生物制药技术进展

2025-03-27 版权声明 我要投稿

生物制药技术进展(精选8篇)

生物制药技术进展 篇1

Yanching Institute of Technology(2016)届化工与制药专业现代制药技术论文 题目:现代生物制药技术的研究进展

学院: XXXXXXXXXXXXXXXXXXXXXX 专业:

XXXXX

学号: XXXXXXX

姓名:

Dream

指导教师:林贝

教研室主任(负责人):林贝 2015 年 6 月 4 日

现代生物制药技术的研究进展 Dream 化工与材料工程学院化药1204班学号XXXXXXX 指导教室林贝 摘要

本文简述了近年来基因工程在生物制药技术的发展和应用。其中主要从基因操作中大分子的分离、PCR技术、基因芯片、外源基因的表达这4个方面叙述基因工程相关技术的应用和发展,以及基因工程药物的产业化现状与发展趋势。关键词:生物技术基因工程基因操作技术生物制药 1 基本概念 1.1 生物技术

广义的生物技术是指人类对生物资源(包括动物、植物、微生物)的利用、改造的相关技术。其发展经历了三个不同的阶段——以酿造为代表的传统生物技术,以微生物发酵为代表的近代生物技术,以基因工程、细胞工程、酶工程和蛋白质工程为代表的现代生物技术。

现代生物技术可以理解为是直接操纵有机体细胞和基因的一种全新技术是二十世纪70年代开始异军突起的高技术领域,在医疗、制药、农业、轻工食品及环保业发展迅速。[1]以上的生物技术成果集中应用于医药工业。1.2 现代生物技术两大核心工程 1.2.1 工程 概念:基因工程是分子遗传学和工程技术结合的产物。是现代生物技术的核心它能按人类需要把遗传物质DNA分子从生物体中分离出来,进行剪切、组合、拼装合成新的DNA分子。再将新的DNA分子植入某种生物细胞中,使遗传信息在新的宿主细胞或个体中得到表达,以达到定向改造或重建新物种的目的。1.2.2 细胞工程 概念:利用细胞融合技术把含有不同遗传物质的细胞合成杂种细胞。并使之分裂生长成为杂种生物。它包括体细胞融合、核移植、细胞器摄取和染色体片段的重组等。 1.3 现代生物制药

主要指基因重组的蛋白质分子类药物的制造过程,即利用基因工程、抗体工程或细胞工程技术生产的源自生物体内的天然物质,用于体内诊断、治疗或预防药物的生产过程(也可称基因工程制药)。2 基因操作技术

基因大分子的分离主要指质粒(plasmid DNA)和基因组DNA的分离。质粒分离的常用方法有碱变性抽提法、煮沸法、去污剂裂解法、质粒DNA释放法、酸酚法等。质粒在基因工程中最常用来做成各种克隆载体(cloning vector)或表达载体(expression vector)。质粒载体还可用于RNA干扰(RNA inter-ference)的研究[1](由于这一技术的研究和应用,美国科学家Andrew Z.Fire博士和Craig C.Mello博士获得了2006的诺贝尔生理学或医学奖)。基因组DNA的分离通常采用酚-氯仿法、基因文库(gene library)、Southern杂交以及PCR扩增技术等。其中基因文库是指含有某种生物基因组不同基因片段的一群DNA重组体克隆,包括cDNA文库(com-plementaryDNA library, cDNA library)和基因组DNA文库(genomic library)。最近又有研究者利用名为chum-RNA的小分子RNA建立非PCR扩增的单细胞cDNA文库[2]。2.1 聚合酶链式反应

聚合酶链式反应(polymerase chain reaction,PCR)是一种在体外模拟天然DNA复制过程的核酸扩增技术。该法由Mullis等人于1985年发明,并于1993年获得了诺贝尔化学奖。PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链,重复循环变性--退火--延伸三过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。PCR技术可分为定性PCR和定量PCR。2.2 定性PCR技术

定性PCR技术包括:反转录PCR(reverse transcription PCR, RT-PCR),是从非常少量的mRNA样品构建大容量cDNA文库的方法,还发展出实时RT-PCR用于定量实验[3];多重PCR(multiplex PCR),是指在同一PCR反应体系中加入多对不同的引物,以扩增同一模板的不同区域;反向PCR(inverse PCR),该法可以对一个已知DNA片段两侧的未知序列进行扩增和研究;锚定PCR(an-chored PCR),现称为cDNA末端快速扩增技术(rap-id amplification of cDNA ends,RACE)[4]。2.3 荧光标记分子

定量PCR技术以实时PCR(real time PCR)为代表,其基本原理是在PCR反应体系中引入荧光标记分子,对每一反应时刻的荧光信号积累进行实时监测,计算出PCR产物量,或通过标准曲线法得出初始模板量。2.4 基因芯片

基因芯片(gene chip ormicroarray),是生物芯片的一种,其基本技术包括:核酸方阵的构建、样品的制备、杂交和杂交图谱的检测及读出。根据用途不同可分为表达谱芯片(expression profile chip)、测序芯片和诊断芯片。其中表达谱芯片的应用最为广泛,可用于基因功能分析、疾病发生机制的探讨及药物研究和筛选[5]。(1)确定药靶基因:通过比较正常细胞与异常细胞表达谱之间的差异,从而确定药靶基因。(2)监测药物治疗前后的基因表达变化:该监测可有3方面的作用。一是用于研究药物作用机制,通过监测基因表达的变化,可研究药物作用途径和对细胞信号转导的影响,从而了解该药物的作用机制;二是用于研究药物毒理,从表达谱的改变和异常表达,便可分析药物毒理;三是用于药物筛选,利用用药前后表达谱的改变,通过分析病理、生理、生化原理,能高效地筛选出新的药物或先导化合物。N A 芯片技术在药物基因组学的应用, 一方面可加速药物基因组学的发展;另一方面: D N A 芯片利用药物基因组学的研究成果, 根据基因型将人群划分为各种类型。D N A芯片可自动快速地检测哪些可影响药物效应的基因(为药物代谢酶、药物作用靶标等)例如设计一种淋巴白血病药物基因组芯片, 包括所有可能影响病人化疗反应的基因, 借助于这种芯片, 根据病人的基因型分类, 医生为每一个病人选择合适的治疗药物和剂量。2.5 外源基因

导入宿主细胞的外源基因,通过基因表达得到相应的蛋白质产物。根据宿主细胞的不同可分为原核细胞表达系统和真核细胞表达系统。在外源基因表达时,通常把一个报告蛋白的基因与一个目的蛋白的基因融合在一起,形成融合蛋白,用于目的蛋白的检测与纯化。常用的报告蛋白有β-半乳糖苷酶(β-gal-actosidase)、谷胱甘肽S-转移酶(glutathione s-transfer-ase,GST)、绿色荧光蛋白(green fluorescence protein,GFP)以及硫还蛋白(thioredoxin, Trx)等。其中值得一提的是GFP,2008年8月有3位科学家因此获得诺贝尔化学奖:日本科学家Osamu Shimomura、美国科学家Martin Chalfie、美籍华人科学家钱永健。除了直接标记目的蛋白用于检测与纯化外,还可利用某些GFP具有荧光共振能量转移(fluorescence resonanceenergy transfer,FRET)的现象,用于蛋白质折叠[6]、蛋白质-蛋白质相互作用[7]、信号转导通路等[8]方面的研究。3 现代生物制药的现状

国际上,生物制药业主要集中在美国日本和欧洲,其中美国作为生物制药的发源地,无论是在经费投入、产品开发和研制,还是在产品生产和市场卜都居于国际领先地位,其它开发的产品和市场销售额占全球的90%以上。目前, 美国共有生物制药公司约1400家,具中形成规模生产的有Alzlgen、Seherir一g一Plougll、EliIJ1l一yMcrk、Gelexlteell等20多家公司。日本在生物技术的开发仅次美国, 目前共有生物制药公司约600家,其中麒麟啤洒、中外制药、味之素等著名厂商不仅在日本习内处与生物制药各方面的领先地位,而不断加强世界市场的开拓,进入欧洲和亚洲市场。欧洲在生物技术的开发上稍落后于日本但近两年来欧洲在生物技术的投入和新公司成众的数量上急速增长,目前欧洲的生物制药公司约有300家但还处在发展的开始阶段。

3.1 我国生物制药的现状

至2004年我国有现代生物制药企业114家,其中疫苗生产企业28家,可以生产27种基因工程药物和26种病毒的41种疫苗。按现价统计规定,生物生化制品生产企业全国409家,总产值220亿元,销售收入196亿元。“十五”前四年,平均每年大于20%的速度增长用于该领域的投资不断加大于固定资产平均增长32.5%。我国现已成为世界疫苗最大生产国年产量超过了10亿个计量单位。儿科常见病疫苗年产量达5亿人民币除满足自用外还向世界卫生组织(WHO)提供疫苗产品用于其他国家。3.2 我国生物制药存在的问题及应采取的措施

我国生物制药存在一系列问题开发水平低缺少创新产品生物制药产业下游技术薄弱重复生产严重、资源浪费过大产业化规模小、市场竞争无序。可采取的措施以仿制促进创新最终以创新实现产业飞跃,多渠道建立融资网络改革科研体制建立新的产学研一体化的机制,加强国际交流与合作积极应对国际竞争加强宏观调控强化和规范财税优惠政策。4 基因工程在生物制药中的发展趋势

目前基因工程药物的研发趋势是:(1)发展表达载体:目前最主要的用于生产的表达载体是哺乳动物细胞和大肠杆菌。大肠杆菌属于原核表达系统,没有糖基化功能,只能用于表达功能蛋白不需要糖基化的重组药物,如胰岛素等,且目的蛋白大量表达之后易形成包涵体,不易复性。而功能蛋白需要糖基化的则主要在哺乳动物细胞中表达。也有用真核化的原核表达载体[9]。目前还有“人源化”酵母表达体系和植物表达体系正在发展。(2)对现有的重组药进行基因工程改造和修饰:通过基因工程的改造和修饰使蛋白药物在临床应用上更安全更有疗效,如G-CSF和EPO等突变体药物研究与开发。目前,由于天然基因工程药物品种的研究已经相当普遍,因此采取对现有的重组药进行基因工程改造和修饰的策略,既可以避免侵犯知识产权,又可以为新药研究开辟出新途径。(3)改变给药途径:在继续改进注射用溶液和注射用无菌粉末的稳定性之外,还发展出化学修饰型、控释微球型和脉冲式给药系统。而在鼻腔、口服、直肠、口腔、肺部给药方面也已取得重大进展。5 生物制药研究新进展

5.1 计算机辅助药物设计技术发展

计算机技术的发展和向药物化学学科的渗透,促进了药物设计的发展。20世纪90年代计算机辅助药物设计取得突破性进展,现已成为药物研究和开发的重要方法和工具。

计算机辅助药物设计利用了计算机快速、全方位的逻辑推理功能、图形显示控制功能,并将量子化学、分子力学、药物化学、生物化学和信息科学结合起来,研究受体生物分子与药物结合部位的结构与性质、药物与受体复合物的构型和立体化学特征、药物与受体结合的模式和选择性、特异性、、药物分子的活性基团和药效构象关系等,从药物机理出发,改进现有生物活性物质的结构,快速发现并优化先导化合物,使其尽早进入临床前研究,减少传统的新药研究的盲目性,缩短新药研制的时间。

计算机辅助药物设计有两类方法,一类是基于机理的药物设计(MBDD),另一类是基于结构的药物设计(SBDD),基于机理的药物设计要针对药物作用机理,从靶点出发,考虑药物与受体的作用过程,并要模拟药物在体内的吸收、转运、代谢等动态过程,比基于结构的药物设计更合理,但该法还不成熟。目前的计算机辅助药物设计主要还是基于结构的药物设计,今后的计算机辅助药物设计的目标是向基于机理的药物设计方向发展。相信随着生命科学和计算机科学的发展,考虑药物不同作用机理和全部作用过程的计算机辅助药物设计技术将逐步建立并不断完善。

5.2 组合化学与高通量筛选技术发展

组合化学是近20年发展起来的一种合成大量化合物的新方法,它是建立在高效平行的合成之上,在同一个反应器内使用相同条件同时制备出多种化合物,建立各类化合物库的策略。组合化学通常采用操作、分离简便的固相化学合成。液相化学合成技术也在快速发展和完善中。

在药物研究过程中,通过化合物活性筛选而获得具有药物活性的先导化合物是新药研究的基础。随着分子水平的药物筛选模型的建立,筛选方法和技术都发生了根本性的变化,出现了高通量筛选的新技术,大大加快了先导化合物的寻找和发现,并促进了高通量有机合成。近年来,组合化学与高通量筛选结合,使组合化学的化合物库种类、数量不断扩大,筛选的先导化合物数量和种类也在不断地增多,使新药的种类和数量也在不断地增加。组合化学实现的自动化合成仅20世纪90年代后得到的各类化合物总和已超过了人类有史以来所发现化合物的总和,故有人把组合化学与高通量筛选结合技术称为“新药发现的高速公路”,据文献记载,1992年~1998年的几年,经过组合化学化合物库与高通量筛选,确定的候选药物已有46个,并已进入人体测试阶段。[10]显然,组合化学与高质量筛选的结合技术,大大地加快了新药研制的步伐。虽然如此,组合化学建立的大型化合物库,为筛选也带来了困难,因此,利用组合化学设计,构建具有结构多样性的小型而便于筛选的组合化合物库,结合化学信息学和高通量筛选,将是组合化学与高通量筛选结合的一项重要课题。5.3 药物手性合成技术发展

化学合成技术在新药发现过程中发挥着十分重要的作用。近年来由于有机化学学科新理论、新反应、新技术不断发现,使得合成反应具有化学选择性成为现实,并促进了药物合成技术的快速发展,其中手性合成技术使新药研制的领域不断扩大。

手性是自然界的本质属性。在生物体手性环境,如酶、受体、离子通道、蛋白质、载体中,分子之间手性匹配是分子识别的基础,受体与配体的专一作用,酶与底物的高度、区域、位点和立体催化专一性,抗原与抗体的免疫识别都与手性有关,同时药物的生物应答常受到手性影响,包括药物在体内的吸收、转运、分配、位点活性的作用以及代谢和消除。所以,手性药物的开发是当前医药界重点研究的热点之一,并取得了令人注目的成就。目前已上市的药物中手性药物约占1/3,如2000年全球手性药物销售额达1233亿美元。手性药物的制备技术主要有拆分法、化学合成法和生物合成等三大类,发展较快的是后二类。化学合成法是在不对称催化剂存在下,利用化学反应的动力学和热力学不对称性,进行单一对映体合成。在已上市的手性药物中,其手性中间体均可通过现有的重(双)键不对称还原技术,特别是不对称氢化和不对称转移氢化来合成。至今为止在不对称催化合成中,昂贵的手性配体和贵金属的使用,以及手性催化剂的催化效率仍是制约其在手性技术上应用的关键。因而,手性催化剂的设计和合成,以及催化剂的回收循环使用是当今不对称催化合成研究的方向。

生物合成法则利用催化剂, 酶-催化反应的高度、底物、区域、位点和立体选择性来合成手性药物。生物合成法具有选择性高、产率高、反应条件温和等特点,随着科学技术的发展,生物合成法将成为手性制备的高效手段。5.4 药物生物技术发展[11] 生物技术药物是指利用DNA重组技术或单克隆抗体技术或其它生物技术研制的蛋白质、抗体或核酸类药物,它是目前生物技术研究最为活跃的领域,给生命科学的研究和生物制药工业带来了革命性变化。参考文献

[1]宋现让,柳永蕾,刘贤锡,等.质粒载体系统介导的人肿瘤细胞RNA干扰作用[J].基础医学与临床, 2005, 25:807-812.[2] Tougan T,Okuzaki D,NojimaH.Chum-RNA allows prep-aration of a high-quality cDNA library from a single-cellquantity of mRNA withoutPCR amplification [J].NucleicAcidsResearch, Online, 2008, 36: e92.[3] Haddad F, Qin AX, Giger JM,et al.Potential pitfalls inthe accuracy of analysis of natural sense-antisense RNApairs by reverse transcription-PCR [ J].BMC Biotechnolo-gy, 2007, 7: 21-35.[4]邓雪柯,殷建华,曹毅.3种5′-RACE技术的比较与优化[J].成都医学院学报, 2007, 2: 20-25.[5]江禾,王友群.基因芯片技术与药物的研究和开发[J].世界临床药, 2008, 29: 104-107.[6] HoY, LoHR, Lee TC,et al.Enhancement of correctpro-tein foldingin vivoby a non-lytic baculovirus [ J].Bio-chem, 2004, 382: 695-702.[7]CallejaV, AlcorD, LaguerreM,et al.Intramolecular andIntermolecular Interactions of Protein Kinase B Define ItsActivationin vivo[J].PLoS Bio,l 2007, 5: 780-791.[8]XU XH, Meier-Schellersheim M, Yan JS,et al.Locallycontrolled inhibitorymechanisms are involved in eukaryoticGPCR-mediated chemosensing [ J].J Cell Bio,l 2007,178: 141-153.[9]袁志刚,张进平,王缨,等.真核化的原核表达系统增强HBV preS2/s基因免疫的效果[J].中国免疫学杂志,2007, 23: 6-12.[10]赵立希, 孙晶晶, 蒋永平.基因工程技术在生物制药领域的应用和发展[J].基础医学与临床, 2009,(09)

生物制药技术进展 篇2

一、制药废水的处理工艺及方法的选择

制药废水的水质特点决定了其单独采用生化处理无法达到要求, 所以在生物处理之前要进行预处理, 必须要设有调节池, 并且根据实际情况决定采取哪种具体方案, 以准确地降低废水中的SS及部分COD, 减少废水中的生物物质, 还有利于后期的处理。若水质要求较高时还应进行好氧处理达到处理效果。总的路线为预处理-厌氧-好氧-组合工艺, 并包括水解吸附-接触氧过滤等综合处理废水, 水质优于一级标准, 都取得了很好的处理效果。

二、好氧微生物法

在制药工艺过程中所产生的污水大多为有机且高浓度的, 所以通常在进行好氧微生物处理前需要将高浓度的废水进行稀释, 但是这样就需要增加工艺环节, 使整个工艺的动力损失增大, 可生化性降低。通常好氧处理也不会单独地使用在一个处理工艺中, 而是先进行预处理, 因为直接生化处理后很难达到排放标准。随着处理工艺技术的进步与发展, 好氧微生物处理在科研人员的努力下推出了深井曝气法、生物接触氧化法、间歇活性污泥法 (SBR法) 、吸附生物降解法 (AB法) 、氧化沟、循环式活性污泥法 (CASS法) 、活性污泥法等处理效率比较好的工艺, 在世界各地被广泛应用, 当然这些工艺也适用于制药废水的处理。

1. 深井曝气法。

根据亨利定律, 气体在水中的溶解氧与水压有关, 深水曝气可使曝气的转移率和水中溶解氧的浓度大幅度提高。美国帝国公司认为, 在水深100 m的条件下, 氧利用率可达90%, 动力效率可达6㎏O2/k W·h, 大大节约了动力消耗, 使处理成本降低。耐冲击负荷性能好, 受气温影响小, 深井曝气的深度可达100 m~300 m, 废水进入与回流污泥在井上部混合后, 混合液沿井内中心管以1 m/s~2 m/s的流速向下流动, 高速高效地处理了废水。

2. AB工艺。

AB工艺是吸附生物降解工艺的简称, 是在常规活性污泥法和两段活性污泥法基础上发展起来的一种新型污水处理技术。AB工艺就是吸附+传统活性污泥法, 所以运行费用低。A级为高负荷的吸附级;B级为常负荷吸附级, 污泥负荷为A、B两级串联运行独立回流形成两种各自与其水质和运行条件对应的完全不同的微生物群落。AB工艺具有A级细菌繁殖和变异能力强, BOD去除率高, 出水水质好, 运行稳定可靠等优点。

3. 生物接触氧化法。

生物接触氧化法是从生物膜生出来的一种废水生物处理法, 即在生物接触氧化池内装填一定数量的填料, 利用填料上的生物膜和充分供应的氧气, 在生物氧化的作用下, 将废水节能型有机分解, 从而达到净化的目的。生物处理是经过物化处理后的环节, 也是整个过程中最重要的环节, 在这里, 氨/氮、亚硝酸、硝酸盐、硫化氰等有害物质都将得到去除, 对以后流程中水质的进一步处理起到关键的作用, 具有运行管理简便、投资省、处理效果好等优点, 对制药废水的处理有很好的分解作用。

4. SBR法。

SBR法也称序批式活性污泥工艺。近年来, 国内外一些大中型污水处理厂已采用该项工艺。SBR法具有工艺流程简单、运行维护量小、运行稳定、操作灵活等特点。

三、厌氧生物处理

厌氧生物处理法是厌氧微生物在无氧的条件下将高浓度有机废水或污泥中的有机物分解, 最后产生甲烷或二氧化碳等气体。生物处理的对象包括有机污泥、高浓度有机污水、生物质等。其应用范围广、能耗低、负荷高、剩余污泥少等是此方法的优点。

1. 氧化沟工艺。

氧化沟是一种呈封闭环状沟渠的污水处理建筑物, 污水与活性污泥的混合液在曝气沟中经长时间的循环流动而得到净化。从本质上看氧化沟工艺是传统活性污泥工艺的一种变形。氧化沟的工作原理及过程包括推流式和完全混合式两种。当污水与混合液在沟内进行连续循环时, 一般污水进入沟中, 平均循环几十圈, 才能流出沟外。这就具备了二者的双重特点。当高浓度的废水进入沟后, 其浓度很快被稀释, 这就是氧化沟工艺抗冲击负荷能力强的原因。其次, 氧化沟具有推流式的特征, 所以氧化沟是综合了推流式和完全混合曝气式的优点。对应以上特点, 氧化沟内浓度一般都很高, 系统泥龄也很长, 在这样的条件下, 出水水质一般都能充分地进行好氧消化, 是一种具有很大发展前景的污水好氧处理工艺。

2. UBF法。

UBF即厌氧复合床, 通过实验将UASB与UBF的处理效果进行比较。实验数据表明, UBF的优势明显:UBF的分离效果更好, 处理能力更强。UBF是比UASB更加高效的厌氧反应器。

3. 水解酸化法。

生物质能源工程技术研究进展 篇3

关键词:生物质能源;工程技术;环境保护;农村发展

中图分类号: S216.2 文献标识码:A 文章编号:1674-1161(2016)01-0067-03

未来科技、经济和社会发展的竞争首先是能源的竞争。目前,全世界约85%的能源是通过燃烧化石燃料获得的,按现在的消费量推算,世界石油资源在今后50~80 a间将消耗殆尽。因此,开发和利用新能源来替代化石能源,已得到世界各国的高度重视。2002年,在约翰内斯堡举行的世界峰会上,各国首脑取得了共识:发展可再生能源对人类可持续发展至关重要。我国作为农业生产大国,生物质资源数量巨大,每年农业生产废弃物产量约为6.5亿t,到2015年,产量可达7.3亿t,可产生超过12 EJ的能量。

1 发展生物质能源工程技术的意义

1.1 保障国家能源安全

近年来,随着经济的持续快速发展,能源需求不断增加,我国正面临着严峻的能源安全形势。2005年,全国一次能源消耗量已达到22.2亿标准煤,约占世界能源消耗总量的15%,是世界第二大能源消耗国。“十一五”至2020年是我国全面建设小康社会的重要时期,能源需求将持续增长,因此,积极开发生物质能源、逐步减少化石能源消耗、提高可再生能源利用比重,是我国保障能源安全的重要战略举措。

1.2 保护环境及可再生资源

我国能源消费结构以煤为主,是世界第一大煤炭生产和消费国。2005年,我国煤炭消费量为21.4亿t,占一次能源消费总量的68.7%。大量燃用煤炭造成了严重的环境问题。据统计,全国CO2排放总量的90%是由燃煤造成的,酸雨面积已占全国的1/3,大气污染损失已相当于全国GDP的10%。预计2030年,我国可能成为世界第一排放大国。开发利用清洁的、丰富的生物质能是有效替代化石能源、减少污染物排放、保护环境、实现可持续发展的重要措施。

1.3 促进农村经济发展

我国有80%的人口生活在农村,秸秆和薪柴等生物质能是农村的主要生活燃料,不仅利用效率低,而且造成严重的室内外环境污染,危害人体健康。而在华东、华南地区,富裕起来的农民对优质能源的需求日益增加,直接燃用秸秆等低品位的能源越来越少,导致大量农业废弃物被焚烧在田间。按照全国生物质能开发利用工作会议上确定的目标设想,如果到2020年我国实现1.1亿t标准煤的开发利用量,将创造产值2 000多亿元,推动相关行业产值2 000多亿元。其中,农村经济产值将增加1 000亿元,增加就业机会50万~100万个,这对我国新农村和小城镇建设将起到十分重要的推动作用。

2 国内外生物质能源研究现状

2.1 国外

2.1.1 生物质热解气化技术 自20世纪70年代起,美国开始研究以城市生活垃圾、木材、秸秆为原料的热解回收能量技术。热解气化所得可燃气可直接燃烧,用于供暖、做饭、城市煤气和燃气发电。欧美国家的生物质气化发电技术处于领先水平,美国总装机容量已达9×103 MW,单机容量达10~25 MW,预计2020年将达3×105 MW;丹麦建有许多小型的利用木材和秸秆的气化炉,用于家庭冬季供暖;瑞典能源中心采用生物质气化和联合循环发电等先进技术在巴西建立了一座装机容量为20~30 MW的蔗渣发电系统。

2.1.2 生物质液化技术 最早从事生物质液化技术研究的是美国矿物局匹兹堡能源研究中心,其在35 ℃及高压条件下,以碳酸钠为催化剂,把木屑转化成重油。近年来,欧洲等国在生物质液化技术方面开展了大量研究。其中,德国在此方面处于较高的研究水平,如德国的Choren工业公司于2002年在Freigerg建立了一个大型的生物质液化示范工厂,使用的原料主要是木屑和秸秆。该工厂已生产出高品质的生物燃油,达到车用燃油要求,生产成本接近同热值的化石燃料。

目前,有关液化技术的研究主要集中在如何提高液化产物收率、寻求高效精制技术、降低运行成本、实现产物综合利用和工业化生产等方面。Lappas等采用循环流化床反应器对木质素类生物质进行快速直接液化,发现在生物质中加入一定比例的二氧化硅和ZSM—5后,生物质能有效地被催化裂解成液体产物,液体产物的收率高达70%以上。同时,该技术与常规液化技术相比,液体中有机物的含量明显提高,而副产物水、焦炭和气体产物的比例明显降低。

2.1.3 生物质乙醇化技术 乙醇可以通过含糖、淀粉或纤维素的生物质发酵过程得到,但以作物秸秆为原料生产乙醇的技术难度就大多了,主要的解决方法是对作物秸秆进行各种处理,以提高纤维素酶的水解效率。最有发展前景的途径是,通过基因工程技术培养出能产生高效纤维素水解酶的生物新菌种。尽管以作物秸秆为原料生产乙醇还有很大的难度,但国内外在此方面还是进行了很多的研究。在美国环保署的支持下,2001年在加州建立了一个大型的以作物秸秆为原料生产乙醇的示范工厂,以评价这种技术和工艺的经济性和应用的可行性。

2.2 国内

我国于20个世纪50年代开始秸秆气化技术的研究。到目前为止,秸秆气化技术比较完善,甚至在某些方面处于世界领先水平。

中国科学院广州能源研究所在循环流化床气化发电方面取得了一系列进展,成功开发出4MWe的秸秆气化技术。通过开展生物质整体气化联合循环技术研究,建设并运行了多套气化发电系统。西安交通大学着重于生物质超临界催化气化制氢方面的基础研究。中国林业科学院林产化学工业研究所在生物质流态化气化技术、内循环锥形流化床富氧气化技术方面取得了成果;天津大学着重于生物质流化床快速热解-催化蒸汽重整制氢及催化气化技术的开发研究,目前正在进行生物质流化床高效气化供气系统的开发;中国科技大学进行了生物质等离子体气化、秸秆气化合成等技术的研究;清华大学进行了生物质流化床热解气化及气化过程的混合神经网络模型研究;山东大学开发了下吸式固定床气化技术;山东省科学院能源研究所开发了低焦油二步法气化技术;浙江大学对双流化床气化技术进行了研究,并开发示范了中热值气化供气与发电装置;华中科技大学进行了流化床的气化研究;东南大学提出了串联流化床零排放制氢技术路线;同济大学进行了生物质固定床气化过程的研究。此外,哈尔滨工业大学、上海交通大学、中国科学院山西煤炭化学研究所、江汉大学、华南理工大学、太原理工大学、河南省科学院能源研究所等单位也取得了一些特色性的研究进展。

nlc202309031317

我国是世界上开展沼气技术研究最早的国家之一。全国建有沼气池的农户在600万户以上,建成大中型沼气池460多座。大中型沼气池年处理有机废物3 000万t左右,其中主要是动物粪便和作物秸秆。目前,厌氧消化技术主要向以下几方面发展:一是大型化、工业化;二是开发以作物秸秆为主原料的厌氧消化技术;三是沼气的工业化应用。我国小型户用沼气技术已相当成熟,无论在技术上还是在推广使用上,均处于国际领先地位。但大中型沼气项目比较少,无法适应工业化的需求。北京化工大学在农业部的支持下,在山东省泰安市建立了我国也是世界上第一个以作物秸秆为“主”原料的大规模厌氧消化装置。建设9个反应器,总反应体积450 m3,年可消耗玉米秸288 t、牛粪360 t,其中,玉米秸秆的使用量占干物质总量的60%以上;年生产沼气69 120 m3,可为全村180户农户提供生活用能,同时还可生产出104 t有机肥料。该项目在技术上有两大重要突破:一是对难以生物降解的玉米秸秆进行化学预处理,明显提高了玉米秸的可厌氧消化性;二是利用太阳能加热反应器提高消化温度和效率,使反应器在春季和秋季实现中温消化,在夏季实现高温消化。结果显示,与一般的厌氧消化系统相比,该系统的消化效率和产气量可提高1倍以上。

我国开展作物秸秆液化技术的研究起步较晚。张全国等利用玉米秸秆液化技术制得生物焦油,它是由烃类、酚类、酸类、醛类、酯类等多种有机成分组成的混合物;蒸馏所得140~200 ℃轻质馏出物,各方面性能指标与车用柴油相近,可作为发动机燃料的替代品;而200 ℃以上重质馏出物可进一步加工制造焦油抗聚剂、抗氧剂、工业杂酚和生物沥青增塑剂等化学品。2004年,Song等利用热重分析法对玉米秸秆液化技术进行了深入研究,发现碳酸钠对液化过程有明显的促进作用。当碳酸钠加入量高于1.0%时,液化的活化能随之降低,差热质量分析曲线由2个峰变为1个峰;在3 mL/min水溶剂与25 MPa压力下对玉米秸秆进行液化时,其液化率可达95%以上,生物油的收率可提高到47.2%。徐保江等开发了作物秸秆液化制生物油旋转锥式生物质热解系统,该模型可为所需固体滞留期设计出适宜的反应器锥角、结构尺寸、热载体、粒径等工艺参数,提高了生物质油的收率和液化反应器的设计能力。

3 结论

生物质能应用技术的研究开发,在现阶段主要是从生态环境、环境保护的角度出发,从中长期来看,可弥补资源有限性的不足。因此,生物质能源开发利用的社会效益远远大于经济效益,需要国家的政策扶持和财力支撑,并制订相关政策鼓励和支持企业投资生物质能源开发项目。

我国有丰富的生物质资源,但人均资源相对偏小,因此,在生物质应用技术发展方向上,我国分散的能源系统应首先满足农村乡、镇、村不断增长的能量需求,重点解决居民生活用能,减少化石能源尤其是煤炭的使用。在经济条件较发达的乡村地区应大力推广木煤气化系统,同时推广成型燃料及专用取暖炉以取代煤炉取暖的小型锅炉,并着手研发专门使用生物质的直接燃料锅炉。

国家在科研项目安排方面,应给生物质能应用研究留一定的空间,强化生物质能化学转换中的催化降解、直接和间接液化机理,高产生物能基因及其变异性规律,生物转化微生物“杂交”等基础理论和应用研究,加强生物质研究领域的国际交流与合作,引进国外先进的生物质利用技术和设备,加快我国生物质开发利用的步伐,建立符合我国国情的生物质能开发利用结构体系。

湖泊水华生物防治技术研究进展 篇4

湖泊水华生物防治技术研究进展

介绍了利用植物和微生物防治湖泊水体富营养化和抑制水华藻类生长的相关研究进展,讨论了生物技术在湖泊水华防治中存在的问题,并对相关研究前景进行了展望.

作 者:胡光济 张维昊 HU Guang-ji ZHANG Wei-hao 作者单位:武汉大学资源与环境科学学院,武汉,430079刊 名:安全与环境工程英文刊名:SAFETY AND ENVIRONMENTAL ENGINEERING年,卷(期):15(3)分类号:X524关键词:水华 生物技术 化感作用 微生物抑藻

生物制药技术进展 篇5

海水养殖废水的生物处理技术研究进展

当前海水养殖废水的排放量已超过陆源污水,是导致海洋环境不断恶化的`重要原因之一.为了保护海洋环境,减少疾病传播,海水集约化养殖废水经处理后方能排放入海已成为海水养殖业发展的必然趋势.由于海水盐度效应和海水养殖废水污染结构的特殊性,增加了养殖废水的处理难度,研究海水养殖废水处理技术十分必要.文章综述了国内外海水养殖废水生物处理技术研究现状和存在的问题,认为应该加强在工艺选择、处理能力与效能以及微生物等方面的研究.

作 者:宋志文 王玮 赵丙辰 孙贤风 Song Zhi-wen Wang Wei Zhao Bing-chen Sun Xian-feng  作者单位:青岛理工大学环境与市政工程学院,青岛,266033 刊 名:青岛理工大学学报  ISTIC英文刊名:JOURNAL OF QINGDAO TECHNOLOGICAL UNIVERSITY 年,卷(期): 27(1) 分类号:X172 关键词:海水养殖   养殖废水   硝化细菌   废水处理   生物处理  

生物制药技术进展 篇6

微污染水源水化学生物预处理技术研究现状与进展

摘要:针对我国水源水质日益恶化的现状,根据近年来国内在微污染源水的预处理方面取得的成果,通过比较、分析化学与生物预处理技术,综合分析评价了化学与生物技术的优缺点、以及在工程应用中的实践效果.对微污染源水预处理技术的发展前景进行了展望,指出今后的`水处理技术将化学、生物等方法有机结合起来,充分发挥各自的技术特点及优势进行综合治理,从而达到最低成本下的最佳去除效果.作 者:操龙玉    刘宏远    Cao Longyu    Liu Hongyuang  作者单位:操龙玉,Cao Longyu(浙江工业大学,浙江,杭州,310014;中国新型建筑材料工业,杭州设计研究院,浙江,杭州,310003)

刘宏远,Liu Hongyuang(浙江工业大学,浙江,杭州,310014)

期 刊:广东化工   Journal:GUANGDONG CHEMICAL INDUSTRY 年,卷(期):, 37(4) 分类号:X5 关键词:微污染水源水    预处理   

生物丁醇提取技术研究进展 篇7

关键词:丁醇,吸附,萃取,汽提,渗透汽化

丁醇生物发酵一般是利用丙酮丁醇梭菌在严格厌氧条件下进行的,其主要产物是丁醇、丙酮和乙醇,含量约为6∶3∶1, 简称ABE发酵。丙酮丁醇发酵过程中,会产生大量的有机酸 ( 乙酸、丁酸) 和有机溶剂 ( 乙醇、丙酮、丁醇) ,丙酮、丁醇对菌体生长都有一定的抑制作用,特别是丁醇,当其浓度达到1% ~ 2% 时,菌体生长就会受到严重的抑制。因此,在发酵过程中采用有效的方法移除产物ABE,降低产物的浓度,使得产物抑制作用降低,可以提高发酵产率和底物的利用率。目前用于分离丙 酮、 丁醇梭菌 发酵产物 的方法主 要有吸附 ( absorption) 、液 - 液萃取技术( liquid - liquid extraction) 、气提技术( gas stripping) 和渗透汽化技术( pervaporation) 等等。

1吸附

采用吸附法分离丙酮—丁醇发酵产物,是将吸附剂直接置于发酵液中吸附产物。近年来主要集中在使用硅藻土、活性炭、聚合树脂作为吸附剂的研究上。

硅藻土具有孔隙度高、吸附性强、容重小、熔点高、隔热、吸声、折射率低、化学性能稳定等特点,因而被广泛应用于许多领域。Meagher等[1]利用硅藻土进行丙酮丁醇发酵液的吸附试验,发现硅藻土可以选择性地吸附丁醇和丙酮,吸附能力分别达到48 mg/g和11 mg/g。Maddox[2]利用硅藻土吸附丁醇浓度为11. 7 ~ 16. 8 g/L的发酵液,发现其吸附能力范围为64 ~ 85 mg / g。可以看出,硅藻土是良好的丁醇吸附剂。吸附于硅藻土上的丁醇可以通过加热的方法将其解吸附,丁醇解吸附过程中,吸附的水加热到40 ℃ 时移去,而丁醇则在150 ℃ 时分离。Meagher等[3]研究发现硅藻土78 ℃ 时解吸丁醇、丙酮和乙醇,提取率分别达到100% ,95. 5% 和80. 0% 。

此外,许多研究者还对各种碳材料和聚合树脂进行了丁醇吸附研究,也取得了 很好的效 果。Groot等[4]利用活性 炭 ( Norit W52和Norit ROW 0. 8) 、聚合树脂 ( XAD - 2、XAD - 4、 XAD - 8 ) 进行吸附实验发现,Norit ROW 0. 8的吸附能力最强, 达到252 mg/g。 Yang等[5]利用聚乙 烯吡啶 ( polyvinylpyridine,PVP) 吸附丁醇,发现聚乙烯吡啶可以吸附丁醇和丁酸,所以产酸期有机酸抑制减弱。有机酸浓度下降就可以吸附更多的丁醇,并且菌体在产溶剂期会受到更少的抑制。另有研究者进行了bonopore、Amberlite XAD - 4、Amberlite XAD - 7等材料的吸附实验,都取得了良好的效果 ( 表1)[6]。

注: c 表示不吸附糖类,e 表示没有获得数据,N 表示没有报道。

2液-液萃取技术

液液萃取的原理是非水溶性有机萃取剂与发酵液混合,由于ABE在萃取剂中的溶解度比在水中的溶解度要大,因此, ABE在有机相中被选择性的分离浓缩,实现ABE从发酵液中移除出来。

杨立荣等[7]利用油醇进行萃取研究,发现油醇对丙酮丁醇梭菌没有毒性,当初始葡萄糖浓度为110 g/L时,水相丁醇浓度为5. 12 g/L,折合水相丁醇浓度为16. 27 g/L,折合水相总溶剂浓度为33. 63 g/L。在液液萃取过程中,有些溶剂对发酵中的关键中间产物( 比如丁酸) 也具有很强的萃取能力,会对溶剂的形成带来一定的影响,故有研究者先使用中间产物使萃取剂达到饱和状态再进行ABE萃取。G. Eckert等[8]利用丁酸浓度达到饱和状态的癸醇作为萃取剂,癸醇在提取发酵液中具有足够高的分配系数和选择性分离丁醇,在连续发酵中丁醇的生产能力从0. 51 g/( L·h) 提高至1. 96 g/( L·h) ,总溶剂从0. 78 g/ ( L·h) 提高到3. 08 g/( L·h) ,说明其生产能力得到了很大的提高。

液—液萃取技术简化了连续发酵工艺,而且由于发酵液萃取之后还可以进行回收并在补充营养物质之后再次发酵,大大减少了生产过程中污水排放量,节约了生产成本。但是,由于萃取剂存在价格昂贵、对菌体有一定的毒性和萃取发酵中间产物等问题,给液液萃取技术应用于生产上带来了一定的难题。

3气提技术

气提与丙酮丁醇发酵耦合分离ABE提高发酵效率的原理主要是利用气体( 如氮气或发酵自产气体) 在发酵液中产泡,气泡截获ABE后在一个冷凝器中压缩收集。当溶液被浓缩后,气体重新回收利用进入发酵容器截留更多的溶剂。因而,气提降低能耗并提高 发酵产率 及底物的 利用率。Ezeji等[9]研究了C. beijerinckii BA101利用高浓度的P2合成培养基并采用补料与气提技术耦合发酵ABE,结果表明采用该技术ABE的产率和产生速率分别为0. 47 g/g和1. 16 g/( L·h) ,比对照组提高了4倍。

气提法的效率受到载气循环速度、气泡大小、消泡剂等众多因素的影响。Ezeji等[10]发现汽提法耦合发酵过程中,丁醇提取效率与气体循环速度大小有关,气泡大小并不影响丁醇的提取效率。但是,气泡直径小于0. 5 mm时,会产生大量的泡沫影响丁醇发酵的体积。为了不产生大量的泡沫,在气体循环过程中加大气泡的直径,使得气泡离开发酵液后迅速破泡,从而解决汽提法中产生泡沫的问题。

4渗透汽化技术

渗透汽化主要是利用膜的选择性从发酵液中移除挥发性组分,而营养物质、糖以及微生物细胞等被截留下来,分离的组分通过浓缩回收。

渗透汽化—发酵的耦合工艺既有利于发酵产率的提高,也有利于提高底物的利用率,同时对发酵体系无污染,是一种清洁、无污染的新型分离技术。Qureshi等[11,12]将渗透汽化用于C. beijerinckii BA101发酵液中丁醇的去除,产生总溶剂浓度为51. 5 g / L,是对照组总溶剂产量的两倍,而且渗透汽化膜分离技术对没有不良影响。而在渗透汽化( 硅树脂膜) 耦合补料连续发酵中,P2培养基的总溶剂达到165. 1 g/L,溶剂生产率从0. 35 g / ( L·h) 提高到0. 98 g / ( L·h) 。

渗透汽化技术中膜性能受到膜本身性质影响较大。Jitesh等[13]研究丁苯橡胶( SBR) 、二元乙丙二烯基橡胶( EPDM) 、聚二甲基硅氧烷 ( polydimethysilo - xane,PDMS) 和填充硅藻土的聚二甲基硅氧烷等膜材料吸附ABE的效果,结果发现在二元混合物中,填充15% 硅藻土的聚二甲基硅氧烷性能最好,而在四元混合物中,SBR的性能最好。张春芳等[14]利用ZIF - 8 ( Zn[Melm]2( Melm = 2 - 甲基咪唑) ) 填充聚二甲基硅氧烷,当ZIF - 8添加质量 分数为2% , 在60 ℃ , 料液质量 分数为0. 96% 的条件下,PDMS / ZIF - 8膜的分离因子及通量最高可达49. 24和8. 43 kg·μm / ( m2·h) 。

5结语

生物制药技术进展 篇8

关键词:城市土壤;重金属污染;植物修复技术;大生物量非超富集植物;综合评估筛选法

中图分类号:X53 文献标识码:A DOI编码:10.3969/j.issn.1006-6500.2014.03.011

城市土壤因受人类活动强烈影响而区别于自然土壤,主要指厚度大于50 cm的非农用土壤,通常出现在城市和城郊区域[1-3]。城市化过程中的工业发展、城建工程的实施和居民日常生活等人类活动排放的污染物,以各种形式直接或间接地进入城市土壤,改变了城市土壤的理化属性,造成了城市土壤的重金属污染[4]。城市土壤重金属既可通过直接接触密集的城市人群而危害人体健康,又可通过对大气、水体的影响而影响城市生态环境,进而影响生命安全[5-6]。城市土壤既可以为城市绿色植物的生长提供养分,是其必不可少的生长介质,又可以为土壤微生物提供栖息地,是其能量的重要来源之一,所以城市土壤是城市生态系统尤为重要的组成部分,与城市生态环境息息相关[5]。因此,城市土壤重金属污染修复技术成为国内外学者研究的热点领域。

1 城市土壤重金属污染现状

原成土母质和人为活动是城市土壤重金属的来源,其中工业生产、机动车辆尾气排放、生活垃圾堆弃等人为活动是造成城市土壤重金属污染的主要因素。一方面,人为活动产生的重金属以气溶胶的形式进入大气,经过干湿沉降间接进入土壤;另一方面,附着于废弃物中,直接排入城市土壤,造成重金属污染,甚至污染地下水。并且城市土壤重金属污染具有一定的空间分布特征,总体表现为城区内部土壤重金属含量明显高于郊区,并且交通干线两侧、人类活动密集区、老工业区重金属污染较为严重,而受人为活动影响较小的风景区、公园等功能区土壤重金属污染则属于中低度污染和轻微生态风险。

城市土壤Pb、Zn、Cu、Cd等重金属多介质复合污染给人体健康带来了极大的风险。食物链传递研究表明,重金属已经不同程度地污染了我国的城市郊区菜地土壤[7-9],重金属含量已超标的蔬菜大量向城市供应。除此之外,以扬尘为载体进入大气的城市土壤重金属,最终可通过人体的新陈代谢作用而进入体内并逐渐积累,从而直接威胁到人体健康。研究表明,北方沙尘暴天气发生时,大气环境中土壤重金属元素浓度迅速增加,Pb、Zn、Cu、Cd的浓度比平常高出3~12倍[10-11]。据相关研究部门统计,上海市大约有1/3的大气颗粒物来自于土壤扬尘[7]。此外,城市土壤重金属元素的积累对植物、动物、微生物的生理生态等方面也产生一定的毒害,导致城市土壤的退化。

2 土壤重金属污染修复研究现状

近年来,科研工作者不断探索重金属污染土壤的修复技术,使物理、化学和生物等修复技术得到了较快的发展。由表1可知,尽管这些物理、化学修复手段对治理重金属污染土壤具有非常重要的实践意义,但仍具有投资大、修复效率低、对周围环境干扰性大、易导致次生污染等诸多缺点。相比较而言,尽管植物修复技术有着种质资源较少、修复效果待改善和植物生长条件等局限性,但其仍具有技术和经济上的双重优势,不仅能够利用绿色植物的新陈代谢活动来修复土壤环境中的重金属污染,而且具有一定的观赏价值,有助于园林城市的建设。

广义的植物修复技术是在多学科交叉点上发展起来的新技术,建立在植物对某种或某些化学元素的耐性和积累性基础之上,利用植物及其根际共存微生物体系的吸收、挥发、降解和转化作用来清除环境中的污染物的一门环境污染治理技术[12]。通常所说的植物修复技术是指选择具有吸收富集土壤中污染元素能力的植物,并将该植物种植于特定重金属污染的土壤上,随着该植物收获和植物组织器官的妥善处理,便可移除土体中的该种污染重金属,最终达到污染治理与生态修复污染土壤的目的[13]。这种技术因为其在土壤污染治理方面的巨大应用潜力,吸引了各国相关领域的科学家进行相关研究,并取得了一定的进展。

2.1 超富集植物修复技术

现今已经发现的超富集植物约500多种,主要分布在气候温和的欧洲、美国、新西兰及澳大利亚的污染区,但利用植物修复污染土壤则是近几十年的工作。目前,关于超富集植物对重金属耐性和积累性机理、修复性能改进及应用技术等方面的研究已经在全世界范围内展开,并且也取得了一定的进展。此外,植物修复技术商业化因其工程性的试验研究以及实地应用效果,在未来具有巨大的商业前景。

2.2 超富集植物修复的局限性

超富集植物在修复土壤重金属污染方面表现出显著的生态效益、社会效益和经济效益。尽管利用植物修复技术修复重金属污染土壤具有廉价、有效、使土壤免受扰动等优点,但是在实际应用中,超富集植物由于其固有的特点,大大限制了在植物修复技术中的应用。第一,大部分超富集植物生物量低下,严重制约了修复效率,且植株矮小,不便于机械化作业;第二,超富集植物引种易受到地域性限制,因其多为野生植物种质资源,区域性分布较强,难以适应新的生物气候条件;第三,超富集植物往往只适用于某种特定的重金属元素,具有较强的专一性,对土壤中其他含量较高的重金属则表现出中毒症状,从而在重金属复合污染土壤修复中的应用受到了限制;最后,超富集植物根、叶、果实等器官机械折断、凋谢或腐烂等途径使重金属重返土壤,易造成二次污染,间接降低了修复效率。

2.3 大生物量非超富集植物与超富集植物修复技术

Ebbs等[16]认为超富集植物以外的其他大生物量非超富集植物也具有修复重金属污染土壤的可能性,并提出农作物地上部可观的生物量能够补偿地上部较低的重金属含量的观点。周振民等[17]指出了大生物量非超富集植物修复技术是一项非常有发展潜力的植物修复技术。因此植物修复技术走向工程实践的主要任务是筛选与开发大生物量、富集重金属能力强且具有观赏性的复合型修复植物。

3 土壤重金属污染大生物量植物修复技术研究进展

现有超富集植物种质资源贫乏,并且其具有自身的局限性,修复效果也有待于进一步加强,故植物修复技术还不成熟。另外,评价植物修复重金属污染的标准是重金属迁移总量,然而已经发现的超富集植物因其生物量小、生长缓慢而使重金属迁移总量相对较低,自然种群中存在着对重金属具有一定耐性的大生物量植物,虽然其单位质量的重金属含量尚不满足超富集植物的定义,但此时其所积累的重金属绝对量反而比超积累植物的绝对量大。因此大生物量非超富集植物对城市土壤重金属的修复作用更大。

3.1 大生物量修复植物的优势

以大生物量植物种质资源作为筛选修复植物对象是有依据的,一方面,大生物量修复植物具备普通植物的功能特点;另一方面,大生物量修复植物还有普通植物不具备的诸多优点。主要表现为:

(1)高生物量植物种质资源丰富,有着巨大的潜力,可为筛选提供坚实的基础;

(2)在进行城市土壤修复、调控大气环境的同时,能够美化环境,一举两得;

(3)具备观赏性的大生物量修复植物,不会进行食物链的传递积累,减少了对人体的危害;

(4)大生物量植物对人类健康也有着一定的作用,如油松、核桃、桑树等对杆菌和球菌的杀菌力均极强,花卉芳香油可抗菌,提高人体免疫力,可作为保健食品或调控大气环境;

(5)在长期的生产实践中,品种选育、植物栽培以及病虫害防治等经验日益丰富。因此,筛选大生物量植物修复城市土壤重金属污染是可行的。

3.2 大生物量植物的耐性与积累性研究

4 大生物量修复植物的判断标准与筛选

由周振民等[17]对重金属污染土壤大生物量修复植物进行的综合研究可知,其筛选对象主要为部分农作物、杂草、树木和花卉。修复城市土壤的大生物量植物应具有一定的生态功能和观赏价值,按观赏部位可分为观花的、观叶的、观芽的、观茎的、观果的五类;从低等到高等植物,从水生到陆生;有草本也有木本,有灌木、乔木和藤木,种类繁多。因此筛选既具有观赏性又具有生态修复功能的大生物量修复植物就尤为重要了。

为了便于采取定性与定量相结合的综合评估分析法筛选出具备此能力的大生物量修复植物,这就要求植物符合一定的判定标准。耐性特征、积累特征、观赏性和生态调控功能是主要的评定指标,其中耐性特征和积累特征是最基本的判断标准。耐性植物应该能够在较高重金属污染浓度的土壤上完成生命周期,并且污染处理的植物地上部生物量与对照植物的地上部生物量相比没有明显的下降,这才说明该植物对重金属污染的土壤具有一定的耐性。积累特征以转移系数和富集系数综合表示,李庚飞等[25]研究表明,在利用大生物量非超富集植物进行重金属污染修复时,若植物对某重金属元素的转移系数和地上部分富集系数均大于0.1,说明植物对该金属元素具有富集的潜力。此外,植物观赏性和固碳释氧、吸收有毒有害气体等生态调控功能等指标的纳入,对采用综合评估筛选法进行复合型修复植物的筛选更有意义。

大生物量植物种类繁多,盲目地筛选是不科学的。因此首先应该搜集资料,调查各种植物的特点及其本身生长习性,从中初选出最有可能成为修复植物的种质资源进行研究,之后再进一步确认。例如,可从受污染严重的区域采集仍然能够正常生长的物种进行试验,或从生长不易受环境影响的物种着手。初选大生物量修复植物在一定程度上可由植物的根、茎、叶初步判断[26]。生物量与株高成正比,而生物量越大,修复效率也相应增大,因此株高是修复植物的重要选择依据。为使筛选出的修复植物具有更好的实践性,也应尽量地人为模拟与特定重金属污染城市土壤条件相一致的环境条件,利用盆栽试验筛选出大生物量复合型修复植物。

5 结 语

我国对植物修复重金属污染土壤的研究起步较晚,筛选工作做得不多,大量有潜力的修复植物还有待发现,尤其是以大生物量修复植物为筛选对象将成为一个突破口。总的来说,用大生物量修复植物修复污染土壤的潜力巨大。在城市污染土壤修复中,大面积地应用与其他手段相结合的大生物量修复植物,既可以美化环境,又能带来巨大的经济效益。因此进一步提高大生物量修复植物的修复效率,应从生态位的理论出发,开展植物品种的筛选与培育、复合修复技术应用、修复效果验证试验等方面的研究,以适应城市需要,并将植物修复、观赏植物苗木生产、园林景观建设与生物质能利用有机结合,形成环境污染修复产业,走循环利用绿色发展之路。

参考文献:

[1] 张磊,宋凤斌,王晓波.中国城市土壤重金属污染研究现状及对策[J].生态环境,2004,13(2):258-260.

[2] 张甘霖,朱永官,傅伯杰.城市土壤质量演变及其生态环境效应[J].生态学报,2003,23(3):539-546.

[3] 黄勇,郭庆荣,任海,等.城市土壤重金属污染研究综述[J].热带地理,2005,25(1):14-18.

[4] Chen J.Rapid urbanization in China: A real challenge to soft protection and food security[J].Catena,2007,69(1):1-15.

[5] De Kimpe C R, Morel J L.Urban soil management: A growing concern [J].Soil Science,2000,165:31-40.

[6] 李敏,林玉锁.城市环境铅污染及其对人体健康的影响[J].环境监测管理与技术,2006,18(5):6-10.

[7] 黄益宗,郝晓伟,雷鸣,等.重金属污染土壤修复技术及其修复实践[J].农业环境科学学报,2013,32(3):409-417.

[8] 张勇.沈阳郊区土壤及农产品重金属污染的现状评价[J].土壤通报,2001,32(4):182-186.

[9] 王庆海,却晓娥.治理环境污染的绿色植物修复技术[J].中国农业生态学报,2013,21(2):261-266.

[10] 王玮,岳欣,刘红杰,等.北京市春季沙尘暴天气大气气溶胶污染特征研究[J].环境科学学报,2002,22(4):494-498.

[11] 庄国顺,郭敬华,袁蕙,等.2000年我国沙尘暴的组成、来源、粒径分布及其对全球环境的影响[J].科学通报,2001,46(3):191-197.

[12] 盛连喜,冯江,王娓,等.环境生态学导论[M].北京:高等教育出版社,2002:76-79.

[13] 吴志强,顾尚义,李海英,等.重金属污染土壤的植物修复及超积累植物的研究进展[J].环境科学与管理,2007,32(3):67-72.

[14] Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants [J].Journal of Geochemical Exploration,1977(7):49-57.

[15] Chaney R L. Plant uptake of inorganic waste constituents [C]//PARR J F. Land Treatment of Hazardous Wastes. Noyes Data Corporation, New Jersey:Park Ridge,1983:50-76.

[16] 韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1 196-1 203.

[17] 周振民,朱彦云.土壤重金属污染大生物量植物修复技术研究进展[C]//第三届全国农业环境科学学术研讨会论文集.天津:[出版社不详],2009.

[18] 刘维涛,张银龙,陈喆敏,等.矿区绿化树木对镉和锌的吸收与分布[J].应用生态学报,2011,19(4):725-756.

[19] 黄会一,蒋德明,张春兴,等.木本植物对土壤中镉的吸收、积累和耐性[J].中国环境科学,1989,9(5):323-330.

[20] 余国营,吴燕玉,王新.杨树落叶前后重金属内外迁移循环规律研究[J].应用生态学报,2009,7(2):201-208.

[21] 王广林,张金池,庄家尧,等.31种园林植物对重金属的富集研究[J].皖西学院学报,2011,27(5):83-87.

[22] 许妍,周启星.天津城市交通道路扬尘排放特征及空间分布研究[J].中国环境科学,2012,6(12):34-39.

[23] 刘家女,周启星,孙挺.Cd-Pb复合污染条件下3种花卉植物的生长反应及超积累特性研究[J].环境科学学报,2006,26(12):2 039-2 044.

[24] 陈辉蓉,吴振斌,贺锋,等.植物抗逆性研究进展[J].环境污染治理技术与设备,2001,2(3):7-13.

[25] 李庚飞,程书强.金矿周围树木对土壤重金属的吸收[J].东北林业大学学报,2013,41(1):55-58.

[26] 刘家女,周启星,孙挺,等.花卉植物应用于污染土壤修复的可行性研究[J].应用生态学报,2007,18(7):1 617-1 622.

[8] 张勇.沈阳郊区土壤及农产品重金属污染的现状评价[J].土壤通报,2001,32(4):182-186.

[9] 王庆海,却晓娥.治理环境污染的绿色植物修复技术[J].中国农业生态学报,2013,21(2):261-266.

[10] 王玮,岳欣,刘红杰,等.北京市春季沙尘暴天气大气气溶胶污染特征研究[J].环境科学学报,2002,22(4):494-498.

[11] 庄国顺,郭敬华,袁蕙,等.2000年我国沙尘暴的组成、来源、粒径分布及其对全球环境的影响[J].科学通报,2001,46(3):191-197.

[12] 盛连喜,冯江,王娓,等.环境生态学导论[M].北京:高等教育出版社,2002:76-79.

[13] 吴志强,顾尚义,李海英,等.重金属污染土壤的植物修复及超积累植物的研究进展[J].环境科学与管理,2007,32(3):67-72.

[14] Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants [J].Journal of Geochemical Exploration,1977(7):49-57.

[15] Chaney R L. Plant uptake of inorganic waste constituents [C]//PARR J F. Land Treatment of Hazardous Wastes. Noyes Data Corporation, New Jersey:Park Ridge,1983:50-76.

[16] 韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1 196-1 203.

[17] 周振民,朱彦云.土壤重金属污染大生物量植物修复技术研究进展[C]//第三届全国农业环境科学学术研讨会论文集.天津:[出版社不详],2009.

[18] 刘维涛,张银龙,陈喆敏,等.矿区绿化树木对镉和锌的吸收与分布[J].应用生态学报,2011,19(4):725-756.

[19] 黄会一,蒋德明,张春兴,等.木本植物对土壤中镉的吸收、积累和耐性[J].中国环境科学,1989,9(5):323-330.

[20] 余国营,吴燕玉,王新.杨树落叶前后重金属内外迁移循环规律研究[J].应用生态学报,2009,7(2):201-208.

[21] 王广林,张金池,庄家尧,等.31种园林植物对重金属的富集研究[J].皖西学院学报,2011,27(5):83-87.

[22] 许妍,周启星.天津城市交通道路扬尘排放特征及空间分布研究[J].中国环境科学,2012,6(12):34-39.

[23] 刘家女,周启星,孙挺.Cd-Pb复合污染条件下3种花卉植物的生长反应及超积累特性研究[J].环境科学学报,2006,26(12):2 039-2 044.

[24] 陈辉蓉,吴振斌,贺锋,等.植物抗逆性研究进展[J].环境污染治理技术与设备,2001,2(3):7-13.

[25] 李庚飞,程书强.金矿周围树木对土壤重金属的吸收[J].东北林业大学学报,2013,41(1):55-58.

[26] 刘家女,周启星,孙挺,等.花卉植物应用于污染土壤修复的可行性研究[J].应用生态学报,2007,18(7):1 617-1 622.

[8] 张勇.沈阳郊区土壤及农产品重金属污染的现状评价[J].土壤通报,2001,32(4):182-186.

[9] 王庆海,却晓娥.治理环境污染的绿色植物修复技术[J].中国农业生态学报,2013,21(2):261-266.

[10] 王玮,岳欣,刘红杰,等.北京市春季沙尘暴天气大气气溶胶污染特征研究[J].环境科学学报,2002,22(4):494-498.

[11] 庄国顺,郭敬华,袁蕙,等.2000年我国沙尘暴的组成、来源、粒径分布及其对全球环境的影响[J].科学通报,2001,46(3):191-197.

[12] 盛连喜,冯江,王娓,等.环境生态学导论[M].北京:高等教育出版社,2002:76-79.

[13] 吴志强,顾尚义,李海英,等.重金属污染土壤的植物修复及超积累植物的研究进展[J].环境科学与管理,2007,32(3):67-72.

[14] Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants [J].Journal of Geochemical Exploration,1977(7):49-57.

[15] Chaney R L. Plant uptake of inorganic waste constituents [C]//PARR J F. Land Treatment of Hazardous Wastes. Noyes Data Corporation, New Jersey:Park Ridge,1983:50-76.

[16] 韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1 196-1 203.

[17] 周振民,朱彦云.土壤重金属污染大生物量植物修复技术研究进展[C]//第三届全国农业环境科学学术研讨会论文集.天津:[出版社不详],2009.

[18] 刘维涛,张银龙,陈喆敏,等.矿区绿化树木对镉和锌的吸收与分布[J].应用生态学报,2011,19(4):725-756.

[19] 黄会一,蒋德明,张春兴,等.木本植物对土壤中镉的吸收、积累和耐性[J].中国环境科学,1989,9(5):323-330.

[20] 余国营,吴燕玉,王新.杨树落叶前后重金属内外迁移循环规律研究[J].应用生态学报,2009,7(2):201-208.

[21] 王广林,张金池,庄家尧,等.31种园林植物对重金属的富集研究[J].皖西学院学报,2011,27(5):83-87.

[22] 许妍,周启星.天津城市交通道路扬尘排放特征及空间分布研究[J].中国环境科学,2012,6(12):34-39.

[23] 刘家女,周启星,孙挺.Cd-Pb复合污染条件下3种花卉植物的生长反应及超积累特性研究[J].环境科学学报,2006,26(12):2 039-2 044.

[24] 陈辉蓉,吴振斌,贺锋,等.植物抗逆性研究进展[J].环境污染治理技术与设备,2001,2(3):7-13.

[25] 李庚飞,程书强.金矿周围树木对土壤重金属的吸收[J].东北林业大学学报,2013,41(1):55-58.

上一篇:临沂大学事业编考试下一篇:运动会跳绳的加油稿