机械设计与机械制造英语专业术语英语翻译

2024-08-03 版权声明 我要投稿

机械设计与机械制造英语专业术语英语翻译(推荐9篇)

机械设计与机械制造英语专业术语英语翻译 篇1

qit quality improvement team 品质改善小组

pdca plan do check action 计划 执行 检查 总结

zd zero defect 零缺点

qi quality improvement 品质改善

qp quality policy 目标方针

tqm total quality management 全面品质管理

mrb material reject bill 退货单

lql limiting quality level 最低品质水准

rma return material audit 退料认可

qan quality amelionrate notice 品质改善活动

adm absolute dimension measuremat 全尺寸测量

qt quality target 品质目标

7qctools 7 quality controll tools 品管七大手法

ecn engineering change notes 工程变更通知(供应商)

eco engineering change order 工程改动要求(客户)

pcn process change notice 工序改动通知

≤第一范文 网整理该文章,版权归原作者、原出处所有≥

pmp product management plan 生产管制计划

sip specification in process 制程检验规格

sop standard operation procedure 制造作业规范

is inspection specification 成品检验规范

bom bill of material 物料清单

ps package specification 包装规范

spec specification 规格

机械设计与机械制造英语专业术语英语翻译 篇2

进入21世纪以来, 随着高等教育大众化步伐的加快, 高等职业教育呈现出快速发展的形势。社会对高等职业教育的认识在不断加强, 高等技术应用型人才及其培养的重要性也正在被越来越多的人所认同。[1]

拥有熟练的专业技术加上优良的专业英语无疑就是高技能紧缺人才。高职专业英语应根据本专业工作岗位的实际需要, 立足“能力本位”, 以综合职业能力培养为目的, 工学结合, 帮助学生掌握本专业听、说、读、写、译的语言基本技能, 实现高职人才的培养目标。[2]高职院校机械类专业英语教学以提高学生职业综合能力为目标, 其主要任务是通过专业英语的学习, 是学生能够掌握机械工程常用专业词汇及术语, 能够借助专业词典阅读、理解本专业英文资料、设备 (产品) 说明书, 初步具备专业英语的翻译能力。[3]

2. 高职类机械工程专业英语现状

机械工程专业英语的特点是: (1) 词汇多。专业英语中的词汇专业性强, 组合词、缩略词和派生词多; (2) 句型复杂。科技文献中的句子多以长句为主, 其结构复杂, 且常出现名词化结构、后置定语、虚拟语气和被动语态等结构。[4]高职院校机械工程专业英语的现状主要体现在以下几个方面:

2.1 专业英语的教材缺乏系统性和实用性。

现在国内使用的教材大多选用外国原版书籍的章节或片段进行翻译而成, 难度深浅不一, 不能与学生现有专业知识进行有效对接, 与实际应用相结合的内容也较少。

2.2 专业英语的教学模式和教学方法仍多以“填鸭式教学”为主。

学生处于被动听讲状态, 教学内容单一, 课堂气氛也不活跃。往往课程学完了, 很多学生仍然不能独立完成专业文章的阅读和翻译[5], 更谈不上专业听说能力的培养提高了。

2.3 专业英语的考核方式过于单一落后。

因为专业英语课程通常都是考查课, 一般采用开卷考试或者文献翻译等方式进行。学生认为考查课老师要求低, 期末考试容易及格, 学习的动力和压力很小, 学习的主动性低, 也大大降低了教学效果。

2.4 专业英语师资水平有待进一步提高。

机械专业英语的师资队伍建设缺少专业化英语教学培训, 对专业英语教学研究不够, 专业英语教师各自为阵, 没有形成统一的评估标准和体系等。

3. 高职类机械工程专业英语教学改革实施

高职院校机械工程专业英语应以能力培养为本位, 以训练为手段, 以实践为基础, 将学生培养成专业领域内的实用型和应用型的高技能人才。[6]针对高职院校机械工程专业英语教学现状, 结合多年的专业英语教学经验, 提出以下思考:

3.1 合理整合教学资源, 创新教材教案

任何教师在讲授机械专业课程相关知识时, 最离不开的是机械制图, 文字、图片、照片、实物等维度的信息载体会增强在机械类专业英语教学中的记忆。因此, 我们的教材应在内容上紧扣机械工程领域, 形式上采用图文、英汉同步跟随的编写形式, 使学生在学会某个名词、动词的英语表达时, 更容易回忆起与课堂内容相似或相同的情节, 使得相关专业词汇脱口而出。同时, 应让学生在学的过程中以看图识字形式为主, 对专业术语进行汇总、归纳、对比、反衬、集中, 使记忆效果达到举一反三的目的。[7]

在专业文章的选取过程中, 大部分的教材更注重文章的科技性、前沿性, 以及各版块的主题性, 而往往忽视了文章的难易性。学生在刚开始接触专业文献的时候, 应该循序渐进, 由易到难, 增加刚开始学习的兴趣和信心, 以便更好地进行后续课程的学习。

在制定教案的过程中, 应充分利用网络教学平台, 和切入当下的新媒体、新事物, 利用电影、视频、语音播放等多种方式, 体现出专业特色, 达到思想性与科学性、实用性与趣味性的统一。

3.2 重视实用性, 强调应用性, 创新重组教学模式

在教学方法上, 教师应充分发挥学生的主观积极性, 在课堂教学环节上, 努力使授课内容丰富多彩, 授课方式多样化, 培养学生学习英语的兴趣。在教学中, 配合授课内容, 播放一些与之相关的英文视频, 让学生始终处于学习情景当中, 课堂气氛活跃幽默。[8]

正如古语“授之以鱼, 莫若授之以渔”, 只给予“鱼”而忽略了“渔”, 反而培养了被动接受的惰性。因此, 培养学生独立学习的能力应当突出学习方法的传授, 并在教学活动中巩固良好的学习方法, 使之成为学习习惯。即便专业英语课已经结束, 只要掌握了良好的学习方法和习惯, 学生遇到类似情况时也会展开习惯性地思考、总结, 从而进行独立学习。

3.3 改革专业英语课程考核评价体系

加强对高职学生英语应用能力的培养, 建立多元评价体系, 转变考核方式及考核目标, 也是加强专业英语教学的重要一环。在考核中, 应加大对平时出勤率、课后作业、课堂听说表现等方面的考核。同时结合实际、注重技能, 让学生进行科技文献的翻译, 更能综合检验出学生的阅读质量和翻译水平。

结语

经济全球化, 生产全球化以及企业分布的全球化, 使得制造型企业越来越重视专业英语能力的培养。[9]为了培养21世纪与我国社会主义现代化需求相适应的、具备综合职业能力和全面素质的、直接在各个行业服务和管理第一线工作的高级应用型人才, 培养学生专业英语的应用能力, 必须加强专业英语教学, 使高职毕业生能学有所用, 能把所有掌握的英语知识运用到实际工作中去。我们要不断总结经验, 积极思考和参与教育教学改革, 这对于提高我们的教学成果, 加速我国高等职业教育与国际现代化教育接轨的步伐有重要意义。

参考文献

[1]董建国.机械专业英语[M].陕西:西安电子科技大学出版社, 2010.

[2]汤彩萍.机械专业交际英语[M].北京:电子工业出版社, 2011.

[3]管俊杰.机械工程专业英语[M].北京:北京大学出版社, 2010.

[4]张元军.高职机械工程专业英语教学改革的研究与实践[J].科技创新导报, 2011, 24.

[5]李鑫.高职机械工程专业英语教学模式的研究与实践[J].吉林省教育学院学报, 2010, 08.

[6]程福.机械专业英语阅读教程[M].大连:大连理工大学出版社, 2008.

[7]朱派龙.机械工程专业英语图解教程[M].北京:北京大学出版社, 2013, 09.

[8]张爱玲.高职教育应加强专业英语教学[J].青岛职业技术学院学报, 2003, 09.

机械专业英语实践性教学优化策略 篇3

关键词:机械专业;英语;实践性教学

一、高职机械专业英语实践教学现状

1.学生英语水平参差不齐

从生源质量的角度来分析,本科生和高职生之间存在一定的差异。高职学生的英语整体水平相对较低,其中,部分学生的英语水平甚至都达不到平均水平。因此,高职英语的教学内容如果超过了学生的实际学习能力,那么教学活动就很难顺利进行。由于各方面的原因,学生的学习方法上也会存在不同,这就对高职英语的教学活动产生不好的影响。

2.教师的教学方法过于单一

在高职英语教学中,学校的教学理念比较传统,这在很大程度上会对整体教育模式产生束缚。此外,受传统应试教育的影响,许多高职教师在英语教学过程中,采用讲解式的教学策略,对于学生主体地位不够重视。在实际的高职教学过程中,教师往往把自己作为教学的核心部分,并没有真正重视学生的反应,这一点对于学生学习能力的提升存在很大的阻碍。

3.英语考核方法不够科学

目前我国许多学校依然使用传统的教学考核评价体系,终结性测试重视课程内容的掌握,对于学生的语言应用能力则缺乏足够的重视。虽然全国高等学校英语等级考试可以对学生的英语水平进行一定的测试,但这种考查方式具有较大的局限性,难以将学习者的实际学习效果真正反映出来,并且过分注重卷面成绩,将会使学生变成考试机器,难以促进学生英语综合能力的提升。

二、机械专业英语实践性教学优化策略

1.及时转变教学理念

从某种意义上讲,在能力本位教育中所强调的是学生的主体作用,提升学生的自主学习能力。在这一教学理念中,教师的主要教学目标是培养学生的自主学习意识,提高学生的自主学习能力。从本质上来讲,只有激发学生的学习主动性,才能真正从传统教学模式中将学生与教师解放出来,为实践教学的顺利开展提供有利条件,并形成一种教学相长、共同进步的良好氛围。通过强化师生之间的沟通与交流,提升学生的英语运用能力。例如,在实际的课堂教学过程中,应当加强对学生的积极引导,使之能够主动提出问题,一方面,可以锻炼学生“说”的能力,另一方面,能够活跃课堂气氛。

2.培养学生学习兴趣

在实际的学习过程中,兴趣是最好的老师。对于高职学生来说,其往往因为自身基础差、底子薄,缺乏对英语的实际运用能力,难以真正高效地对单词有一个全面的掌握。所以,在实际的英语教学过程中,教师应当对相应的教学内容进行精心的组织安排,通过制订科学的措施,强化学生对该学科的学习兴趣。例如,教师可以组织英语演讲比赛、朗读比赛等活动,为学生创造一个运用英语进行交流的平台。

3.健全教学考核体系

要想有效提高学生的英语运用能力,教师要对教学考核体系加以优化与完善。在进行教学活动的最终评价时,教师不能够只注重考试成绩,要从全局出发,对学生的学习态度、实践效果等进行全面评价。就学生的考评而言,教师要充分重视学生的综合能力。此外,为了能够更好地展现学生的实际英语运用水平,应当引导其参与相应的社会测评考试,并通过测评,对学生的实际应用能力进行准确评价。需要特别注意的是,应采用一些过程性考核模式,对学生进行综合、客观的评价。

4.丰富课外活动内容

首先,就高职教学来说,其往往存在各种各样的比赛,因此,学生可以通过口语比赛的形式,进行口语的锻炼。此外,在学生完成相对专业的口语训练之后,教师可以对其进行充分引导,使之积极参与省市的口语比赛,这样不仅能够激发学生对于英语学习的兴趣,丰富学生的实践能力,还能够进一步提高学生的英语演说能力与自信。其次,除了参加比赛以外,学生可以积极参与校园英语广播台活动或英語角活动,自由地表达自己的想法,提高自己的口语交际能力。

三、结语

总而言之,在高职机械专业的英语教学过程中,对理论知识的学习和对英语语言的实际运用,是两个需要同时进行的关键性要素。完善与落实英语教学模式,可以充分调动学生的主动参与性,提高学生的学习兴趣,引导其积极参与各种实训活动,真正将英语的理论形式转化成应用模式;完善英语的考核制度,可以确保实践教学的顺利实施。

参考文献:

机械设计与机械制造英语专业术语英语翻译 篇4

GB/T15706.1-2007

机械安全 基本概念与设计通则 第1部分:基本术语和方法

Safety of machinery-Basic concepts,general principles for design-Part1:Basic terminology,methodology

目次

前言

引言

范围 规范性引用文件

术语和定义 设计机械时需要考虑的危险

减小风险的策略

附录A(资料性附录)机器的图解表示

用于GB/T 15706的专用术语和表述的英中文对照索引

参考文献

前言

GB/T 15706《机械安全 基本概念与设计通则》由两部分组成:

——第1部分:基本术语和方法;

——第2部分:技术原则。

本部分为GB/T 15706的第l部分。

本部分等同采用国际标准ISO12100-1:2003《机械安全 基本概念与设计通则 第1部分:基本术语和方法》(英文版),并按照我国标准的编写规则GB/T 1.1-2000做了编辑性修改。

本部分与ISO12100-1:2003的不同为:将标准正文后面的英法德三种文字对照的索引改为英中两种文字对照的索引。

本部分代替GB/T 15706.1-1995《机械安全 基本概念与设计通则 第1部分:基本术语、方法学》。

本部分由全国机械安全标准化技术委员会(SAC/TC 208)提出并归口。

本部分负责起草单位:机械科学研究总院中机生产力促进中心。

本部分参加起草单位:长春试验机研究所、南京食品包装机械研究所、吉林安全科学技术研究院、中国食品和包装机械总公司、中联认证中心、广东金方圆安全技术检测有限公司。

本部分主要起草人:聂北刚、李勤、王学智、居荣华、肖建民、宁燕、王国扣、隰永才、张晓飞、富锐、程红兵、孟宪卫、赵茂程。

本部分所代替标准的历次版本发布情况为:

——GB/T 15706.1-1995。

引言

GB/T 15706的首要目的是为设计者提供总体框架和指南,使其能够设计出在预定使用范围内具备安全性的机器。同时亦为标准制定者提供标准制定的策略。

机械安全的概念是指在风险已经被充分减小的机器的寿命周期内,机器执行其预定功能的能力。

本部分是机械安全系列标准的基础标准。该系列标准的结构为:

——A类标准(基础安全标准),给出适用于所有机械的基本概念、设计原则和一般特征。

——B类标准(通用安全标准),涉及机械的一种安全特征或使用范围较宽的一类安全防护装置:

a)B1类,特定的安全特征(如安全距离、表面温度、噪声)标准;

b)B2类,安全装置(如双手操纵装置、联锁装置、压敏装置、防护装置)标准。

——C类标准(机器安全标准),对一种特定的机器或一组机器规定出详细的安全要求的标准。

本部分属于A类标准。

若C类标准的内容偏离本标准第2部分或B类标准的规定,则以C类标准为准。

建议将本部分纳入培训课程和手册,以便设计者掌握基本术语和通用设计方法。

本部分起草时已参照了ISO/IEC指南51《安全特征 关于标准中该类条款的指南》的内容。

机械安全 基本概念与设计通则 第1部分:基本术语和方法

范围

本部分规定了用于实现机械安全的基本术语和方法。

本部分陈述的条款供设计者使用。

本部分不涉及家畜、财产或环境的损害或损坏。

规范性引用文件

下列文件中的条款通过GB/T 15706的本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本部分。

GB/T 15706.2-2007 机械安全 基本概念与设计通则 第2部分:技术原则(ISO12100-2:2003,IDT)术语和定义

下列术语和定义适用于本部分。

3.1

机械 machinery

机器 machine

由若干个零部件组合而成,其中至少有一个零件是可运动的,并且有适当的机器致动机构、控制和动力系统等。它们的组合具有一定应用目的,如物料的加工、处理、搬运或包装等。

术语“机械”和“机器”也包括为了同一个应用目的,将其安排、控制得像一台完整机器那样发挥它们功能的若干台机器的组合。

注:附录A给出了机器的一般图示。

3.2

可靠性(机器的)reliability(of a machine)

机器、机器的零部件或装置在规定的条件下和规定的期限内执行规定功能且不出现故障的能力。

3.3

可维护性(机器的)maintainability(of a machine)

根据实际情况,采用特定的方法对机器执行所需的各种维护活动,使其实现或恢复预定使用条件下功能状态的能力。

3.4

易用性(机器的)usability(of a machine)

机器所具有的,由于其特点或特征,使得机器的功能很容易理解,容易使用的能力。

3.5

伤害 harm

对健康产生的生理上的损伤或危害。

3.6

危险 hazard

潜在的伤害源。

注1:“危险”一词可由其起源(例如:机械危险和电气危险)。或其潜在伤害的性质(例如:电击危险、切割危险、中毒危险和火灾危险)进行限定。

注2:本定义中的危险包括:

——在机器的预定使用期间,始终存在的危险(例如:危险运动部件的运动、焊接过程中产生的电弧、不健康的姿势、噪声排放、高温);

——意外出现的危险(例如:爆炸、意外启动引起的挤压危险、泄漏引起的喷射、加速/减速引起的坠落)。

3.7

相关危险 relevant hazard

已识别出的机器本身存在的或由机器引起的危险。

注:相关危险是GB/T 16856所述的过程中某一步骤的结果。

3.8

重大危险 significant hazard

属于相关危险,需要设计者根据风险评价采用特殊方法去消除或减小的风险。

3.9

危险状态 hazardous situation

指人员暴露于具有至少一种危险的环境。这类暴露可能会立即或在一定时间之后对人员产生伤害。

3.10

危险区 hazard zone/danger zone

使人员暴露于危险的机械内部和(或)其周围的任何空间。

3.11

风险 risk

伤害发生概率和伤害发生的严重程度的综合。

3.12

遗留风险 residual risk

采取保护措施之后仍然存在的风险(见图1)。

注:本部分中,遗留风险是:

——在设计者采取保护措施之后的遗留风险;

——采用了所有的保护措施之后的遗留风险。

3.13

风险评价 risk assessment

包括风险分析和风险评定在内的全过程。

3.14

风险分析 risk analysis

机器限制的确定、危险的识别和风险的评估的组合。

3.15

风险评估 risk estimation

确定伤害可能达到的严重程度和伤害发生的概率。

3.16

风险评定 risk evaluation

以风险分析为基础,判断是否已达到减小风险的目标。

3.17

充分减小风险 adequate risk reduction

至少在现有的技术水平下,根据合理的要求进行的风险减小。

注:确定风险是否充分减小的判据在5.5中给出。

3.18

保护措施 protective measure

用于达到风险减小的措施。这些措施是由下列人员实施的:

——设计者(本质安全设计、安全防护和附加防护措施、使用信息);

——使用者(组织方面:安全工作程序、监督、工作许可制度;附加安全防护装置的提供和使用;个人防护装置的使用;培训)。

见图1。

3.19

本质安全设计措施 inherently safe design measure

通过改变机器设计或机器工作特性,而非使用防护装置或保护装置,来消除危险或减小与危险相关的风险的保护措施。

注:标准GB/T 15706.2-2007的第4章,探讨了通过本质安全设计方法减小机器风险。

3.20

安全防护 safeguarding

使用安全防护装置保护人员的措施。这些保护措施使人员远离那些不能合理消除的危险或者通过本质安全设计方法无法充分减小的风险。

注:标准GB/T 15706.2-2007的第5章对安全保护措施进行了详细描述。

3.21

使用信息 information for use

由信息载体(如文本、文字、标记、信号、符号、图表)组成的保护措施。这些载体可以单独或组合使用,向使用者传递信息。

注:GB/T 15706.2-2007中第6章对使用信息进行了详述。

3.22

机器的预定使用 intended use of a machine

按照使用说明书提供的信息使用机器。

3.23

可预见的误用 reasonably foreseeable misuse

不是按设计者预定的方法而是按照容易预见的人的习惯来使用机器。

3.24

安全防护装置safeguard

防护装置或保护装置。

3.25

防护装置 guard

机器的组成部分,用于提供保护的物理屏障。

注1:防护装置可以:

——单独使用,对于活动式防护装置,只有当其“闭合”时才有效,对于固定式防护装置,只有当其处于“锁定位置”才有效;

——与带或不带防护锁的联锁装置结合使用,在这种情况下,无论防护装置处于什么位置都能起到防护作用。

注2:根据设计,防护装置可以称作外壳、护罩、盖、屏、门和封闭式装置。

注3:防护装置的类型及其要求。见GB/T 15706.2-2007中5.3.2和GB/T 8196。

3.25.1

固定式防护装置 fixed guard

以一定方式(如采用螺钉、螺帽、焊接)固定的,只能使用工具或破坏其固定方式才能打开或拆除的防护装置。

3.25.2

活动式防护装置 movable guard

不使用工具就能打开的防护装置。

3.25.3

可调式防护装置 adjustable guard

整体或者部分可调的固定式或活动式防护装置。在特定的操作期间,调整件保持固定。

3.25.4

联锁防护装置 interlocking guard

与联锁装置联用的防护装置,同机器控制系统一起实现以下功能:

——在防护装置关闭前,其“抑制”的危险的机器功能不能执行;

——在危险机器功能运行时,若打开防护装置,则发出停机指令;

——在防护装置关闭后,防护装置“抑制”的危险的机器功能可以运行,防护装置本身的关闭不会启动危险机器功能。

注:GB/T 18831给出了详细规定。

3.25.5

带防护锁的联锁防护装置 interlocking guard with guard locking

与联锁装置、防护锁定装置联用的防护装置,同机器控制系统一起实现以下功能:

——在防护装置关闭和锁定前,其“抑制”的危险机器功能不能够执行;

——在防护装置“抑制”的危险机器功能所产生的风险消失之前,防护装置保持关闭和锁定状态;

——在防护装置关闭和锁定后,被防护装置“抑制”的危险机器功能可以运行,防护装置本身的关闭和锁定不会启动危险机器功能。

注:GB/T 18831给出了详细的规定。

3.25.6

具有启动功能的联锁防护装置 interlocking guard with a start function

可控防护装置 control guard

特殊联锁防护装置,一旦其到达关闭位置,便发出触发机器危险功能的命令,无须使用离合启动控制。

注:GB/T 15706.2-2007中5.3.2.5给出了关于使用条件的详细规定。

3.26

保护装置 protective device

防护装置以外的安全装置。

注:3.26.1~3.26.9给出了保护装置的实例。

3.26.1

联锁装置 interlocking device

联锁 interlock

用于防止危险机器功能在特定条件下(通常是指只要防护装置未关闭)运行的机械、电气或者其他类型的装置。

3.26.2

使动装置 enabling device

与启动控制一起使用并且只有连续操动时才能使机器运行的附加手动操作装置。

注:GB 5226.1—2002中9.2.5.8给出了使动装置的规定。

3.26.3

止-动控制装置hold-to-run control device

只有当手动控制装置(致动机构)动作时才能触发并保持具有危险性的机器功能运行的控制装置。

3.26.4

双手操纵装置 two-hand control device

至少需要双手同时操作才能启动和保持危险机器功能的控制装置,并以此为该装置的操作人员提供一种保护措施。

注:GB/T 19671给出了详细的规定。

3.26.5

敏感保护设备 sensitive protective equipment(SPE)

用于探测人体或人体局部,并向控制系统发出正确信号以降低被探测人员风险的设备。当人体或人体局部超出预定范围,如进入危险区(触发),或在预定区域内检测到有人存在(现场感应),或在以上两种情况均发生时,敏感保护设备将发出信号。

3.26.6

有源光-电保护装置(AOPD)active opto-electronic protective device(AOPD)

通过光-电发射和接收元件完成感应功能的装置,可探测特定区域内由于不透光物体出现引起的该装置内光线的中断。

注:GB/T 19436.2给出了详细的规定。

3.26.7

机械抑制装置 mechanical restraint device

在机构中引入了能靠其自身强度防止危险运动的机械障碍(如楔、轴、撑杆、止转棒)的装置。

3.26.8

限制装置 limiting device

防止机器或危险机器状态超过设计限度(如空间限度、压力限度、载荷力矩限度等)的装置。

3.26.9

有限运动控制装置 limited movement control device

与机器控制系统一起作用的,使得单次致动只允许机器元件做有限运动的控制装置。

3.27

阻挡装置 impeding device

物理障碍物,如低位栅栏、栏杆。其设置不能阻碍人员进入危险区,但能通过在自由进入处设置障碍物减小进入危险区的概率。

3.28

安全功能 safety function

其失效后会立即造成风险增加的机器功能。

3.29

意外启动 unexpected start-up/unintended start-up

由如下原因引起的任何由于其不可预测性而产生危险的启动:

——由于控制系统的内部失效或外部因素对控制系统的影响导致的启动指令;

——由于对机器的启动控制器或其他零部件(如传感器或动力控制元件)的不适宜的动作所产生的启动指令;

——动力源中断后又恢复产生的启动;

——机器的零部件受到内部或外部的影响(重力、风力、内燃机的自动点火等)产生的启动。

注:在正常操作期间,自动机器的启动不是意外启动,但就操作者而言可视为不期望的启动。在这种情况下,为了防止意外事故的发生应使用安全防护措施(见GB/T 15706.2-2007第5章)。

[选自GB/T 19670-2005《机械安全 防止意外启动》中3.2]

3.30

危险失效 failure to danger

由机械或其动力供应中产生的并且会增加风险的所有故障。

3.31

故障 fault

产品不能完成要求的功能的状态。预防性维护或其他计划的行动或因缺乏外部资源的情况除外。

注1:故障通常是产品自身失效引起的,但即使失效未发生.故障也可能存在。

[IEV 191-05-01]

注2:在机械领域,英语术语“fault(故障)”通常是按照IEV 191-05-01给出的定义等同使用。

注3:实际中,术语“故障(fault)”和“失效(failure)”通常作为同义词使用。

3.32

失效 failure

产品完成要求的功能的能力的中断。

注1:失效后。产品处于故障状态。

注2:“failure(失效)”与“fault(故障)”的区别在于,失效是一次事件,故障是一种状态。

注3:这里定义的“失效”,不适用于仅由软件构成的产品。

[IEV 191-04-01]

3.33

共因失效 common cause failure

由单一事件引发的不同产品的失效,这些失效不互为因果。

注:共因失效不应与共模失效相混淆。

[IEV 191-04-23]

3.34

共模失效 common mode failure

以相同故障模式为特征的产品失效。

注:由于共模失效可能由不同原因引起,因此不应将共模失效与共因失效混淆。

[IEV191-04-24]

3.35

紧急状态 emergency situation

必须立即终止或阻止的危险状态。

注:紧急状态可发生在:

——机器正常运行期间(例如由于人员的交互作用或受外界影响);

——由于机器任何部件发生故障或失效。

3.36

紧急操作 emergency operation

用于终止或阻止紧急状态的所有操作和功能。

3.37

急停 emergency stop

该功能:

——阻止正在发生的或降低所存在的对人员的危险、对机械或正在进行中的工作的损害;

——由单人动作触发。

注:GB 16754给出了详细规定。

3.38

排放值 emission value

将机器产生的排放物(例如噪声、振动、危险物质、辐射)进行量化后的数字值。

注1:排放值属于机器性能信息的一部分,是进行风险评价的基础数据。

注2:术语“排放值(emission value)”不应与“暴露值(exposure value)”相混淆。暴露值是指在机器使用中,对人员在排放物中暴露程度的量化。暴露值能用排放值进行估算。

注3:建议利用标准方法(如比较相同的机器)测定排放物量值和其伴随的不确定性。

3.39

可比较的排放数据 comparative emission data

从同类机器上收集到的用作比较的一组排放值数据。

注:关于噪声的比较,见ISO 11689。

设计机械时需要考虑的危险

4.1 概述

本章提供对基本危险的描述,以帮助设计者去识别所考虑的机器可能产生的相关危险和重大危险,以及与机器的预定使用环境有关的危险(见5.3)。

注:关于与机械相关的可能存在的危险及危险状态的更详细列表,见GB/T 16856-1997的附录A。

4.2 机械危险

4.2.1 与机器、机器零部件或其表面、工具、工件、载荷、飞射的固体或流体物料有关的机械危险可能会导致:

——挤压;

——剪切;

——切割或切断;

——缠绕;

——吸入或卷入;

——冲击;

——刺伤或刺穿;

——摩擦或磨损;

——高压流体喷射(喷出危险)。

4.2.2 由机器、机器零部件(包括加工材料夹紧机构)、工件或载荷产生的机械危险是有条件的。主要由以下因素产生:

——形状:切削元件、锐边、角形部件,即使其是静止的;

——相对位置:机器零件运动时可能产生挤压、剪切、缠绕区域的相对位置;

——抗翻转性(考虑动能);

——质量和稳定性:在重力的影响下可能运动的零部件的势能;

——质量和速度:可控或不可控运动中的零部件的动能;

——加速度/减速度;

——机械强度不够:可能产生危险的断裂或破裂;

——弹性元件(弹簧)的位能或在压力或真空下的液体或气体的势能;

——工作环境。

4.3 电气危险

这类危险是由造成伤害或死亡的电击或灼伤引起的,产生原因包括:

——人体与以下要素的接触:

a)带电部件,例如在正常操作状态下用于传导的导线或导电零件(直接接触);

b)在故障条件下变为带电的零件,尤其是绝缘失效而导致的带电部件(间接接触);

——人体接近带电部件,尤其在高压范围内;

——绝缘不适用于可合理预见的使用条件;

——静电现象,例如人体与带电荷的零件接触;

——热辐射;

——由于短路或过载而产生的诸如熔化颗粒喷射或化学作用等引起的现象。

电击的惊吓可以造成人员的跌倒(或由人员造成的物品掉落)。

4.4 热危险

热危险可以导致:

——由于与超高温的物体或材料、火焰或爆炸物及热源辐射接触造成的烧伤或烫伤;

——炎热或寒冷的工作环境对健康的损害。

4.5 噪声危险

噪声可以导致:

——永久性听力丧失;

——耳鸣;

——疲劳、压力;

——其他影响,如失去平衡、失去知觉;

——干扰语言通讯或对听觉信号的接受。

4.6 振动危险

振动可能传至全身(使用移动设备),尤其是手和臂(使用手持式和手导式机器)。

最剧烈的振动(或长时间不太剧烈的振动)可能产生严重的人体机能紊乱(腰背疾病和脊柱损伤)。全身振动和血脉失调会引起严重不适,如因手臂振动引起的白指病、神经和骨关节失调。

4.7 辐射危险

此类危险具有即刻影响(如灼伤)或者长期影响(如基因突变),由各种辐射源产生,可由非离子辐射或离子辐射产生:

——电磁场(例如低频、无线电频率、微波范围等);

——红外线、可见光和紫外线;

——激光;

——X射线和γ射线;

——α、β射线,电子束或离子束,中子。

4.8 材料和物质产生的危险

由机械所加工、使用、产生或排出的各种材料和物质及用于构成机械的各种材料可能产生不同危险:

——由摄入、皮肤接触、经眼睛和黏膜吸入的,有害、有毒、有腐蚀性、致畸、致癌、诱变、刺激或过敏的液体、气体、雾气、烟雾、纤维、粉尘或悬浮物所导致的危险;

——火灾与爆炸危险;

——生物(如霉菌)和微生物(病毒或细菌)危险。

4.9 机械设计时忽略人类工效学原则产生的危险

机械与人的特征和能力不协调,表现为:

——生理影响(如肌肉-骨骼的紊乱),由于不健康的姿势、过度或重复用力等所致;

——心理-生理影响,由于在机器的预定使用限制内对其进行操作、监视或维护而造成的心理负担过重或准备不足、压力等所致;

——人的各种差错。

4.10 滑倒、绊倒和跌落危险

忽视地板的表面情况和进入方法可以导致因滑倒、绊倒或跌落而造成的人身伤害。

4.11 综合危险

看似微不足道的危险,其组合相当于重大危险。

4.12 与机器使用环境有关的危险

若所设计的机器用于会导致各种危险的环境(如温度、风、雪、闪电),则应考虑这些危险。减小风险的策略

5.1 总则

5.1.1 不采取保护措施,机器上出现的危险迟早会导致伤害。

5.1.2 保护措施是设计者和使用者所采取措施的组合(见图1)。在设计阶段采取的措施优于在使用阶段由使用者采取的补救措施,而且通常更有效。

5.1.3 考虑类似机器使用者的经验,及潜在用户的需求信息,设计者应遵循下列工作顺序(见图2):

——规定机器的各种限制和预定使用(见5.2);

——鉴别危险和伴随的危险状态(见第4章和5.3);

——对每一种识别出的危险和危险状态进行风险评估(见5.3);

——评定风险并决定减小风险的要求(见5.3);

——用采取的保防措施来消除危险或减小危险伴随的风险(见5.4和5.5)。

上述的前四条内容与风险评价相关联,详细信息可见GB/T 16856。

5.1.4 为了最大程度地减小风险,应考虑下述四种因素。图2中给出了减小风险策略的流程,其过程是迭代的,并可能需要连续数次应用才能达到风险的减小。减小风险过程应充分利用现有技术。

实施该过程时,有必要按下列优先次序进行考虑:

——在寿命周期所有阶段内的机器的安全;

——机器完成其功能的能力;

——机器的易用能力;

——机器制造、使用和拆卸的成本。

注1:对这些原则理想化的应用需要机器的使用知识、事故史和健康记录、有效的风险减小技术以及对在机器使用上有关法律体制的了解。

注2:当在技术发展后出现了具有低风险的等效机器设计后,在特定时间内可接受的机器设计就无需再评价了。

5.1.5 针对机器的连续安全运行,保护措施的易于使用和不妨碍其预定使用是很重要的。否则会出现为获取机器的最高效用而摒弃使用保护措施。

5.1.6 如有用于测量排放的标准(或其他合适的)方法,宜将其与现存机械或样机一起使用,以测定排放值和可比较的排放数据。使得设计者能做到:

——估计与排放有关的风险;

——评定设计阶段采取的保护措施的有效性;

——在技术文件中向潜在客户提供排放的定量信息;

——在使用信息中向用户提供排放的定量信息。

除可用测量参数描述的排放外的其他危险可以用类似方法予以处理。

5.2 机器的限制规范

机器的设计从其各种限制的规范开始(也可见GB/T 16856-1997第5章):

——使用限制:

a)机器的预定使用,包括不同的机器运行模式、使用阶段和操作者的不同干预过程;

b)机器可预见的误用。

——空间限制(例如机器的运动范围、机器安装和维护所需的空间、“操作者-机器”的接口、“机器-动力源”的接口)。

——时间限制:针对预定用途的,机器和(或)其部件(例如工具、磨损件、电气零件等)的可预见的“寿命极限”。

5.3 危险的识别、风险的评估和风险的评定

识别了机器产生的各种危险后(持久危险和意外出现的危险,见3.6和第4章),设计者应尽可能地根据定量的因素对每一种危险进行风险评定,并最终依据风险评定的结果决定是否需要减小风险。为此设计者应考虑不同的运行模式和干预过程,尤其是:

a)在机器的整个寿命周期中人与机器的相互作用,描述如下:

1)构造。

2)运输、组装和安装。

3)试运转。

4)使用:

——设定、示教/编程或过程转换;

——操作;

——清洗;

——故障排查;

——维护。

5)停用、拆除及从安全角度进行的处置。

b)机器的可能状态:

1)机器执行预定功能(机器正常运转)。

2)由于各种原因,机器不能执行预定功能(即失效),这些原因包括:

——被加工材料或工件的性能或尺寸的变化;

——机器的一个(或多个)零部件或辅助装置的失效;

——外部干扰(如冲击、振动、电磁干扰);

——设计错误或缺陷(如软件错误);

——动力源干扰;

——环境条件(如损坏的工作地面)。

c)操作者下意识的行为或机器可预见的误用,例如:

——操作者对机器失去控制(特别是手持式或移动式机器)的行为;

——人对使用中机器发生的失效、事故或故障的条件反射行为;

——精神不集中或粗心大意导致的行为;

——工作中“走捷径”导致的行为;

——为保持机器在所有情况下运转所承受的压力导致的行为;

——特定人员的行为(如儿童、伤残人等)。

在5.4中规定的和图2所示的减小风险的三步法中,完成其每步后均须进行风险评估和风险评定。

进行风险评价时,应考虑在已识别的危险中,其伤害可能是最严重的风险。对可预见的严重程度最高的风险,即使其发生的频率很低,也应加以考虑。

5.4 借助保护措施消除危险或减小风险

通过消除危险,或单独或同时减小下述两个决定风险的因素,可以达到借助保护措施消除危险或减小风险的目标:

a)所考虑危险产生伤害的严重程度;

b)伤害发生的概率。

所有预定用于达到此目标的保护措施应根据下列顺序进行,即“三步法”(也可见图1和图2)。

——本质安全设计措施(见GB/T15706.2-2007第4章)。

注:这是不采用诸如安全防护或补充保护措施,而消除危险的唯一阶段。

——安全防护和可能的补充保护措施(见GB/T15706.2—2007第5章)。

——关于遗留风险的使用信息(见GB/T15706.2—2007第6章)。

使用信息不应取代本质安全设计措施,或安全防护或补充保护措施的正确使用。

与机器的各种运行模式和干预过程(见5.3)相适宜的保护措施,能防止操作者在遇到技术难题时,使用危险的干预技术。

5.5 风险减小目标的实现

依照5.4和图2,实现充分减小风险和得到一个满意的风险降低的比较结果(若有)后便可终止风险减小的迭代过程(GB/T16856—1997中的8.3)。

能够对下列每个问题给出肯定的回答时,可认为实现了充分的风险减小:

——是否考虑了所有的运行状况和干预程序;

——是否应用了5.4规定的方法;

——危险是否已消除,或由危险产生的风险是否降低到可行的最低水平;

——是否确定所采取的措施不会产生新的危险;

——是否向用户充分告知和警告了遗留风险;

——是否确定所采取的保护措施不会危及操作者的工作状态;

——所采取的保护措施是否彼此协调;

——是否已充分考虑到为专业/工业用设计的机器用于非专业/非工业范围时产生的后果;

——是否确定所采取的措施不会过分地降低机器的功能。

附录A

(资料性附录)

机器的图解表示

图A.1给出了机器的图解表示。

用于GB/T15706的专用术语和表述的英中文对照索引

参考文献

[1] ISO/IEC指南51:1999 安全特征 关于标准中该类条款的导则

[2] ISO l 1689 声学 机械设备的噪声发射数据比较程序

[3] GB 16754 机械安全 急停 设计原则(GB 16754-1997,eqv ISO/IEC 13850:1995)

[4] GB/T 19671-2005 机械安全 双手操纵装置 功能状况及设计原则(ISO 1385l:2002,MOD)

[5] GB/T 19670-2005 机械安全 防止意外启动(ISO 14118:2000,MOD)

[6] GB/T 18831 机械安全 带防护装置的联锁装置 设计和选择原则(GB/T 18831--2002,ISO 14119:1998,MOD)

[7] GB/T 8196-2003 机械安全 防护装置 固定式和活动式防护装置设计与制造一般要求(ISO 14120:2002,MOD)

[8] GB/T 16856-1997 机械安全 风险评价的原则(eqv prEN 1050:1994)

[9] GB 5226.1-2002 机械安全 机械电气设备 第1部分:通用技术条件(IEC 60204-1:

2000,IDT)

[10] GB/T 19436.2 机械电气安全 电敏防护装置 第2部分:使用有源光电防护器件(AOP-Ds)设备的特殊要求(GB/T 19436.2-2004,IEC 61496-2:1997,IDT)

[11] IEC 60050-191(IEV 191)国际电工词汇第191章:可信性与服务质量

【发布日期】20070302

大学机械专业英语总结 篇5

1.Toenlarge the hole 2,Tomachine the hole to the desired diameter.3.To accurately locate the position of the hole.4.To obtion a smoth surface finish in the hole.Unit12 Broaching is a process for internal or external machining of falt, round, or contoured surfaces.Sawing is the parting of material by using metal disks, blades, bands, or abrasive disks as the cutting tools, Reaming is a machining process for enlarging, smoothing and/or accurately sizing existing holes by means of multiedge flutes cutting tools.Unit 13 Welding is essential to the expansion and productivity of our industries.Electroplating is a process in which a metal is deposited onto a metallic substrate.Soldering is the joining of metals by causing a lower-melting-point metal to wet or alloy with the joint surfaces and then freeze in place.Cleaning operations are performed both preparatory to and after finishing operations.Unit 14 Lathes are designed to rotate the workpiece and feed the cutting tool in the direction necessary togenerate the required machined surface.Vertical-boring machine

horizontal-boring machine

planning machine

horizontal-milling machine

vertical-milling machine Unit 15 AJM removes material through the mechanical cation of a focused stream of abrasiveladen gas.USM is a mechanical material removal process which is used to generate holes and cavities in hard or brittle workpieces.ECM is a process that removes material through the ptinciple of eiectrolysis.Unit 16 Group technology is a very important methodology in today’s manufacturing environment, particularly for batch production, and is becoming increasingly significant.For parts to be grouped based on either design characteristics and featuers or manufacturing processes, they must be classified into predetermined categories and coded for retrieval and use.Unit 17 Flexibility is an important characteristic in the modern manufacturing setting.Cellular manufacturing is the concept of organizing plant facilities and process planning for family-of-part manufactuer.Machine centers originsted out of their capability to perform a variety of machining operations on a workpiece by changing their own cutting tools.Software is the vital invisible element than actually drives the FMS.There are two basic levels of software required for an FMS: 1:operating system 2:application software Unit 18 Computer integrated manufacturing is the term used to describe the modern approach to manufacturing.Management is the process of making directing the activities of personnel to achieve stated objectives.An AGV is a computer-controlled, driverless vehicle used for transporting materials form point in a manufacturing setting.In any discussion of AGVs, three key terms are frequently used: 1:Guide path.2:Routing.3:Traffic management.Unit 19 Part acquisition time is highly dependent on the nature of the layout of the assenmbly area and the method of assembly.Assembly in the manufacturing process consists of putting together all the component parts and sub-assemblies of a given product, fastening, performing inspections and functional tests, labeling, separating good assemblies from bad, and packaging and or preparing them for final use.Unit 20

机械专业的英语自我评价 篇6

In the course of their work, combined with personal expertise, due to personal positions, excellent and successful completion of the job; learn, and constantly improve themselves in their work. Cheerful personality, good communication skills, have a strong affinity; quick mind, quick thinking, the courage to take the pressure, able to independently analyze and solve problems; optimistic, with a strong sense of responsibility, the overall situation can be, well with others exchange and cooperation.

在工作过程中,结合个人专业知识,尽职于个人岗位,出色并成功地完成了本职工作;虚心学习,不断在工作中完善自己。个性开朗,善于与人沟通,有较强的亲和力;头脑灵活,思维敏捷,敢于承担压力,能够独立分析解决问题;乐观向上,具有极强的责任心,能够以大局为重,与他人很好地交流并合作。

农业机械专业英语讲课技巧浅谈 篇7

一、用特色教材因材施教

教材是教师备课的主要依据, 也是学生学习的重要资源[1]。目前绝大多数的农业类高校机械专业英语课程与机械大类专业英语的教学方式雷同, 没有突出农业类机械教学特色。

要提高学生的学习兴趣, 首先应在教材上做到与众不同, 不能直接选择机械专业英语的通用教材, 而应该采用内容贴近农机类以及难度适中的教材和一些参考资料[2]。

为此, 我们学校采用自编教材进行授课, 教材内容上贴近农业机械特色, 涵盖先进的农机装备技术和农业机械化等, 还应该加入一些国外的优秀英文原版文献, 让学生掌握专业发展动态。

例如机械实习工厂配备进口数控机床的英文操作说明书, 机械零件图、装配图的阅读与翻译、出口机械产品的英文手册和维修手册等[1]。对应教材都配有相应的多媒体课件, 教师可以根据实际情况进行知识的填充和课件的完善, 并且学校建立了一个计算机网络教学平台, 教师把课件上传到网络, 学生可以进行下载学习。同时可以进行远程辅导、网上答疑、作业批改等, 提高学习效率。

二、用创新教学方法调动学生

正所谓“兴趣是最好的老师”, 如何让学生对专业英语感兴趣, 这是调动学生学习的关键。如果上课还是采用传统的教学模式, 以教师翻译和语法讲解的方式进行, 是不能够适应现代的教学和学生的需求, 我们需要找到新的教学方法来与学生互动。

从信息学角度讲, 文字是一维信息载体, 图片 (形) 照片是二维信息载体, 实物是三维信息载体, 信息载体维数越多, 反映的信息量就越丰富, 信息本身越易传达和理解。

从记忆学角度讲, 动作记忆最为深刻难忘, 看过的实际动作比纯粹的动作语言描述难忘, 而践行过的动作又比看过的动作难忘[3]。所以我们在进行讲解时不能只是照本宣科, 而是对典型的内容进行讲解, 并且还要有图来讲解会更加让学生印象深刻。

比如说在进行讲解汽车外部构造时, 我们可以给学生提供一个汽车图片并且附上相应的英语名称。这样学生就会更加深记忆, 学习兴趣和效率也会提高, 当然我们还会对汽车的每一个构件进行相应的讲解。

最后我们还会带学生走出传统的课堂, 去到我们的金工实习工厂进行授课, 在那里还有一个实验用汽车, 在那我们还会进行实物的一个讲解, 并且会不时的给学生提出问题, 让学生用专业英语来进行回答。这样, 学生的兴趣提高了, 授课的效果就会更好了, 学生与老师的互动也就达到了。

此外, 在课堂上还可以采用分组的教学方式, 因为上课的学生的英语水平不可能统一, 总会是参差不齐。这样我们会给每个小组分配不同的任务, 例如课程里的词汇讲解以及专业里面的最新发展动态等, 学生课下可以查阅图书或者上网查资料, 每组都由一名英语学习好的同学作为组长带领完成任务。

对于任务完成出色的组, 我们会给予加平时成绩的奖励。这就可以激发学生的竞争和学习能力。为了提高学生的口语能力, 重要的是让学生在课堂上张嘴说英语, 克服恐惧怕说错、怕被同学笑话的心理。这需要教师在一开始上课就告诉学生“Lose your face”即“不要害怕丢脸”, 要勇于说英语, 勇于表达。

为了鼓励学生多说英语, 教师在课堂上会给每个小组留下一个任务, 就是情景短剧的彩排, 下一次上课时, 每个小组要到讲台前进行表演相关的机械专业的情景对话, 这样既可以锻炼学生的动脑和口语能力, 也可以提高学生的专业英语水平, 是一个两全其美的方法。

在每一组的对话结束后, 其他的同学还要给这组同学一些评价包括他们的优点和缺点都有哪些, 当然这些都是要求用英语来进行简述的。这样可以达到一个教学相长, 提高教学效果的目的。

三、用良好的教学态度感染学生

课堂上的气氛多半是由教师主导的, 如果一个教师在课堂上一味地严苛, 刻板, 在黑板上写板书, 学生则是不停的抄板书, 这样的课堂教学效果是不会太好的。尤其是对于专业英语的课堂来说, 这更是不可取的。如果教师的教学态度较随和, 会使课堂气氛轻松许多, 学生也就不会那么拘束, 可以在一个轻松的环境下进行学习。

教师在课堂上偶尔幽默一下, 可以调节学生的紧张情绪, 给学生留下深刻的印象, 同时还可以拉近与学生的距离。良好的师生关系是教学当中重要的环节, 如果学生对老师的印象不好, 就会导致厌烦这个教师所上的课程, 也会耽误学生的学习发展。

反过来, 如果教师在学生心目中就想是一个知心的朋友, 学生就会以很轻松的态度来听一门课, 不会有逆反的心理产生。同时, 学生也会更花心思和精力去学习这门课程, 学习效果和能力也能提高。

参考文献

[1]莫敏.高职机械专业英语应用能力培养的思考[J].长沙铁道学院学报 (社会科学版) , 2011.

[2]刘达列.农林类高校机械专业英语教学改革研究[J].轻工科技, 2015.

机械设计与机械制造英语专业术语英语翻译 篇8

【关键词】PBL 机械类 专业英语 MOOC 教学 研究

【中图分类号】G71 【文献标识码】A 【文章编号】2095-3089(2016)01-0106-02

PBL是Problem Based Learning的简写,翻译为“基于问题的学习”,其“起源于20世纪60年代中期,Barrows在加拿大McMaster大学的医学院,为提高教学质量所进行的一种替代传统教学模式的改革”。我国《教育信息化十年发展规划(2011-2020年)》指出,“教育信息化的发展要以教育理念创新为先导,以优质教育资源和信息化学习环境建设为基础,以学习方式和教育模式创新为核心”。教育的信息化在现代社会已成为了一种潮流,越来越多的人在遇到困难时习惯用最简单、有效的方式在网络上寻找答案。MOOC作为一种教育技术和手段,结合PBL新型教学模式的特点,将“基于问题”和“网络信息教育”有机地结合在一起,最大程度上为人们提供便利。

一、问题的提出

高职院校的机械类专业英语教学,教学模式陈旧,内容单一,学习者兴趣不高,PBL作为一种新型的教学模式,它解决了传统“填鸭式教学”教学模式的缺陷。而基于PBL教学模式下MOOC课程的实现,真正将教师的“教”与学生的“学”融合在了一起,不仅使机械类专业英语课程最优化,还将学习者的学习能力、语言运用能力和团队合作能力发挥到了极致。

二、PBL教学模式及其特点

基于PBL的教学模式自20世纪60年代中期被首次提起,国内外学者普遍认为PBL教学模式就是把学习者置于一个真实的问题中,通过教师的正确引导和学习者在小组中的合作与探究,来共同发现问题、解决问题的一种新型教学模式。

PBL教学模式较传统的教学模式主要有以下几个特点:

1.在网络信息化的基础上,充分利用现代网络媒介。如:笔记本电脑、IPAD、智能手机等工具下载和学习MOOC课程,并使用MOOC平台、QQ群和微信群等建立小组交流平台,最大的优势在于学生和教师都可以不受上课时间和上课地点的约束,并跟小组成员进行互动,完成每一次的教学任务。

2.以“学习者”提出的问题为MOOC课程的建立基础。不再以教师的“教”为主线,重点强调“自主学习”和带着问题学习,加强了教师的引导性,增加了学习的趣味性。

3.创新学习形式。根据每位“学习者”的自身水平与兴趣爱好组建4-6人的学习讨论小组,每个小组单独布置学习目标与任务,让“学习者”通过小组交流来解决实际问题并掌握课程中的知识点,增强了学生的团队合作能力。

三、基于PBL的机械类《专业英语》MOOC课程的分析与设计——以《模具专业英语》课程为例

如图1所示,模具专业英语MOOC课程的分析与设计过程主要分为提出问题、分析“学习者”的学习层次、确定教学目标和对教学内容进行分析与设计四个步骤,具体设计过程如下:

图1 MOOC课程学设计模式

1.提出问题

基于PBL教学模式下,问题的提出最关键,在制作MOOC课程前,我们需要设计调查问卷,问卷内容必须有针对性地对不同层次的学生进行设计,再权衡课程中的重点与难点,最后制作MOOC课程。

2.分析“学习者”的学习层次

如:以《模具专业英语》课程为例,将高等职业学校机械类模具设计与制造专业的大三学生作为研究对象,对 “学习者”进行了以下分析:

表1 模具专业英语“学习者”分析表

3.确定教学目标

因为学习对象为即将走入社会的大三的学生,希望通过本课程的学习,让他们能熟练地掌握课程中的读、写、译能力,除了书本内容外,还能有效地借助工具书对机械类说明书进行翻译,能跟国外的技术人员进行基本交流。总的来说,模具专业英语的总体教学目标是:了解专业英语的基本的概念和核心知识;掌握在日常学习中的思维能力;学会发现问题、解决问题的能力。

4.教学内容分析与设计(以Chaper 1 Foudations of Mechanics中的Lesson 1.1 Engineering Drawing为例)

(1)教学内容的分析

Lesson 1.1 Engineering Drawing中每个MOOC课程时间不超过10分钟,因此,将本章节的课程内容共制作成5个MOOC课程,具体如表 2 所示:

表2 Lesson 1.1 Engineering Drawing的MOOC

课程教学内容设计表

(2)教学内容设计步骤

“Lesson 1.1 Engineering Drawing”的MOOC教学内容的设计主要从MOOC 平台的选择、MOOC教学视频设计、课程过程性评价设计和课程学习活动设计这四个方面来考虑。

①MOOC 平台的选择

考虑到整个平台的使用者为课程“学习者”和“发布教师”,通过比较分析,决定采用 Udemy 课程平台作为本课程的MOOC设计平台。Udemy 能完整地提供了一套管理和开发MOOC课程的工具,并能通过模块化的管理,使课程的学习和发布过程变得更加简便。主要目录和模块设计如图2所示:

图2 主要目录和模块设计图

如图2所示,主要包括课程管理和课程制作两大目录,其中在课程管理目录中,课程发布者可以按照教学内容进行课程管理;课程制作目录则包括了资源模块、问答模块、笔记模块和通知模块四类模块,它们的主要功能如下:

资源模块:可将课程分为若干小节,每小节课程包括的课程可插入形式多样的资源,如:音频、视频、演示文稿、文本、pdf 文档等。

问答模块:每小节课的课程内容都会包含问答功能区,并支持图片、嵌入 HTML和 URL等方式,使学习者可在此功能区随时进行小组讨论与交流,也可以咨询教师。

笔记模块:每小节课的内容还包含了笔记功能区,学习者可以在学习过程中随时记录笔记。

通知模块:使课程发布者可以发布课程提纲、课程安排和学习要求 。

四、PBL教学模式下的机械类专业英语MOOC课程的优势

传统的教学模式下,学生们很难张开口,除了有许多语法上的错误外,有的甚至不能进行正常的交际。而 PBL 教学模式的出现,恰好地解决了这一难题,其优势具体表现在:

1.MOOC课程时间短,内容丰富。教师会设计大量丰富多彩的课堂活动和学习任务,这样,大部分的学生,包括不善表达、性格内向的学生都会积极地参与到课堂学习活动中来。

2.MOOC课程不受地理位置和时间的限制。使学习更加自由,师生间与学生之间的互动变得更加活跃,不仅激发了“学习者”的学习热情,还提高了“学习者”的自学能力。

3.建立学习讨论小组是 PBL 教学模式的课堂的重要组成形式。在网络技术的支持下,使教师在设计课堂任务时偏重于培养学生的团结合作能力,能更好培养学生的团队协作精神,这正是当今人才培养所需要的。

五、结语

基于PBL的机械类《专业英语》MOOC教学研究,关键部分是提出问题,打破了原有的以教师为主体的高职教育课程建设体系,以MOOC课程建设为重点,建立新型的教学模式,体现了当代职业教育的发展趋势。

参考文献:

[1]程洪梅.PBL 教学模式在网络环境下大学英语教学中的应用[J].河北工程大学学报,2015,(6):127-129.

机械专业英语文章 中英文对照 篇9

Materials may be grouped in several ways.Scientists often classify materials by their state: solid, liquid, or gas.They also separate them into organic(once living)and inorganic(never living)materials.材料可以按多种方法分类。科学家常根据状态将材料分为:固体、液体或气体。他们也把材料分为有机材料(曾经有生命的)和无机材料(从未有生命的)。

For industrial purposes, materials are divided into engineering materials or nonengineering materials.Engineering materials are those used in manufacture and become parts of products.就工业效用而言,材料被分为工程材料和非工程材料。那些用于加工制造并成为产品组成部分的就是工程材料。

Nonengineering materials are the chemicals, fuels, lubricants, and other materials used in the manufacturing process, which do not become part of the product.非工程材料则是化学品、燃料、润滑剂以及其它用于加工制造过程但不成为产品组成部分的材料。

Engineering materials may be further subdivided into: ①Metal ②Ceramics ③Composite ④Polymers, etc.工程材料还能进一步细分为:①金属材料②陶瓷材料③复合材料 ④聚合材料,等等。

Metals and Metal Alloys 金属和金属合金

Metals are elements that generally have good electrical and thermal conductivity.Many metals have high strength, high stiffness, and have good ductility.金属就是通常具有良好导电性和导热性的元素。许多金属具有高强度、高硬度以及良好的延展性。

Some metals, such as iron, cobalt and nickel, are magnetic.At low temperatures, some

metals

and

intermetallic

compounds

become superconductors.某些金属能被磁化,例如铁、钴和镍。在极低的温度下,某些金属和金属化合物能转变成超导体。

What is the difference between an alloy and a pure metal? Pure metals are elements which come from a particular area of the periodic table.Examples of pure metals include copper in electrical wires and aluminum in cooking foil and beverage cans.合金与纯金属的区别是什么?纯金属是在元素周期表中占据特定位置的元素。

例如电线中的铜和制造烹饪箔及饮料罐的铝。

Alloys contain more than one metallic element.Their properties can be changed by changing the elements present in the alloy.Examples of metal alloys include stainless steel which is an alloy of iron, nickel, and chromium;and gold jewelry which usually contains an alloy of gold and nickel.合金包含不止一种金属元素。合金的性质能通过改变其中存在的元素而改变。金属合金的例子有:不锈钢是一种铁、镍、铬的合金,以及金饰品通常含有金镍合金。

Why are metals and alloys used? Many metals and alloys have high densities and are used in applications which require a high mass-to-volume ratio.为什么要使用金属和合金?许多金属和合金具有高密度,因此被用在需要较高质量体积比的场合。

Some metal alloys, such as those based on aluminum, have low densities and are used in aerospace applications for fuel economy.Many alloys also have high fracture toughness, which means they can withstand impact and are durable.某些金属合金,例如铝基合金,其密度低,可用于航空航天以节约燃料。许多合金还具有高断裂韧性,这意味着它们能经得起冲击并且是耐用的

What are some important properties of metals?

Density is defined as a material’s mass divided by its volume.Most metals have relatively high densities, especially compared to polymers.金属有哪些重要特性?

密度定义为材料的质量与其体积之比。大多数金属密度相对较高,尤其是和聚合物相比较而言。

Materials with high densities often contain atoms with high atomic numbers, such as gold or lead.However, some metals such as aluminum or magnesium have low densities, and are used in applications that require other metallic properties but also require low weight.高密度材料通常由较大原子序数原子构成,例如金和铅。然而,诸如铝和镁之类的一些金属则具有低密度,并被用于既需要金属特性又要求重量轻的场合。

Fracture toughness can be described as a material’s ability to avoid fracture, especially when a flaw is introduced.Metals can generally contain nicks and dents without weakening very much, and are impact resistant.A football player counts on this when he trusts that his facemask won’t shatter.断裂韧性可以描述为材料防止断裂特别是出现缺陷时不断裂的能力。金属一般能在有缺口和凹痕的情况下不显著削弱,并且能抵抗冲击。橄榄球运动员据此相信他的面罩不会裂成碎片。

Plastic deformation is the ability of bend or deform before breaking.As engineers, we usually design materials so that they don’t deform under normal conditions.You don’t want your car to lean to the east after a strong west wind.塑性变形就是在断裂前弯曲或变形的能力。作为工程师,设计时通常要使材料在正常条件下不变形。没有人愿意一阵强烈的西风过后自己的汽车向东倾斜。

However, sometimes we can take advantage of plastic deformation.The crumple zones in a car absorb energy by undergoing plastic deformation before they break.然而,有时我们也能利用塑性变形。汽车上压皱的区域在它们断裂前通过经历塑性变形来吸收能量。

The atomic bonding of metals also affects their properties.In metals, the outer valence electrons are shared among all atoms, and are free to travel everywhere.Since electrons conduct heat and electricity, metals make good cooking pans and electrical wires.金属的原子连结对它们的特性也有影响。在金属内部,原子的外层阶电子由所有原子共享并能到处自由移动。由于电子能导热和导电,所以用金属可以制造好的烹饪锅和电线。

It is impossible to see through metals, since these valence electrons absorb any photons of light which reach the metal.No photons pass through.因为这些阶电子吸收到达金属的光子,所以透过金属不可能看得见。没有光子

能通过金属。

Alloys are compounds consisting of more than one metal.Adding other metals can affect the density, strength, fracture toughness, plastic deformation, electrical conductivity and environmental degradation.合金是由一种以上金属组成的混合物。加一些其它金属能影响密度、强度、断裂韧性、塑性变形、导电性以及环境侵蚀。

For example, adding a small amount of iron to aluminum will make it stronger.Also, adding some chromium to steel will slow the rusting process, but will make it more brittle.例如,往铝里加少量铁可使其更强。同样,在钢里加一些铬能减缓它的生锈过程,但也将使它更脆。

Ceramics and Glasses 陶瓷和玻璃

A ceramic is often broadly defined as any inorganic nonmetallic material. By this definition, ceramic materials would also include glasses;however, many materials scientists add the stipulation that “ceramic” must also be crystalline.陶瓷通常被概括地定义为无机的非金属材料。照此定义,陶瓷材料也应包括玻璃;然而许多材料科学家添加了“陶瓷”必须同时是晶体物组成的约定。

A glass is an inorganic nonmetallic material that does not have a crystalline structure.Such materials are said to be amorphous.玻璃是没有晶体状结构的无机非金属材料。这种材料被称为非结晶质材料。Properties of Ceramics and Glasses Some of the useful properties of ceramics and glasses include high melting temperature, low density, high strength, stiffness, hardness, wear resistance, and corrosion resistance.陶瓷和玻璃的特性

高熔点、低密度、高强度、高刚度、高硬度、高耐磨性和抗腐蚀性是陶瓷和玻璃的一些有用特性。

Many ceramics are good electrical and thermal insulators.Some ceramics have special properties: some ceramics are magnetic materials;some are piezoelectric materials;and a few special ceramics are superconductors at very low temperatures.Ceramics and glasses have one major drawback: they are brittle.许多陶瓷都是电和热的良绝缘体。某些陶瓷还具有一些特殊性能:有些是磁性材料,有些是压电材料,还有些特殊陶瓷在极低温度下是超导体。陶瓷和玻璃都有一个主要的缺点:它们容易破碎。

Ceramics are not typically formed from the melt.This is because most

ceramics will crack extensively(i.e.form a powder)upon cooling from the liquid state.陶瓷一般不是由熔化形成的。因为大多数陶瓷在从液态冷却时将会完全破碎(即形成粉末)。

Hence, all the simple and efficient manufacturing techniques used for glass production such as casting and blowing, which involve the molten state, cannot be used for the production of crystalline ceramics.Instead, “sintering” or “firing” is the process typically used.因此,所有用于玻璃生产的简单有效的—诸如浇铸和吹制这些涉及熔化的技术都不能用于由晶体物组成的陶瓷的生产。作为替代,一般采用“烧结”或“焙烧”工艺。

In sintering, ceramic powders are processed into compacted shapes and then heated to temperatures just below the melting point.At such temperatures, the powders react internally to remove porosity and fully dense articles can be obtained.在烧结过程中,陶瓷粉末先挤压成型然后加热到略低于熔点温度。在这样的温度下,粉末内部起反应去除孔隙并得到十分致密的物品。

An optical fiber contains three layers: a core made of highly pure glass with a high refractive index for the light to travel, a middle layer of glass with a lower refractive index known as the cladding which protects the core

glass from scratches and other surface imperfections, and an out polymer jacket to protect the fiber from damage.光导纤维有三层:核心由高折射指数高纯光传输玻璃制成,中间层为低折射指数玻璃,是保护核心玻璃表面不被擦伤和完整性不被破坏的所谓覆层,外层是聚合物护套,用于保护光导纤维不受损。

In order for the core glass to have a higher refractive index than the cladding, the core glass is doped with a small, controlled amount of an impurity, or dopant, which causes light to travel slower, but does not absorb the light.为了使核心玻璃有比覆层大的折射指数,在其中掺入微小的、可控数量的能减缓光速而不会吸收光线的杂质或搀杂剂。

Because the refractive index of the core glass is greater than that of the cladding, light traveling in the core glass will remain in the core glass due to total internal reflection as long as the light strikes the core/cladding interface at an angle greater than the critical angle.由于核心玻璃的折射指数比覆层大,只要在全内反射过程中光线照射核心/覆层分界面的角度比临界角大,在核心玻璃中传送的光线将仍保留在核心玻璃中。

The total internal reflection phenomenon, as well as the high purity of the core glass, enables light to travel long distances with little loss of intensity.全内反射现象与核心玻璃的高纯度一样,使光线几乎无强度损耗传递长距离成为可能。

Composites 复合材料

Composites are formed from two or more types of materials.Examples include polymer/ceramic and metal/ceramic composites.Composites are used because overall properties of the composites are superior to those of the individual components.复合材料由两种或更多材料构成。例子有聚合物/陶瓷和金属/陶瓷复合材料。之所以使用复合材料是因为其全面性能优于组成部分单独的性能。

For example: polymer/ceramic composites have a greater modulus than the polymer component, but aren’t as brittle as ceramics.Two types of composites are: fiber-reinforced composites and particle-reinforced composites.例如:聚合物/陶瓷复合材料具有比聚合物成分更大的模量,但又不像陶瓷那样易碎。

复合材料有两种:纤维加强型复合材料和微粒加强型复合材料。Fiber-reinforced Composites Reinforcing fibers can be made of metals, ceramics, glasses, or polymers that have been turned into graphite and known as carbon fibers.Fibers

increase the modulus of the matrix material.纤维加强型复合材料

加强纤维可以是金属、陶瓷、玻璃或是已变成石墨的被称为碳纤维的聚合物。纤维能加强基材的模量。

The strong covalent bonds along the fiber’s length give them a very high modulus in this direction because to break or extend the fiber the bonds must also be broken or moved.沿着纤维长度有很强结合力的共价结合在这个方向上给予复合材料很高的模量,因为要损坏或拉伸纤维就必须破坏或移除这种结合。

Fibers are difficult to process into composites, making fiber-reinforced composites relatively expensive.把纤维放入复合材料较困难,这使得制造纤维加强型复合材料相对昂贵。Fiber-reinforced composites are used in some of the most advanced, and therefore most expensive sports equipment, such as a time-trial racing bicycle frame which consists of carbon fibers in a thermoset polymer matrix.纤维加强型复合材料用于某些最先进也是最昂贵的运动设备,例如计时赛竞赛用自行车骨架就是用含碳纤维的热固塑料基材制成的。

Body parts of race cars and some automobiles are composites made of glass fibers(or fiberglass)in a thermoset matrix.竞赛用汽车和某些机动车的车体部件是由含玻璃纤维(或玻璃丝)的热固塑料基材制成的。

Fibers have a very high modulus along their axis, but have a low modulus perpendicular to their axis.Fiber composite manufacturers often rotate layers of fibers to avoid directional variations in the modulus.纤维在沿着其轴向有很高的模量,但垂直于其轴向的模量却较低。纤维复合材料的制造者往往旋转纤维层以防模量产生方向变化。

Particle-reinforced composites Particles used for reinforcing include ceramics and glasses such as small mineral particles, metal particles such as aluminum, and amorphous materials, including polymers and carbon black.微粒加强型复合材料[番茄用户1] [番茄用户2] [番茄用户3] [番茄用户4] [番茄用户5] [番茄用户6] 用于加强的微粒包含了陶瓷和玻璃之类的矿物微粒,铝之类的金属微粒以及包括聚合物和碳黑的非结晶质微粒。

Particles are used to increase the modulus of the matrix, to decrease the permeability of the matrix, to decrease the ductility of the matrix.An example of particle-reinforced composites is an automobile tire which has carbon black particles in a matrix of polyisobutylene elastomeric polymer.微粒用于增加基材的模量、减少基材的渗透性和延展性。微粒加强型复合材料的一个例子是机动车胎,它就是在聚异丁烯人造橡胶聚合物基材中加入了碳黑微粒。

Polymers 聚合材料

A polymer has a repeating structure, usually based on a carbon backbone.The repeating structure results in large chainlike molecules.Polymers are useful because they are lightweight, corrosion resistant, easy to process at low temperatures and generally inexpensive.聚合物具有一般是基于碳链的重复结构。这种重复结构产生链状大分子。由于重量轻、耐腐蚀、容易在较低温度下加工并且通常较便宜,聚合物是很有用的。

Some important characteristics of polymers include their size(or molecular weight), softening and melting points, crystallinity, and structure.The mechanical properties of polymers generally include low strength and high toughness.Their strength is often improved using reinforced composite structures.聚合材料具有一些重要特性,包括尺寸(或分子量)、软化及熔化点、结晶度和结构。聚合材料的机械性能一般表现为低强度和高韧性。它们的强度通常可采用加强复合结构来改善。

Important Characteristics of Polymers Size.Single polymer molecules typically have molecular weights between 10,000 and 1,000,000g/mol—that can be more than 2,000 repeating units

depending on the polymer structure!聚合材料的重要特性

尺寸:单个聚合物分子一般分子量为10,000到1,000,000g/mol之间,具体取决于聚合物的结构—这可以比2,000个重复单元还多。

The mechanical properties of a polymer are significantly affected by the molecular weight, with better engineering properties at higher molecular weights.聚合物的分子量极大地影响其机械性能,分子量越大,工程性能也越好。Thermal transitions.The softening  point(glass transition temperature)and the melting point of a polymer will determine which it will be suitable for applications.These temperatures usually determine the upper limit for which a polymer can be used.热转换性:聚合物的软化点(玻璃状转化温度)和熔化点决定了它是否适合应用。这些温度通常决定聚合物能否使用的上限。

For example, many industrially important polymers have glass transition temperatures near the boiling point of water(100℃, 212℉), and they are most useful for room temperature applications.Some specially engineered polymers can withstand temperatures as high as 300℃(572℉).例如,许多工业上的重要聚合物其玻璃状转化温度接近水的沸点(100℃,212℉),它们被广泛用于室温下。而某些特别制造的聚合物能经受住高达300℃(572℉)的温度。

Crystallinity.Polymers can be crystalline or amorphous, but they usually have a combination of crystalline and amorphous structures(semi-crystalline).结晶度:聚合物可以是晶体状的或非结晶质的,但它们通常是晶体状和非结晶质结构的结合物(半晶体)。

Interchain interactions.The polymer chains can be free to slide past one another(thermo-plastic)or they can be connected to each other with crosslinks(thermoset or elastomer).Thermo-plastics can be reformed and recycled, while thermosets and elastomers are not reworkable.原子链间的相互作用:聚合物的原子链可以自由地彼此滑动(热可塑性)或通过交键互相连接(热固性或弹性)。热可塑性材料可以重新形成和循环使用,而热固性与弹性材料则是不能再使用的。

Intrachain structure.The chemical structure of the chains also has a tremendous effect on the properties.Depending on the structure the polymer may be hydrophilic or hydrophobic(likes or hates water), stiff or flexible, crystalline or amorphous, reactive or unreactive.链内结构:原子链的化学结构对性能也有很大影响。根据各自的结构不同,聚合物可以是亲水的或憎水的(喜欢或讨厌水)、硬的或软的、晶体状的或非结晶质的、易起反应的或不易起反应的。

The understanding of heat treatment is embraced by the broader study of metallurgy.Metallurgy is the physics, chemistry, and engineering related to metals from ore extraction to the final product.对热处理的理解包含于对冶金学较广泛的研究。冶金学是物理学、化学和涉及金属从矿石提炼到最后产物的工程学。

Heat treatment is the operation of heating and cooling a metal in its solid state to change its physical properties.According to the procedure used, steel can be hardened to resist cutting action and abrasion, or it can be softened to permit machining.热处理是将金属在固态加热和冷却以改变其物理性能的操作。按所采用的步骤,钢可以通过硬化来抵抗切削和磨损,也可以通过软化来允许机加工。

With the proper heat treatment internal stresses may be removed, grain size reduced, toughness increased, or a hard surface produced on a ductile interior.The analysis of the steel must be known because small percentages of certain elements, notably carbon, greatly affect the physical properties.使用合适的热处理可以去除内应力、细化晶粒、增加韧性或在柔软材料上覆盖坚硬的表面。因为某些元素(尤其是碳)的微小百分比极大地影响物理性能,所以必须知道对钢的分析。

Alloy steel owe their properties to the presence of one or more elements other than carbon, namely nickel, chromium, manganese, molybdenum, tungsten, silicon, vanadium, and copper.Because of their improved physical properties they are used commercially in many ways not possible with carbon steels.合金钢的性质取决于其所含有的除碳以外的一种或多种元素,如镍、铬、锰、钼、钨、硅、钒和铜。由于合金钢改善的物理性能,它们被大量使用在许多碳钢不适用的地方。

The following discussion applies principally to the heat treatment of ordinary commercial steels known as plain carbon steels.With this process the rate of cooling is the controlling factor, rapid cooling from above the critical range results in hard structure, whereas very slow cooling produces the opposite effect.下列讨论主要针对被称为普通碳钢的工业用钢而言。热处理时冷却速率是控制要素,从高于临界温度快速冷却导致坚硬的组织结构,而缓慢冷却则产生相反效果。

A Simplified Iron-carbon Diagram 简化铁碳状态图

If we focus only on the materials normally known as steels, a simplified diagram is often used.如果只把注意力集中于一般所说的钢上,经常要用到简化铁碳状态图。

Those portions of the iron-carbon diagram near the delta region and those above 2% carbon content are of little importance to the engineer and are deleted.A simplified diagram, such as the one in Fig.2.1, focuses on the eutectoid region and is quite useful in understanding the properties and processing of steel.铁碳状态图中靠近三角区和含碳量高于2%的那些部分对工程师而言不重要,因此将它们删除。如图2.1所示的简化铁碳状态图将焦点集中在共析区,这对理解钢的性能和处理是十分有用的。

The key transition described in this diagram is the decomposition of single-phase austenite(γ)to the two-phase ferrite plus carbide structure as temperature drops.在此图中描述的关键转变是单相奥氏体(γ)随着温度下降分解成两相铁素体加渗碳体组织结构。

Control of this reaction, which arises due to the drastically different carbon solubility of austenite and ferrite, enables a wide range of properties to be achieved through heat treatment.控制这一由于奥氏体和铁素体的碳溶解性完全不同而产生的反应,使得通过热处理能获得很大范围的特性。

To begin to understand these processes, consider a steel of the eutectoid composition, 0.77% carbon, being slow cooled along line x-x’ in

Fig.2.1.At the upper temperatures, only austenite is present, the 0.77% carbon being dissolved in solid solution with the iron.When the steel cools to 727℃(1341℉), several changes occur simultaneously.为了理解这些过程,考虑含碳量为0.77%的共析钢,沿着图2.1的x-x’线慢慢冷却。在较高温度时,只存在奥氏体,0.77%的碳溶解在铁里形成固溶体。当钢冷却到727℃(1341℉)时,将同时发生若干变化。

The iron wants to change from the FCC austenite structure to the BCC ferrite structure, but the ferrite can only contain 0.02% carbon in solid solution.铁需要从面心立方体奥氏体结构转变为体心立方体铁素体结构,但是铁素体只能容纳固溶体状态的0.02%的碳。

The rejected carbon forms the carbon-rich cementite intermetallic with composition Fe3C.In essence, the net reaction at the eutectoid is austenite 0.77%C→ferrite 0.02%C+cementite 6.67%C.被析出的碳与金属化合物Fe3C形成富碳的渗碳体。本质上,共析体的基本反应是奥氏体0.77%的碳→铁素体0.02%的碳+渗碳体6.67%的碳。

Since this chemical separation of the carbon component occurs entirely in the solid state, the resulting structure is a fine mechanical mixture of ferrite and cementite.Specimens prepared by polishing and etching in a weak solution of nitric acid and alcohol reveal the lamellar structure of

alternating plates that forms on slow cooling.由于这种碳成分的化学分离完全发生在固态中,产生的组织结构是一种细致的铁素体与渗碳体的机械混合物。通过打磨并在弱硝酸酒精溶液中蚀刻制备的样本显示出由缓慢冷却形成的交互层状的薄片结构。

This structure is composed of two distinct phases, but has its own set of characteristic properties and goes by the name pearlite, because of its resemblance to mother-of-pearl at low magnification.这种结构由两种截然不同的状态组成,但它本身具有一系列特性,且因与低倍数放大时的珠母层有类同之处而被称为珠光体。

Steels having less than the eutectoid amount of carbon(less than 0.77%)are known as hypo-eutectoid steels.Consider now the transformation of such a material represented by cooling along line y-y’ in Fig.2.1.含碳量少于共析体(低于0.77%)的钢称为亚共析钢。现在来看这种材料沿着图2.1中y-y’ 线冷却的转变情况。

At high temperatures, the material is entirely austenite, but upon cooling enters a region where the stable phases are ferrite and austenite.Tie-line and level-law calculations show that low-carbon ferrite nucleates and grows, leaving the remaining austenite richer in carbon.在较高温度时,这种材料全部是奥氏体,但随着冷却就进入到铁素体和奥氏体稳定状态的区域。由截线及杠杆定律分析可知,低碳铁素体成核并长大,剩下含碳

量高的奥氏体。

At 727℃(1341℉), the austenite is of eutectoid composition(0.77% carbon)and further cooling transforms the remaining austenite to pearlite.The resulting structure is a mixture of primary or pro-eutectoid ferrite(ferrite that formed above the eutectoid reaction)and regions of pearlite.在727℃(1341℉)时,奥氏体为共析组成(含碳量0.77%),再冷却剩余的奥氏体就转化为珠光体。作为结果的组织结构是初步的共析铁素体(在共析反应前的铁素体)和部分珠光体的混合物。

Hypereutectoid steels are steels that contain greater than the eutectoid amount of carbon.When such steel cools, as shown in z-z’ of Fig.2.1 the process is similar to the hypo-eutectoid case, except that the primary or pro-eutectoid phase is now cementite instead of ferrite.过共析钢是含碳量大于共析量的钢。当这种钢冷却时,就像图2.1的z-z’线所示,除了初步的共析状态用渗碳体取代铁素体外,其余类似亚共析钢的情况。

As the carbon-rich phase forms, the remaining austenite decreases in carbon content, reaching the eutectoid composition at 727℃(1341℉).As before, any remaining austenite transforms to pearlite upon slow cooling through this temperature.随着富碳部分的形成,剩余奥氏体含碳量减少,在727℃(1341℉)时达到共析组

织。就像以前说的一样,当缓慢冷却到这温度时所有剩余奥氏体转化为珠光体。

It should be remembered that the transitions that have been described by the phase diagrams are for equilibrium conditions, which can be approximated by slow cooling.With slow heating, these transitions occur in the reverse manner.应该记住由状态图描述的这种转化只适合于通过缓慢冷却的近似平衡条件。如果缓慢加热,则以相反的方式发生这种转化。

However, when alloys are cooled rapidly, entirely different results may be obtained, because sufficient time is not provided for the normal phase reactions to occur, in such cases, the phase diagram is no longer a useful tool for engineering analysis.然而,当快速冷却合金时,可能得到完全不同的结果。因为没有足够的时间让正常的状态反应发生,在这种情况下对工程分析而言状态图不再是有用的工具。

Hardening 淬火

Hardening is the process of heating a piece of steel to a temperature within or above its critical range and then cooling it rapidly.淬火就是把钢件加热到或超过它的临界温度范围,然后使其快速冷却的过程。If the carbon content of the steel is known, the proper temperature to which the steel should be heated may be obtained by reference to the iron-iron

carbide phase diagram.However, if the composition of the steel is unknown, a little preliminary experimentation may be necessary to determine the range.如果钢的含碳量已知,钢件合适的加热温度可参考铁碳合金状态图得到。然而当钢的成分不知道时,则需做一些预备试验来确定其温度范围。

A good procedure to follow is to heat-quench a number of small specimens of the steel at various temperatures and observe the result, either by hardness testing or by microscopic examination.When the correct temperature is obtained, there will be a marked change in hardness and other properties.要遵循的合适步骤是将这种钢的一些小试件加热到不同的温度后淬火,再通过硬度试验或显微镜检查观测结果。一旦获得正确的温度,硬度和其它性能都将有明显的变化。

In any heat-treating operation the rate of heating is important.Heat flows from the exterior to the interior of steel at a definite rate.If the steel is heated too fast, the outside becomes hotter than the interior and uniform structure cannot be obtained.在任何热处理作业中,加热的速率都是重要的。热量以一定的速率从钢的外部传导到内部。如果钢被加热得太快,其外部比内部热就不能得到均匀的组织结构。

If a piece is irregular in shape, a slow rate is all the more essential to eliminate warping and cracking.The heavier the section, the longer must be the heating time to achieve uniform results.如果工件形状不规则,为了消除翘曲和开裂最根本的是加热速率要缓慢。截面越厚,加热的时间就要越长才能达到均匀的结果。

Even after the correct temperature has been reached, the piece should be held at that temperature for a sufficient period of time to permit its thickest section to attain a uniform temperature.即使加热到正确的温度后,工件也应在此温度下保持足够时间以让其最厚截面达到相同温度。

The hardness obtained from a given treatment depends on the quenching rate, the carbon content, and the work size.In alloy steels the kind and amount of alloying element influences only the hardenability(the ability of the workpiece to be hardened to depths)of the steel and does not affect the hardness except in unhardened or partially hardened steels.通过给定的热处理所得到的硬度取决于淬火速率、含碳量和工件尺寸。除了非淬硬钢或部分淬硬钢外,合金钢中合金元素的种类及含量仅影响钢的淬透性(工件被硬化到深层的能力)而不影响硬度。

Steel with low carbon content will not respond appreciably to hardening treatment.As the carbon content in steel increases up to around 0.60%, the possible hardness obtainable also increases.含碳量低的钢对淬火处理没有明显的反应。随着钢的含碳量增加到大约0.60%,可能得到的硬度也增加。

Above this point the hardness can be increased only slightly, because steels above the eutectoid point are made up entirely of pearlite and cementite in the annealed state.Pearlite responds best to heat-treating operations;and steel composed mostly of pearlite can be transformed into a hard steel.高于此点,由于超过共析点钢完全由珠光体和退火状态的渗碳体组成,硬度增加并不多。珠光体对热处理作业响应最好;基本由珠光体组成的钢能转化成硬质钢。

As the size of parts to be hardened increases, the surface hardness decreases somewhat even though all other conditions have remained the same.There is a limit to the rate of heat flow through steel.即使所有其它条件保持不变,随着要淬火的零件尺寸的增加其表面硬度也会有所下降。热量在钢中的传导速率是有限的。

No matter how cool the quenching medium may be, if the heat inside a large piece cannot escape faster than a certain critical rate, there is a definite limit to the inside hardness.However, brine or water quenching is capable of rapidly bringing the surface of the quenched part to its own temperature and maintaining it at or close to this temperature.无论淬火介质怎么冷,如果在大工件中的热量不能比特定的临界速率更快散发,那它内部硬度就会受到明确限制。然而盐水或水淬火能够将被淬零件的表面迅速冷却至本身温度并将其保持或接近此温度。

Under these circumstances there would always be some finite depth of surface hardening regardless of size.This is not true in oil quenching, when the surface temperature may be high during the critical stages of quenching.在这种情况下不管零件尺寸如何,其表面总归有一定深度被硬化。但油淬情况就不是如此,因为油淬时在淬火临界阶段零件表面的温度可能仍然很高。

Tempering 回火

Steel that has been hardened by rapid quenching is brittle and not suitable for most uses.By tempering or drawing, the hardness and brittleness may be reduced to the desired point for service conditions.

快速淬火硬化的钢是硬而易碎的,不适合大多数场合使用。通过回火,硬度和脆性可以降低到使用条件所需要的程度。

As these properties are reduced there is also a decrease in tensile strength and an increase in the ductility and toughness of the steel.The operation consists of reheating quench-hardened steel to some temperature below the critical range followed by any rate of cooling.随着这些性能的降低,拉伸强度也降低而钢的延展性和韧性则会提高。回火作业包括将淬硬钢重新加热到低于临界范围的某一温度然后以任意速率冷却。

Although this process softens steel, it differs considerably from annealing in that the process lends itself to close control of the physical properties and in most cases does not soften the steel to the extent that

annealing would.The final structure obtained from tempering a fully hardened steel is called tempered martensite.虽然这过程使钢软化,但它与退火是大不相同的,因为回火适合于严格控制物理性能并在大多数情况下不会把钢软化到退火那种程度。回火完全淬硬钢得到的最终组织结构被称为回火马氏体。

Tempering is possible because of the instability of the martensite, the principal constituent of hardened steel.Low-temperature draws, from 300℉ to 400℉(150℃~205℃), do not cause much decrease in hardness and are used principally to relieve internal strains.由于马氏体这一淬硬钢主要成分的不稳定性,使得回火成为可能。低温回火,300℉到400℉(150℃~205℃),不会引起硬度下降很多,主要用于减少内部应变。

As the tempering temperatures are increased, the breakdown of the martensite takes place at a faster rate, and at about 600℉(315℃)the change to a structure called tempered martensite is very rapid.The tempering operation may be described as one of precipitation and agglomeration or coalescence of cementite.随着回火温度的提高,马氏体以较快的速率分解,并在大约600℉(315℃)迅速转变为被称为回火马氏体的结构。回火作业可以描述为渗碳体析出和凝聚或聚结的过程。

A substantial precipitation of cementite begins at 600℉(315℃), which

produces a decrease in hardness.Increasing the temperature causes coalescence of the carbides with continued decrease in hardness.渗碳体的大量析出开始于600℉(315℃),这使硬度下降。温度的上升会使碳化物聚结而硬度继续降低。

In the process of tempering, some consideration should be given to time as well as to temperature.Although most of the softening action occurs in the first few minutes after the temperature is reached, there is some additional reduction in hardness if the temperature is maintained for a prolonged time.在回火过程中,不但要考虑温度而且要考虑时间。虽然大多数软化作用发生在达到所需温度后的最初几分钟,但如果此温度维持一段延长时间,仍会有些额外的硬度下降。

Usual practice is to heat the steel to the desired temperature and hold it there only long enough to have it uniformly heated.通常的做法是将钢加热到所需温度并且仅保温到正好使其均匀受热。

Two special processes using interrupted quenching are a form of tempering.In both, the hardened steel is quenched in a salt bath held at a selected lower temperature before being allowed to cool.These processes, known as austempering and martempering, result in products having certain desirable physical properties.两种采用中断淬火的特殊工艺也是回火的形式。这两种工艺中,淬硬钢在其被允许冷却前先在一选定的较低温度盐浴淬火。这两种分别被称为奥氏体回火和马氏体回火的工艺,能使产品具有特定所需的物理性能。

Annealing 退火

The primary purpose of annealing is to soften hard steel so that it may be machined or cold worked.退火的主要目的是使坚硬的钢软化以便机加工或冷作。

This is usually accomplished by heating the steel too slightly above the critical temperature, holding it there until the temperature of the piece is uniform throughout, and then cooling at a slowly controlled rate so that the temperature of the surface and that of the center of the piece are approximately the same.通常是非常缓慢地将钢加热到临界温度以上,并将其在此温度下保持到工件全部均匀受热,然后以受控的速率慢慢地冷却,这样使得工件表面和内部的温度近似相同。

This process is known as full annealing because it wipes out all trace of previous structure, refines the crystalline structure, and softens the metal.Annealing also relieves internal stresses previously set up in the metal.这过程被称为完全退火,因为它去除了以前组织结构的所有痕迹、细化晶粒并

软化金属。退火也释放了先前在金属中的内应力。

The temperature to which a given steel should be heated in annealing depends on its composition;for carbon steels it can be obtained readily from the partial iron-iron carbide equilibrium diagram.When the annealing temperature has been reached, the steel should be held there until it is uniform throughout.给定的钢其退火温度取决于它的成分;对碳钢而言可容易地从局部的铁碳合金平衡图得到。达到退火温度后,钢应当保持在此温度等到全部均匀受热。

This usually takes about 45min for each inch(25mm)of thickness of the largest section.For maximum softness and ductility the cooling rate should be very slow, such as allowing the parts to cool down with the furnace.The higher the carbon content, the slower this rate must be.加热时间一般以工件的最大截面厚度计每英寸(25mm)大约需45min。为了得到最大柔软性和延展性冷却速率应该很慢,比如让零件与炉子一起冷下来。含碳量越高,冷却的速率必须越慢。

The heating rate should be consistent with the size and uniformity of sections, so that the entire part is brought up to temperature as uniformly as possible.加热的速率也应与截面的尺寸及均匀程度相协调,这样才能使整个零件尽可能均匀地加热。

Normalizing and Spheroidizing 正火和球化

The process of normalizing consists of heating the steel about 50℉ to 100℉(10℃~40℃)above the upper critical range and cooling in still air to room temperature.正火处理包括先将钢加热到高于上临界区50℉到100℉(10℃~40℃)然后在静止的空气中冷却到室温。

This process is principally used with low-and medium-carbon steels as well as alloy steels to make the grain structure more uniform, to relieve internal stresses, or to achieve desired results in physical properties.Most commercial steels are normalized after being rolled or cast.退火主要用于低碳钢、中碳钢及合金钢,使晶粒结构更均匀、释放内应力或获得所需的物理特性。大多数商业钢材在轧制或铸造后都要退火。

Spheroidizing is the process of producing a structure in which the cementite is in a spheroidal distribution.If steel is heated slowly to a temperature just below the critical range and held there for a prolonged period of time, this structure will be obtained.球化是使渗碳体产生成类似球状分布结构的工艺。如果把钢缓慢加热到恰好低于临界温度并且保持较长一段时间,就能得到这种组织结构。

The globular structure obtained gives improved machinability to the steel.This treatment is particularly useful for hypereutectoid steels that must be machined.所获得的球状结构改善了钢的可切削性。此处理方法对必须机加工的过共析钢特别有用。

Surface Hardening 表面硬化 Carburizing The oldest known method of producing a hard surface on steel is case hardening or carburizing.Iron at temperatures close to and above its critical temperature has an affinity for carbon.渗碳

最早的硬化钢表面的方法是表面淬火或渗碳。铁在靠近并高于其临界温度时对碳具有亲合力。

The carbon is absorbed into the metal to form a solid solution with iron and converts the outer surface into high-carbon steel.The carbon is gradually diffused to the interior of the part.The depth of the case depends on the time and temperature of the treatment.碳被吸收进金属与铁形成固溶体使外表面转变成高碳钢。碳逐渐扩散到零件内

部。渗碳层的深度取决于热处理的时间和温度。

Pack carburizing consists of placing the parts to be treated in a closed container with some carbonaceous material such as charcoal or coke.It is a long process and used to produce fairly thick cases of from 0.03 to 0.16 in.(0.76~4.06mm)in depth.固体渗碳的方法是将要处理的零件与木炭或焦炭这些含碳的材料一起放入密闭容器。这是一个较长的过程,用于产生深度为0.03到0.16 英寸(0.76~4.06mm)这么厚的硬化层。

Steel for carburizing is usually a low-carbon steel of about 0.15% carbon that would not in itself responds appreciably to heat treatment.In the course of the process the outer layer is converted into high-carbon steel with a content ranging from 0.9% to 1.2% carbon.用于渗碳的一般是含碳量约为0.15%、本身不太适合热处理的低碳钢。在处理过程中外层转化为含碳量从0.9%到1.2%的高碳钢。

A steel with varying carbon content and, consequently, different critical temperatures requires a special heat treatment.含碳量变化的钢具有不同的临界温度,因此需要特殊的热处理。

Because there is some grain growth in the steel during the prolonged carburizing treatment, the work should be heated to the critical temperature of the core and then cooled, thus refining the core structure.The steel

should then be reheated to a point above the transformation range of the case and quenched to produce a hard, fine structure.由于在较长的渗碳过程中钢内部会有些晶粒生长,所以工件应该加热到核心部分的临界温度再冷却以细化核心部分的组织结构。然后重新加热到高于外层转变温度再淬火以生成坚硬、细致的组织结构。

The lower heat-treating temperature of the case results from the fact that hypereutectoid steels are normally austenitized for hardening just above the lower critical point.A third tempering treatment may be used to reduce strains.由于恰好高于低临界温度通常使过共析钢奥氏体化而硬化,所以对外层采用较低的热处理温度。第三次回火处理可用于减少应变。

Carbonitriding Carbonitriding, sometimes known as dry cyaniding or nicarbing, is a case-hardening process in which the steel is held at a temperature above the critical range in a gaseous atmosphere from which it absorbs carbon and nitrogen.碳氮共渗

碳氮共渗,有时也称为干法氰化或渗碳氮化,是一种表面硬化工艺。通过把钢放在高于临界温度的气体中,让它吸收碳和氮。

Any carbon-rich gas with ammonia can be used.The wear-resistant case produced ranges from 0.003 to 0.030 inch(0.08~ 0.76mm)in thickness.An advantage of carbonitriding is that the hardenability of the case is significantly increased when nitrogen is added, permitting the use of low-cost steels.可以使用任何富碳气体加氨气,能生成厚度从0.003到0.030英寸(0.08~ 0.76mm)的耐磨外层。碳氮共渗的优点之一是加入氮后外层的淬透性极大增加,为使用低价钢提供条件。

Cyaniding Cyaniding, or liquid carbonitriding as it is sometimes called, is also a process that combines the absorption of carbon and nitrogen to obtain surface hardness in low-carbon steels that do not respond to ordinary heat treatment.氰化

氰化,有时称为液体碳氮共渗,也是一种结合了吸收碳和氮来获得表面硬度的工艺,它主要用于不适合通常热处理的低碳钢。

The part to be case hardened is immersed in a bath of fused sodium cyanide salts at a temperature slightly above the Ac1 range, the duration of soaking depending on the depth of the case.The part is then quenched in water or oil to obtain a hard surface.35

需表面硬化的零件浸没在略高于Ac1温度熔化的氰化钠盐溶液中,浸泡的持续时间取决于硬化层的深度。然后将零件在水或油中淬火。

Case depths of 0.005 to 0.015in.(0.13~0.38mm)may be readily obtained by this process.Cyaniding is used principally for the treatment of small parts.通过这样处理可以容易地获得0.005到0.015英寸(0.13~0.38mm)的硬化深度。氰化主要用于处理小零件。

Nitriding Nitriding is somewhat similar to ordinary case hardening, but it uses a different material and treatment to create the hard surface constituents.渗氮

渗氮有些类似普通表面硬化,但它采用不同的材料和处理方法来产生坚硬表面成分。

In this process the metal is heated to a temperature of around 950℉(510℃)and held there for a period of time in contact with ammonia gas.Nitrogen from the gas is introduced into the steel, forming very hard nitrides that are finely dispersed through the surface metal.这种工艺中金属加热到约950℉(510℃),然后与氨气接触一段时间。氨气中的氮进入钢内,形成细微分布于金属表面又十分坚固的氮化物。

Nitrogen has greater hardening ability with certain elements than with others, hence, special nitriding alloy steels have been developed.氮与某些元素的硬化能力比其它元素大,因此开发了专用的渗氮合金钢。Aluminum in the range of 1% to 1.5% has proved to be especially suitable in steel, in that it combines with the gas to form a very stable and hard constituent.The temperature of heating ranges from 925℉ to 1,050℉(495℃~565℃).在钢中含铝1%到1.5%被证明特别合适,它能与氨气结合形成很稳定坚固的成分。其加热温度范围为925℉到1,050℉(495℃~565℃)。

Liquid nitriding utilizes molten cyanide salts and, as in gas nitriding, the temperature is held below the transformation range.Liquid nitriding adds more nitrogen and less carbon than either cyaniding or carburizing in cyanide baths.液体渗氮利用熔化的氰化物盐,就像气体渗氮,温度保持在低于转化范围内。液体渗氮时在氰化物溶液中加入比氰化及渗碳都较多的氮和较少的碳。

Case thickness of 0.001 to 0.012in.(0.03~0.30mm)is obtained, whereas for gas nitriding the case may be as thick as 0.025 in.(0.64mm).In general the uses of the two-nitriding processes are similar.液体渗氮可以获得厚度为0.001到0.012英寸(0.03~0.30mm)的硬化层,然而气体渗氮则能获得厚0.025英寸(0.64mm)的硬化层。一般而言两种渗氮方法的用途是类

似的。

Nitriding develops extreme hardness in the surface of steel.This hardness ranges from 900 to 1,100 Brinell, which is considerably higher than that obtained by ordinary case hardening.渗氮在钢表面获得远远超出正常标准的硬度。其硬度范围为900到1,100布氏硬度,这远高于普通表面硬化所获得的硬度。

Nitriding steels, by virtue of their alloying content, are stronger than ordinary steels and respond readily to heat treatment.It is recommended that these steels be machined and heat-treated before nitriding, because there is no scale or further work necessary after this process.由于渗氮钢的合金比例,它们比普通钢更强,也容易热处理。建议对这种钢在渗氮前先机加工和热处理,因为渗氮后没有剥落并不需要更多的加工。

Fortunately, the interior structure and properties are not affected appreciably by the nitriding treatment and, because no quenching is necessary, there is little tendency to warp, develop cracks, or change condition in any way.The surface effectively resists corrosive action of water, saltwater spray, alkalies, crude oil, and natural gas.值得庆幸的是由于渗氮处理一点都不影响内部结构和性能,也无需淬火,所以几乎没有任何产生翘曲、裂缝及变化条件的趋势。这种表面能有效地抵御水、盐雾、碱、原油和天然气的腐蚀反应。

Casting is a manufacturing process in which molten metal is poured or injected and allowed to solidify in a suitably shaped mold cavity.During or after cooling, the cast part is removed from the mold and then processed for delivery.铸造是一种将熔化的金属倒入或注入合适的铸模腔并且在其中固化的制造工艺。在冷却期间或冷却后,把铸件从铸模中取出,然后进行交付。

Casting processes and cast-material technologies vary from simple to highly complex.Material and process selection depends on the part’s complexity and function, the product’s quality specifications, and the projected cost level.铸造工艺和铸造材料技术从简单到高度复杂变化很大。材料和工艺的选择取决于零件的复杂性和功能、产品的质量要求以及成本预算水平。

Castings are parts that are made close to their final dimensions by a casting process.With a history dating back 6,000 years, the various casting processes are in a state of continuous refinement and evolution as technological advances are being made.通过铸造加工,铸件可以做成很接近它们的最终尺寸。回溯6,000年历史,各种各样的铸造工艺就如同科技进步一样处于一个不断改进和发展的状态。

Sand Casting 砂型铸造

Sand casting is used to make large parts(typically iron, but also bronze,39

brass, aluminum).Molten metal is poured into a mold cavity formed out of sand(natural or synthetic).砂型铸造用于制造大型零件(具有代表性是铁,除此之外还有青铜、黄铜和铝)。将熔化的金属倒入由型砂(天然的或人造的)做成铸模腔。

The processes of sand casting are discussed in this section, including patterns, sprues and runners, design considerations, and casting allowance.本节讨论砂型铸造工艺,包括型模、浇注口、浇道、设计考虑因素及铸造余量。The cavity in the sand is formed by using a pattern(an approximate duplicate of the real part), which are typically made out of wood, sometimes metal.The cavity is contained in an aggregate housed in a box called the flask.砂型里的型腔是采用型模(真实零件的近似复制品)构成的,型模一般为木制,有时也用金属制造。型腔整个包含在一个被放入称为砂箱的箱子里的组合体内。

Core is a sand shape inserted into the mold to produce the internal features of the part such as holes or internal passages.Cores are placed in the cavity to form holes of the desired shapes.Core print is the region added to the pattern, core, or mold that is used to locate and support the core within the mold.砂芯是插入铸模的砂型,用于生成诸如孔或内通道之类的内部特征。砂芯安放在型腔里形成所需形状的孔洞。砂芯座是加在型模、砂芯或铸模上的特定区域,用

来在铸模内部定位和支撑砂芯。

A riser is an extra void created in the mold to contain excessive molten material.The purpose of this is to feed the molten metal to the mold cavity as the molten metal solidifies and shrinks, and thereby prevents voids in the main casting.冒口是在铸模内部增加的额外空间,用于容纳过多的熔化金属。其目的是当熔化金属凝固和收缩时往型腔里补充熔化金属,从而防止在主铸件中产生孔隙。

In a two-part mold, which is typical of sand castings, the upper half, including the top half of the pattern, flask, and core is called cope and the lower half is called drag, as shown in Fig.3.1.The parting line or the parting surface is line or surface that separates the cope and drag.在典型砂型铸造的两箱铸模中,上半部分(包括型模顶半部、砂箱和砂芯)称为上型箱,下半部分称为下型箱,见图3.1所示。分型线或分型面是分离上下型箱的线或面。

The drag is first filled partially with sand, and the core print, the cores, and the gating system are placed near the parting line.The cope is then assembled to the drag, and the sand is poured on the cope half, covering the pattern, core and the gating system.首先往下型箱里部分地填入型砂和砂芯座、砂芯,并在靠近分型线处放置浇注系统。然后将上型箱与下型箱装配在一起,再把型砂倒入上型箱盖住型模、砂芯和

浇注系统。

The sand is compacted by vibration and mechanical means.Next, the cope is removed from the drag, and the pattern is carefully removed.The object is to remove the pattern without breaking the mold cavity.型砂通过振动和机械方法压实。然后从下型箱上撤掉上型箱,小心翼翼地取出型模。其目的是取出型模而不破坏型腔。

This is facilitated by designing a draft, a slight angular offset from the vertical to the vertical surfaces of the pattern.This is usually a minimum of 1.5mm(0.060in.), whichever is greater.The rougher the surface of the pattern, the more the draft to be provided.通过设计拔模斜度—型模垂直相交表面的微小角度偏移量—来使取出型模变得容易。拔模斜度最小一般为1.5mm(0.060in.),只能比此大。型模表面越粗糙,则拔模斜度应越大。

The molten material is poured into the pouring cup, which is part of the gating system that supplies the molten material to the mold cavity.熔化的金属从浇注杯注入型腔,浇注杯是浇注系统向型腔提供熔化金属的部分。The vertical part of the gating system connected to the pouring cup is the sprue, and the horizontal portion is called the runners and finally to the multiple points where it is introduced to the mold cavity called the gates.42

将浇注系统的垂直部分与浇注杯连接的是浇注口,浇注系统的水平部分称为浇道,最后到多点把熔化金属导入型腔的称为闸道。

Additionally there are extensions to the gating system called vents that provide the path for the built-up gases and the displaced air to vent to the atmosphere.除此之外,还有称为排放口的浇注系统延长段,它为合成气体和置换空气排放到大气提供通道。

The cavity is usually made oversize to allow for the metal contraction as it cools down to room temperature.This is achieved by making the pattern oversize.To account for shrinking, the pattern must be made oversize by these factors on the average.These are linear factors and apply in each direction.型腔通常大于所需尺寸以允许在金属冷却到室温时收缩。这通过把型模做得大于所需尺寸来达到。为解决收缩效应,一般而言型模做得比所需尺寸大,必须考虑线性因素并作用于各个方向。

These shrinkage allowances are only approximate, because the exact allowance is determined by the shape and size of the casting.In addition, different parts of the casting might require different shrinkage allowances.收缩余量仅仅是近似的,因为准确的余量是由铸件的形状和尺寸决定的。另外,铸件的不同部分也可能需要不同的收缩余量。

Sand castings generally have a rough surface sometimes with surface impurities, and surface variations.A machining(finish)allowance is made for this type of defect.砂型铸件一般表面粗糙,有时还带有表面杂质和表面变异。对这类缺陷采用机加工(最后一道工序)的余量。

In general, typical stages of sand casting operation include(as shown in Fig.3.2): 1.Patterns are made.These will be the shape used to form the cavity in the sand.一般而言,砂型铸造作业的典型阶段包括(如图3.2所示): 1.制作型模。做成用于在型砂中形成型腔的形状。

2.Cores may also be made at this time.These cores are made of bonded sand that will be broken out of the cast part after it is complete.3.Sand is mulled(mixed)thoroughly with additives such as bentonite to increase bonding and overall strength.2.同时还要制作砂芯。这些砂芯用粘结砂做成,等铸件完成后将被打碎取出。3.型砂与膨润土之类的添加剂充分地混合以增强连接及整体强度。

4.Sand is formed about the patterns, and gates, runners, risers, vents

and pouring cups are added as needed.A compaction stage is typically used to ensure good coverage and solid molds.4.型砂在型模周围成形,并根据需要安放闸道、浇道、冒口、排放口和浇注杯等。通常要采取压紧步骤来保证良好的覆盖和坚固的铸型。

Cores may also be added to make concave or internal features for the cast part.Alignment pins may also be used for mating the molds later.Chills may be added to cool large masses faster.安放砂芯来制成铸件的凹形结构或内部特征。为了以后铸模匹配还要用到定位销。对大质量铸件可能需要加入冷却物来使其较快冷却。

5.The patterns are removed, and the molds may be put through a baking stage to increase strength.6.Mold halves are mated and prepared for pouring metal.5.取走型模,将铸模烘焙以增加强度。6.匹配上下铸模,做好浇铸金属的准备。

7.Metal is preheated in a furnace or crucible until is above the liquidus temperature in a suitable range(we don’t want the metal solidifying before the pour is complete).The exact temperature may be closely controlled depending upon the application.7.金属在熔炉或坩埚中预热到高于液化温度的一个合适范围内(不希望金属在

浇铸完成前凝固)。确切的温度要根据应用场合严格控制。

Degassing, and other treatment processes may be done at this time, such as removal of impurities(i.e.slag).Some portion of this metal may be remelted scrap from previously cast parts—10% is reasonable.在此期间还要进行排气和其它处理步骤,例如去除杂质(即熔渣)。可以加入一定量原先是这种金属铸件的废料再融化—10%是适当的。

8.The metal is poured slowly, but continuously into the mold until the mold is full.9.As the molten metal cools(minutes to days), the metal will shrink and the volume will decrease.During this time molten metal may backflow from the molten risers to feed the part and maintain the same shape.8.将金属缓慢而连续地注满型模。

9.随着熔化金属的冷却(几分钟到几天),金属收缩体积减小。在此期间熔化金属可能从冒口回流供给零件以保持其形状不变。

10.Once the part starts to solidify small dendrites of solid material form in the part.During this time metal properties are being determined, and internal stresses are being generated.If a part is allowed to cool slowly enough at a constant rate then the final part will be relatively homogenous and stress free.46

10.在零件开始凝固其内部形成固态金属的小型树枝状结晶期间金属性能被确定,同时也产生了内应力。如果零件以恒定速率冷却得足够缓慢,最终零件将相对均质并释放内应力。

11.Once the part has completely solidified below the eutectic point it may be removed with no concern for final metal properties.At this point the sand is simply broken up, and the part removed.At this point the surface will have a quantity of sand adhering to the surface, and solid cores inside.11.一旦零件在共析点以下完全凝固,可以不考虑金属的最后性能而将其取出。这时可以简单地打碎砂型并取出零件,但零件表面会有大量型砂粘附着,内部还有实心的砂芯。

12.A bulk of the remaining sand and cores can be removed by mechanically striking the part.Other options are to use a vibrating table, sand/shot blaster, hand labor, etc.12.大量的剩余型砂和砂芯要通过机械敲击零件来去除。其它的选择还有采用振动台、喷砂/喷丸机、手工作业等等。

13.The final part is cut off the runner gate system, and is near final shape using cutters, torches, etc.Grinding operations are used to remove any remaining bulk.14.The part is taken down to final shape using machining operations.And cleaning operations may be used to remove oxides, etc.47

13.最后零件要用刀具、喷枪等切掉浇道闸道系统,这样就接近最终形状了。再用磨削作业去除多余的部分。

14.通过机加工将零件切削到最终形状。可能还要用清洗作业去除氧化物等。Investment casting 熔模铸造

Investment casting is also known as the lost wax process.This process is one of the oldest manufacturing processes.The Egyptians used it in the time of the Pharaohs to make gold jewelry(hence the name Investment)some 5,000 years ago.熔模铸造也称为失蜡加工。这是最古老的制造工艺之一。大约在5,000年前的法老王时代,埃及人就用它制造黄金饰品(因此而得名投资)。

Intricate shapes can be made with high accuracy.In addition, metals that are hard to machine or fabricate are good candidates for this process.It can be used to make parts that cannot be produced by normal manufacturing techniques, such as turbine blades that have complex shapes, or airplane parts that have to withstand high temperatures.复杂的形状能被高精度地制造。另外较难机加工或制作的金属都能用此工艺。它还能用于生产一般制造技术无法生产的零件,例如有复杂形状的涡轮叶片或必须耐得住高温的飞机零件。

The mold is made by making a pattern using wax or some other material that can be melted away.This wax pattern is dipped in refractory slurry, which coats the wax pattern and forms a skin.This is dried and the process of dipping in the slurry and drying is repeated until a robust thickness is achieved.制作铸型的型模采用石蜡或其它一些能被融化掉的材料做成。石蜡型模浸泡在耐热浆里,让它覆盖型模并形成外壳,然后使其变干。重复这个浸泡、变干的过程直至获得足够的厚度。

After this, the entire pattern is placed in an oven and the wax is melted away.This leads to a mold that can be filled with the molten metal.Because the mold is formed around a one-piece pattern(which does not have to be pulled out from the mold as in a traditional sand casting process), very intricate parts and undercuts can be made.完成后把整个型模放在烤箱里融化石蜡。这样就做成了能填充熔化金属的铸型。由于这种铸型是环绕整块型模形成的(无需像传统的砂型铸造工艺那样拔模),能制作十分复杂的零件和浮雕。

The wax pattern itself is made by duplicating using a stereo lithography or similar model—which has been fabricated using a computer solid model master.石蜡型模本身能用立体制版或类似的模型复制—这可以采用计算机立体模型原

版制作。

The materials used for the slurry are a mixture of plaster, a binder and powdered silica, a refractory, for low temperature melts.For higher temperature melts, sillimanite or alumina-silicate is used as a refractory, and silica is used as a binder.对较低熔化温度而言,用于耐热浆的材料是石膏作粘合剂和用粉末状硅石作耐温材料的混合物。对较高熔化温度而言,则采用硅线石或氧化铝硅酸盐作耐温材料、无水硅酸作粘合剂。

Depending on the fineness of the finish desired additional coatings of sillimanite and ethyl silicate may be applied.The mold thus produced can be used directly for light castings, or be reinforced by placing it in a larger container and reinforcing it more slurry.根据最后所需光洁度也可采用硅线石和乙烷基硅酸盐。这样生成的铸模可直接用于薄壁铸件或通过将其放在较大容器内用更多耐热浆加强。

Just before the pour, the mold is pre-heated to about 1,000℃(1,832℉)to remove any residues of wax, harden the binder.The pour in the pre-heated mold also ensures that the mold will fill completely.在正要浇铸之前,将型模预热到约1,000℃(1,832℉)以去除剩余石蜡、硬化粘合剂。在预热的型模中浇铸也能保证型模完全充满。

上一篇:边疆战士国庆60周年征文下一篇:校本教材开发管理制度