察的过程,掌握实数与数轴一一对应的关系。情感与态度

1、感受数系的扩充,通过自主探究,感受实数与数轴上点的一一对应的关系,体验数形结合的优越性,发展学生的类比与归纳能力。

2、学生经历数系扩展的过程,体会到数系的扩展源于社会实际,又为社会实际服务的辩证关系。教学重难点及突破 重点

1、了解实数的意义,能对实数进行分类;

2、了解数轴上的点与实数一一对应,并能用数轴上的点来表示无理数。难点

1、用数轴上的点来表示无理数;

2、能准确无误地进行实数运算。教学突破

通过让学生对比有理数和无理数的特点,总结无理数的概念,以加深对无理数的概念的记忆。同时,让学生动手作图,直观展现实数和数轴的一一对应关系。教学中通过回忆有理数的运算规则过渡到实数的运算,学生容易接受和掌握。教学准备:直尺,圆规。教学过程

一、创设情境,导入新课

1、小学学习阶段,我们学习了整数、分数和小数,均为整数,进入初一阶段,引入负数,从而把数的范围扩充到了有理数。下面 使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3、1/4 2/5 1/3 学生计算后举手回答,教师将答案书写出来。3=3.0 0.25 0.4

2、问题:你发现了什么?

学生回答:有理数都可以写成有限小数或者无限循环小数的形式(或任何有限小数或无限循环小数也都是无理数)。

问题:那我们前面所学的许多平方根和立方根都是无限不循环小数,那这些小数是不是有理数?

学生很自然的回答不是,从而引入新的数——无理数,把数扩充到实数范围也就顺利成章。

二、自主探索,领悟内涵

由前面我们知道,任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数。无限不循环小数又叫无理数;有理数和无理数统称为实数。分类如下: 整数 实数

有限小数或无限循环小数

有理数分为正有理数和负有理数,那么无理数呢?是无理数吗?

学生回答:可化为无限不循环小数,所以也只能化为无限不循环小数,可见与均是无理数。可知,无理数也有正、负之分,因此把正有理数、正无理数和在一起形成正实数,同样,负有理数、负无理数合在一起称为负实数,而0既不是正数也不是负数。从而得到实数的另一种分类方法: 正有理数 负有理数 0

三、拓展延伸,操作感知

探究1 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少? O1 学生之间互相交流、讨论,一段时间后请学生回答:点01的坐标是π。肯定学生的回答,说明:无理数π可以用数轴上的点表示出来。探索2 你能在数轴上找到表示的点,这说明一个什么问题? 学生讨论交流,并举手回答。教师肯定学生的表现,并总结:

每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点,有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。

四、练习巩固,应用提高

例1 整数有: { } 无理数有:{ } 有理数有:{ } 学生认真完成,并举手回答。根据学生的回答,适当讲解。

五、课堂总结,作业布置

1、什么叫做无理数?什么叫做有理数?

2、有理数和数轴上的点一一对应吗?无理数和数轴上的点一一对应吗?实数和数轴上的点一一对应吗?

P86-87习题14.3第1、2、3题; 板书设计: 实数

1、有理数和无理数统称为实数。

2、实数分类结构图(略)

3、实数与数轴上的点一一对应。课后反思

《实数》教学课反思 篇7

本节课是在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数范围.从有理数到实数,这是数的范围的一次重要扩充,学生对于实数的运算,以后还要通过学习二次根式的运算来加深认识,因此本节的作用十分重要。

先通过折纸活动得到,研究是什么数,整数?小数?可以利用底数越大平方越大的方法确定它不是整数,用同样的.方法进一步研究它的小数部分。在研究的过程中,利用“两边夹逼”的方法得到它是一个无限不循环小数,也可以用计算器验证。给了无理数的概念后,让学生举出几个无理数,以巩固无理数的概念。然后从有理数的分类引导他们对实数进行分类。将数从有理数的范围扩充到实数范围后,有理数的所有运算法则和运算律都适用于实数。

反思:

1、对于学生对无理数概念的理解估计不足。对于一种新的概念(或问题),要考虑到学生的思维水平,他们不一定会按照我们的方式去思考,这就往往容易会出现与我们预计结果相差很远,甚至相背离的情况。在今后的教学中自己在备学生时应着重考虑学生可能出现的这样或那样的情况,在教学手段和教学方法上应力求做到更新,以吸引学生的注意力,达到最佳效果。

2、数在数轴上的表示是难点,特别是利用几何作图在数轴上表示,讲得太快,不够清晰,学生掌握的不是很好。对教学的重难点的把握和突破上还得下点功夫。

3、课堂巩固练习太少,双基知识和基本技能没得到很好的训练。

实数的运算教学反思 篇8

在教学《同类二次根式》和《二次根式加减法》时,我首先通过比较简单的二次根式相加的实例,得出二次根式加减的方法,并从中归纳出同类二次根式的概念及同类二次根式加减的.实质。在此基础上,通过一组练习巩固学生对加减法运算方法的掌握,这是我这一节课的授课思路。在授课过程中,我以学生为主体,进行探究性学习,让学生自己发现规律,得出概念。在例题的选择上由简到难,符合学生的认知规律,便于掌握。在得到定义、法则的过程中,让学生经历发现、思考、探究的过程,体会学习知识的成功与快乐。本节课通过小组的合作交流,完善自己的想法,在互相置疑中发现不足,取长补短,形成自己独特的学习方法。课堂的小结在教师的引导下,由学生自己归纳完成。例如,我发现了什么……,我学会了什么……,我能解决什么……,我的最大收获是什么……等。这样有利于强化学生对知识的理解和记忆,提高课堂小结实效性。

《实数》第一课时教学反思 篇9

有理数中的整数,就代表我们班上一些让老师非常放心的同学,他们思想很简单,也热爱学习,他们让老师放心,老师对他们不用费心;

有理数中的分数,即小数,分为有限小数,和无限循环小数,同时也分别代表了代表了一些同学,有限小数代表有时有一些小错,但也没关系,老师提醒了可以理解,也会改正;而无限循环小数,就代表一些同学,犯错误也正常,经常犯一些重复的错误,这些同学老师也知道他们的为人也不坏,也能了解他们,掌握他们。所以他们都归为我们的普通学生。

但是,有些同学很让老师头痛,老师总不晓得他会犯点什么小错误,老师做办公室里都要担心他上课没出什么事吧?没逃学吧??家长总在担心是不是有班主任电话,一接到电话第一反应,他做什么让老师操心的事了。

总是让家长和老师一万个不放心,总想把他栓在自己身边,但无论如何,他们也是我们的同学,所以我们也称他们为同学,也是我们老师的学生,不过就是有点不讲道理,其实我们数,也有一些这样的数,例如——2的算术平方根,大家用计算器算算,看看是什么?(有同学就回答,把计算器算的的得数报出来,)让同学们打开书的第8页,让学生看看电脑算的,让大家说说这个结果有什么特点:

1)计算器算到多少位了?电脑算到多少位了?

2)有没有发生循环?

这些数我们也给它起个名字——无理数,大家能不能说出我们学过的无理数,有那些?

2.6_实数说课稿 篇10

一、说教材

本节课是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》的第六节内容。在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。本节课的教学目标是: 知识与能力

1.了解实数的概念和意义,能对实数按要求进行分类;了解实数和数轴上的点是一一对应的.2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.过程与方法

1.在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。

2.在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。情感态度与价值观

通过探索发现,增强学习数学的兴趣,培养学习的主动性,增强克服困难的勇气。教学重点

1.了解实数意义,能对实数进行分类;

2.在实数范围求相反数、倒数和绝对值、明确实数的运算规律; 3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。教学难点

理解实数与数轴上的点一一对应

二、说学生

本人任教班级的学生基础比较扎实,学习积极性高,求知欲、表现欲强,具有一定的独立思考和探究的能力.三、说教法

根据本节课的教学内容和学生的实际水平,我采用的是引导发现法和多媒体辅助教学。

(1)引导发现法是通过教师的引导、启发,调动学生参与教学活动的积极性,充分发挥教师的主导作用和学生的主体作用。在教学中通过设置疑问,创设出思维情境,然后引导学生动脑、动手,使学生在开放、民主、和谐的教学氛围中获取知识,提高能力,促进思维的发展。

(2)借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的。(这也符合教学论中的直观性原则和可接受性原则。)

(3)教具:三角板、多媒体。

四、说学法 古人说得好,“授人以鱼,只供一饭;教人以渔,终身受用”,我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习、享受学习。因此,在本节课的教学中引导学生“仔细看、动脑想、多交流、勤练习”的学习,加大学生的参与机会,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们“会观察”、“会类比”、“会分析”、“会归纳”的能力。

五、说教学过程

本节课我先引导学生回顾本章有理数的定义及分类,为进一步学习引入无理数后数的范围的扩充作准备。学生通过主动思考并积极回答,相互补充完善了旧知识的复习,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。通过举例明确了无理数的表现形式,为后续判断或者对实数进行分类提供了认知准备。

通过一个例题学生动手填写对有理数和无理数分类,并进行小组交流讨论,对带根号的数是否是无理数有了进一步认识。然后请学生代表发表意见,适当地集中学生的观点,并逐步将其归纳。

接下来学生类比有理数中相关概念,体会到了实数范围内的相反数、倒数、绝对值的意义,并进一步掌握了实数的相反数、倒数、绝对值等知识。

学生类比有理数中相关运算,体会到了实数范围内的运算及运算律。并探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小。然后通过相关练习,检测学生对实数相关知识的掌握情况。最后学生交流,互相补充,完成本节知识的梳理。

布置作业:所布置作业都是紧紧围绕着“实数”的概念及运用。设计选作题是为了给学有余力的学生留出自由发展的空间。

六、教学评价

实数的概念;实数与数轴上的点一一对应;实数的分类是本节课的重点,而实数的有关知识对后续的学习又显得尤为重要,因此本节课中教师的课前准备与课堂组织显得非常重要。在教学过程中,通过创设问题情境,积极引导、启发学生探索思考,使学生学会学习、学会探索、学会研究。同时,借助设计制作的多媒体课件辅助手段,极大地提高了课堂教学效益。学生是课堂的主人,本节课中,学生在教师创设的情境下,自主探索,合作交流,积极参与课堂教学,主动构建新的认知结构,他们学习的积极性得到充分发挥,因此学生的主体地位也得到很好地保证。

七、说板书设计

上一篇:2023年六五普法自查报告下一篇:读爱的教育后感400字左右作文