七年级数学有理数加法说课稿

2024-12-16 版权声明 我要投稿

七年级数学有理数加法说课稿(精选9篇)

七年级数学有理数加法说课稿 篇1

七年级

曾凡斌

一、教材分析

1.地位和作用

本节课要求学生经历有理数加法法则和运算律的探索过程,理解和掌握有理数加法运算法则,并能运用加法运算律简化计算.2.学情分析

初一年级学生学习基础较薄弱,学习能力还不够强.通过小学四则运算的学习,头脑中已形成相关计算规律,知道数都是指正整数、正分数和零等具体的数,因此学生可能会用小学的思维定势去认知、理解有理数的加法.但是学生已经知道数已经扩大到有理数,出现了负数,并且学习了数轴和绝对值,这些基础是学习新课的必备条件。为了学生能切实掌握所学知识,在教学中特别设计了反馈练习;对于教材中的例题和练习题,将作适当的延伸拓展和变式处理. 3.教学目标

认知目标

(1)掌握有理数加法的法则,理解有理数加法的意义.(2)并能进行有理数加法的运算。

能力目标

①学生亲身经历探究有理数加法法则的过程,深刻理解数形结合的思想,由特殊到一般、由具体到抽象的认知规律。

②学生通过动手、发现、分类、比较类方法的学习,提高了对事物之间是普遍联系又是变化发展的辩证观点的再认识.

情感目标

通过联系实际自主探究、自主观察、分类归纳有理数加法法则,能够体会到数学的应用价值;在合作学习中增强与他人的合作。

4.教学重点与难点

重点:有理数加法法则中符号的确定。

难点:异号两数相加的符号。

二、教学方法与教材处理

1.教学方法

师生互动探究式教学 以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初一学生的求知心理和已有的认知水平开展教学.学生通过熟悉的现实生活情景,发现有些计算方式是不够的,引发认知冲突,提出需要学习新的知识.引导学生类比探究有理数加法法则,形成师生互动,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上. 2.学法引导

学法突出自主探索、研讨发现.知识是通过学生自己动口、动脑,积极思考、主动探索获得.学生在讨论、交流、合作、探究活动中总结有理数加法法则。在活动中注重引导学生体会用类比和数形结合的方法扩展知识的过程,培养学生学习的主动性和积极性. 3.设计理念

《大纲》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要. 本节课的教学,是在学生已有的加法知识基础上,创设情景,产生认知冲突,引导学生开展观察特点、类比归纳、讨论交流等探究活动,在活动中向学生渗透类比数形结合的思想、特殊与一般的辩证唯物主义观点.

三、教学过程

根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.本节课的教学设计环节:

前提诊测,复习提问: 复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”,所诊测的绝对值意义和数轴与新的内容有关。

提出问题,创设情景: 从实际问题引入,提出表示数量关系仅用正数表示是不够的,体现了数学源于生活.从而提出研究有理数加法的问题。

尝试指导,实施目标: 从实例出发,利用输赢球得分原理和在数轴上运动方向符号的特点,通过小组探究得出加法法则。

变式训练,巩固目标: 为了更好地理解、掌握有理数加法法则,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了4个由浅入深的例题.(1)是整数的异号两数相加;(2)是整数的同号两数相加;(3)(4)是小数和分数的异号两数相加。同时配有两个由低到高、层次不同的巩固性练习,体现渐进性原则,希望学生能将知识转化为技能

形成性测试,检测目标:把“反馈---调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。

有理数加法说课稿 篇2

教材分析

(一)地位和作用

有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后面学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。

就本章而言,有理数的加法是本章的重点。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键在于这一节的学习。

(二)教学目标

1、知识与能力目标:

(1)了解有理数加法的意义。

(2)理解并掌握的有理数加法的法则,并会运用法则进行准确运算,提高学生的运算能力。

2、过程与方法目标:

(1)经历法则探索的过程,培养学生归纳总结知识的能力。

(2)体验初步的算法思想。(转化)

(3)在探索过程中感受数形结合和分类讨论的数学思想。

(4)渗透由特殊到一般的唯物辩证法思想。

3、情感与态度目标:

(1)让学生体会到数学知识来源于生活,服务于生活,培养学生对数学的热爱。

(2)培养学生协作意识,体验成功,树立学习自信心。

(三)教学重点、难点:

重点:理解和运用有理数的加法法则。

难点:异号两数相加的法则。

教法与学法

我在本节课主要采用“引导——发现教学法”,并借助多媒体课件来展开教学。学生主要采用“合作探究学习法”来学习本节内容。

教学程序:

我采用的教学模式分为“引——探——结——用”四个环节。

(一)、引出课题(2分钟)

例如,足球比赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。

如果,红队进4个球,失2个球;蓝队进1个球,失1个球。则红队的净胜球数为4+(-2)。

蓝队的净胜球数为1+(-1)。

这里用到正数和负数的加法。

那么,怎样计算4+(-2)呢?

此环节大约2分钟。

(二)、探索规律、得出法则。(15分钟)

现规定正能量为正,负能量为负。

(1)若两个好人携带正能量分别为+20、+30。

则相加的结果是( )。

写成算式:(+20)+(+30)=( )

(2)若两个坏人携带负能量分别为—20、—30。

则相加的结果是。

写成算式:(—20)+(—30)=( )

这两个算式,运算有什么特点呢?

同号两数相加,好比作同伙人:正数+正数,正能量增大;

负数+负数,负能量增大。

最后概括为①定符号;②把绝对值相加。

(3)若一个好人携带正能量+30一个坏人携带负能量—10。

则两人较量的结果是( )赢,还剩( )能量。

写成算式:(+30)+(—10)=( )。

(4)若一个好人携带正能量+20一个坏人携带负能量—40。

则两人较量的结果是( )赢,还剩( )能量。

写成算式:(+20)+(—40)=( )。

这组算式,运算有什么特点呢?

异号两数相加,好比两人在打仗,谁的力量强大,谁就赢。如果正能量大,符号就定为正;如果负能量大,符号就定为负,又让学生理解两人打仗,彼此力量会彼此抵消,彼此消损。那么赢的一方还剩多少能量呢?故而把绝对值做减法。强调用大的绝对值减去小的绝对值。

最后概括为①定符号;②把绝对值相减。

再看两种特殊情形:

(5)若一个好人携带正能量+30,一个坏人携带负能量—30。则两人较量的结果是( ),还剩()能量。

写成算式:(—30)+(+30)=( )。

(6)20+0=() 0+(—15)=( )

新课程倡导让学生从“要我学”向“我会学”转变,而教师是学生学习的组织者、引导者和合作者。由于教材上利用数轴和绝对值来探究法则过于抽象,不易引起学生的兴趣。借鉴之下,我选用了学生感兴趣的卡通动画人物,激发学生的学习兴趣,营造一种轻松愉快的学习氛围;我让学生来当裁判,学生必须把6次的情况都完成后,才能得到结果,这样每个学生的注意力一直会很集中。若学生有困难,则小组内探讨交流、补充,让学生能逐步引导概括出有理数的加法法则。上述过程,大约20分钟的时间,将突出重点,突破难点。

(三)小结(3分钟)

有理数的加法法则

1、同号两数相加:

取加数的符号,并把绝对值相加。

2、异号两数相加:

取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得0。

4、一个数同零相加:仍得这个数

(四)、用

1、加深理解,巩固法则。(5分钟)

(1)填表

(2)思考:在进行有理数加法运算时,应分几步完成?

此题的设计是为了学生更好地理解、掌握有理数加法法则。同时,让学生知道,凡是有理数运算都要首先确定结果的符号。学生独立完成表格后,我将解题步骤,分步板书在黑板上,让学生对解题格式引起重视。

2、变式训练,应用法则。(15分钟)

例1.计算

(+20)+(+12) (—8)+(—12)

(—3.75)+(—0.25) (—1/2)+(—2/3)

(—7)+0

例2.计算

(—5)+9 7+(—10)

(—3/4)+1/2 3/5+(—3/5)

数学家皮亚杰认为:“不断的训练才能够逐渐的发展出一个合理的数学模型”。练习和科学的重复练习始终是数学学习的有效办法。为了让学生熟练应用法则准确计算,我设计了2个例题。例1是同号两数相加;例2是异号两数相加。这两种最典型的类型,以起到巩固法则和规范格式的作用。我让学生尝试独立完成,让基础组的学生板演后,并让别的学生找错误,这样充分调动了学生的积极性,活跃了课堂气氛。同时,通过学生纠错的过程,让学生对错误加深记忆,将知识转化为技能。

3、小组闯关,检测目标。(5分钟)

在新课程下,教学的本质是学习活动,学生是否有效的学习,教学目标是否落实到位,检测目标成为一节课的一个重要环节。

我设计了两个闯关小游戏。一个是学生口答抢答,另一个是男生出题女生抢答,反之女生出题男生抢答,通过男女同学竞争中巩固、应用法则。

三点教学反思

1、情境探究问题的设置

我用卡通动画人物来引入问题情境,使学生能够形象的理解有理数加法法则。在思考问题时,首先应让学生对好人、坏人在一起有几种情况有一个明确的认识,培养学生考虑问题的完整性。然后再逐一的进行探索,通过学生谈论交流,最后得到有理数的四条加法法则。

2、例题安排的设置

我安排了同号两数相加和异号两数相加两种最典型的类型,以起到巩固法则和规范格式的作用。

3、数学语言表达的训练

七年级数学有理数加法说课稿 篇3

1,本节课在开始时就先复习小学时学的加法运算律,然后提出一个富有启发性且具有探索意义的问题:“我们如何知道加法的交换律在有理数范围内是否适用?’’然后让学生通过一些实际例子来验证.尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.(在小学、中学阶段,对运算律都不介绍证明方法,只结合具体例子做些脸证).

2,注重学生学习方式的改变,提倡小组合作交流,让每个学生都在与同伴的交流中获益,同时也注重师生之间的交流对话,教师适时引导.

3,重视数感的培养.学生数感的养成不是一朝一夕能达成的,在教学中应充分挖掘学生能力的`生长点,数感也是如此。

4,有理数的运算,既要注意减少一些繁、难的练习题,又要注意掌握有理数的运算需要一定量的练习.更要强调的是算理,要求学生能说出每一步计算的依据.

七年级数学有理数加法说课稿 篇4

请同学们思考一下,两个有理数进行加法运算时,这两个加数的符号可能有哪些情况。

生1:加数都是正数或都是负数。(教师板书:同号两数相加) 加数一正一负(教师板书:异号两数相加)

师:还有其他情况吗?

生2:正数与零,负数与零,或者两个都是零

师:同学们回答得很好。现在让我们一起来看一个具体问题:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少? ① 先向东走了5米,再向东走3米,结果怎样?

生3:向东走了8米

师:如果规定向东为正,向西为负,同学们能不能用一个数学式子来表示? 生4:表示为(+5)+(+3)=+8 (教师板书) 师:我们可以画出示意图。 (教师用投影仪显示图1)

②先向西走了5米,再向西走了3米,结果如何?

生5:向西走了8米。可以表示为:(-5)+(-3)=-8 [教师板书]

(教师用投影仪显示图2)

③ 向东走了5米,再向西走了3米,结果呢?

生6:向东走了2米。可以表示为:(+5)+(-3)=+2 [教师板书]

(教师用投影仪显示图3)

④先向西走了5米,再向东走了3米,结果呢?

生7:向西走了2米。可以表示为:(-5)+(+3)=-2 (教师板) (教师用投影仪显示图4)

⑤先向东走5米,再向西走5米,结果呢?

生8:回到原地位置。可以表示为:(+5)+(-5)=0 (教师板书) (教师用投影仪显示图5)

⑥先向西走5米,再向东走5米,结果呢?

生9:仍回到原地位置。可以表示为:(-5)+(+5)=0 [教师板书]

(教师用投影仪显示图6)

师:同学们开动脑筋,完成上面这组问题完成得非常好,我非常高兴,请同学们独立完成下面一组有理数加法的具体问题,用数学式子表示出来。 (教师用投影仪显示下面内容):

从河岸现在水位线开始,规定上升为正,下降为负:

①上升8cm,再上升6cm,结果怎样? ②下降8cm,再下降6cm,结果怎样?

③上升6cm,再下降8cm,结果怎样? ④下降6cm,再上升8cm,结果怎

样?

⑤上升8cm,再下降8cm,结果怎样? ⑥下降8cm,再上升0cm,结果怎样?

师:下面同学们分组讨论,互相订正。

教师公布正确答案:

①上升14cm。 [教师板书 (+8)+(+6)=+14]

②下降14cm。 [教师板书 (-8)+(-6)=-14]

③下降2cm。 [教师板书 (+6)+(-8)=-2]

④上升2cm。 [教师板书 (-6)+(+8)=+2]

⑤回到原水位线。 [教师板书 (+8)+(-8)=0]

⑥在原水位下线下8cm。 [教师板书 (-8)+0=-8]

师:通过以上两组题目,从两个有理数相加的过程中你发现了什么?请同学们发表演自己的观点,与本组同学交流。

小组1:我们这一小组同学发现了正数加正数结果是正数,负数加负数结果是负数,也就是说:同号两数相加,符号不变。

师:其他小组还有没有新的发现什么?

小组2:我们发现符号不同的两个有理数相加,结果的符号与最前面加数的符号一样。

师:这一小组的看法是否正确呢?

小组3:不正确。因为(+6)+(-8)=-2, (-6)+(+8)=+2,结果和符号与第一个加数的符号不一样。应改为:符号不同的两个有理数相加,结果的符号决定于加数中较大的数的符号。

小组4:这句话也不对,如(+3)+(-5)=-2 中,和的符号是负的,但+3比 -5大,应改为:和的符号与绝对值大的加数符号一样。 师:还有没有不同意见?

小组5:我们这一小组有不同意见。符号不同的两个数相加还有一种可能是相反数的情况,结果为0与每个的数的符号都不一样。

师:观察仔细,很好。

师:刚才同学们只是发现了两个有理数相加,结果的符号问题,结果除了

符号部分外,另一部分称为结果的什么?

众生:结果的绝对值

师:结果的绝对值与加数绝对值又有何关系呢?

小组5:同号两数相加和的绝对值等于加数绝对值的和,异号两数相加和的绝对值等于较大绝对值减去较小绝对值。

师:请同学归纳,总结出有理数的加法规律。

小组6:同号两数相加,符号不变,并把绝对值相加;异号两数相加取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。

小组7:不对,异号两数相加应分两种情况。⑴绝对值不等的异号两数相加;⑵绝对值相等的异号两数相加。

师:很好!同学们已经感受到两个有理数相加的情况与小学加法要复杂一些,是否还有没有考虑到的情况呢?

小组8:有,一个数同0相加,仍是这个数。

师:全班同学共同说出有理数的加法法则。

教(板书):有理数加法法则:

①同号两数相加,取加数的符号,并把绝对值相加;

②异号两数相加,如果绝对值相等和为0;如果绝对值不等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

③一个数同0相加,仍是这个数。

(点评:学生学习知识是一个动态的过程。学生认知的效果,完全取决于学生是否以积极的心态参与认知活动。因此本节课在教学设计上有如下闪光点:

1.通过回顾已具备的部分知识与技能,让学生产生一个暂时成功感和满足感,达到一个暂时的心理平衡。

2.以提问的形式展现新矛盾、新问题,挑起学生引起心理的不平衡。旨在诱发学生好强、好胜的天性,将学生的注意力导向下一个环节。

3.再次以提问的形式,渗透分类的思想,将学生的思维导向分类探索的境地。旨在让学生的思维能圆润地过度到探索新知情境之中。

4.分类展示生活情境,放手让全体学生感受并探索,从而构建加法法则。)

七年级数学有理数加法说课稿 篇5

本课是苏教版小学数学第七册第七单元的第一课时,教材中采用了不完全归纳推理,安排了学生生活中最喜欢的活动项目跳绳和踢毽子,求参加活动的人数。然后让学生通过比较、讨论、观察、发现不同解法之间的共同特点,从而推导出加法交换律和加法结合律。练习中注重让学生体验运算律简便的价值,这样的安排,不仅培养了学生自主学习的积极性,同时也增强了学生应用数学的意识。本课是在学生学过的加法计算和验算的基础上进一步探究的内容,也是以后进行简便计算的基础。

说教学目标和教学重难点

根据教材内容和新课标要求,要让学生运用已有的知识,在合作交流中建构新知识,制定以下教学目标。

1、通过观察、比较和分析,归纳出加法交换律和结合律。

2、在学习过程中,理解并掌握加法交换律和结合律,并会进行运算。

3、培养学生分析、判断、推理能力,提高学生解决问题的能力。

根据教学目标和学生对数学知识的理解能力,制定:

教学重点:理解加法交换律、结合律,并能正确运用。

教学难点:通过观察和分析概括出加法交换律和结合律,并会用字母表示。

说教法与学法

主要采用引导---探究进行教学,让学生用猜想—验证进行学习说教学程序

一、故事孕伏,导入新课

录音播放故事《朝三暮四》,让学生说说听了这个故事的想法,(引出课题)

【 故事导入激发学生学习的兴趣,初步体验加法交换律,唤起求知欲,】

二、创设情境,提出问题。

出示书本情境图引入

根据提供信息,提出用加法计算的问题。

预设:1、跳绳的有多少人? 2、女生有多少人?3、跳绳的男生和踢毽的女生一共有多少人 4、参加活动的一共有多少人?

【设计意图:创设贴近学生的生活情境,让学生自由地提问,可以培养学生的发散性思维。同时学生提出的问题,作为后继探究的学习材料,符合新课程“创造性使用教材”的理念。】

三、引导探究,建构模型。

(一)、研究加法交换律

1、解决问题,初步感知。

根据问题“参加跳绳的有多少人?”学生口头列式。引导得出:两个算式的结果相同,可以用等号连接起来。板书:28+17=17+282、引发猜想,举例验证

问:是不是所有的两个数相加,交换加数的位置,和都不变呢?既然是猜想就需要验证,怎样来验证?(板书:猜想 验证)

请同学们在练习纸上举例验证猜想。学生写等式。然后交流算式,初步感知规律。[+小学教学设计网_=}

3、观察等式,发现规律。

问:观察这些等式,说说它们有什么共同特点?

4、引导学生探索加法交换律的表达方式。

①教师提出:能不能用一个等式来表示我们发现的规律?同桌讨论。汇报:

预设

1:我们用数字(文字)表示

2:我们用符号表示

3:我们用字母表示

②比较表示的不同方式,提出用字母表示发现的规律比较简洁。

出示板书:a+b=b+a

指出:这样的规律就是加法交换律。(板书)

【设计意图:本环节能紧密围绕并运用问题情境,师生之间积极互动,教师引导学生自己去感知规律,发现规律,并学会用字母表示。整个过程,学生在观察中感知,在模仿中理解,在探索中发现,培养了学生的抽象括能力。】

(二)研究加法结合律

1、再次出现主题图

研究:参加活动的一共有多少人?

学生列式后,板书等式:(28+17)+23=28+(17+23)

观察比较上面算式,思考:等式左右两边什么变了?什么没变?

2、丰富表象,初构规律

完成书上的两组算式,再次比较等式左右两边的“变”与“不变。

问: 你发现了什么?

3、举例验证,确认规律

学生小组合作,进一步举例验证规律。

得出加法结合律,尝试用字母表示:板书(a+b)+c=a+(b+c)

【设计意图:围绕“变与不变”这一关键点,通过比较每组的两个算式,初步感受规律。接着再经过学生个性化的验证及交流,从而确认加法结合律并学会用含有字母的式子来表示。这样,既渗透了“猜想、验证、建模”的数学理性思想,又发展了学生分析、比较、归纳、概括的能力。】

(四)、巩固练习,拓展延伸。

1、完成“想想做做”第1题。重点讲第4个是交换和结合律一起使用

2、完成第2题,重点让学生说说后面两题两个数结合了有什么好处。比一比,谁算得快。38+76+24(88+45)+124、游戏:找朋友。

(1)哪两个同学手上的树叶的和是100?

(2)同桌一个同学说出一个数,另一个同学马上说出一个与它的和是整百、整千的数。

【设计意图 :几个层次的练习,为学生提供了具有价值的学习内容,开放学生的思维空间,提高思维含量,学生在观察辨析中比较,在思考对比中升华,促进学生灵活地理解和掌握知识。】

(五)、全课总结,引申知识

今天这节课我们学习了什么知识?你是怎样获得这些知识的?那么在减法、乘法、除法中,有没有这样的规律呢?课后大家可以继续研究。

七年级《有理数的加法》教学反思 篇6

有理数的加法与减法这节课,法则的生成很重要,所以在教学中我注重法则的生成过程,因为也刚刚写了一篇博文就是注重数学知识的形成,对于法则,老师可以直接告诉答案,也可以和学生一起探讨,研究得出法则,对于两种教学方式,我采取更多的时间让学生自己体会法则的生成,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识。

这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法。我在讲完法则的时候课程已经进行了三十分钟多一点,所以课上例题和练习才用了十分钟,所以又用了习题课上了一节,尽管上的比较慢,但是这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题。但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的。如果直接告诉答案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会。

七年级数学说课稿 篇7

《分式的意义》这一节是上海教育出版社九年制义务教育课本数学七年级第一学期第十章“分式”的第一节内容。这节课是在学生学习了整式、因式分解的基础上教学的,学生已经学习和掌握了分式的运算,具备学习本节课知识的基础。同时学好本节课,是以后学习分式的基本性质、运算以及解分式方程的前提。因此,我确定本节课的重点为分式的意义,难点为分式值为零的条件。

二、学情分析

我任教班级学生基础比较扎实,学习能力较强.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。为了学生能切实掌握所学知识,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理.还特别设计了反馈练习。

三、教学目标:

通过情境引入,引导学生观察分析,类比分数形成分式的概念,理解分式的意义。

通过对具体分式的探究与讨论,理解并掌握分式有意义、无意义、值为零的条件。

通过类比分数研究分式的教学,学生具有了运用类比转化的思想方法解决问题的能力。

四、教学方法与教学手段

教学方法:遵循教师为主导,学生为主体的原则,结合七年级学生的认知特点和已有的认知水平,采用创设学生熟悉的问题情境,层层设疑、讲练结合,综合运用探究式、启发式方法进行教学。

教学手段:多媒体教学。

五、教学过程

通过创设情境(雅典奥运会上姚明投篮场景),引导学生观察类比(与已有的分式知识),联想已有的知识经验,分析新的问题等活动,让学生充分感受知识的产生和发展过程,让学生始终处于积极思维状态之中。

通过分式概念、分式无意义、有意义、值为零的条件等探究活动,让学生亲历发现事物特征、规律的过程,激发学生的学习兴趣,增强自信心。

在例题的处理上:一方面,解决问题的具体操作方法,力求规范,另一方面,“分式无意义——分式有意义——分式值为零”的编排顺序,更符合思维的规律,有层次有深度,有“面”有“量”,达到巩固,加深理解的目的;另一方面,在练习设计中采用开放式的活动形式,更有利于培养学生的口头表达能力,解决实际问题的能力以及创新能力。

七年级数学算式方程说课稿 篇8

这里补充一个例题的目的一是解方程的应用,二是前两节课中已学到了方程,在这里可以进一步应用,三是使后面的“检验”更加自然。

解题的格式现在不一定要学生严格掌握。

课堂练习①教科书第73页练习第(3)(4)题。

②小聪带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)

建议:采用小组竞赛的方法进行评议

小结与作业

课堂小结建议:①先让学生进行归纳、补充。主要围绕以下几个方面:

(1)这节课学习的内容。

(2)我有哪些收获?

(3)我应该注意什么问题?

②教师对学生的学习情况进行评价。

③思考题 用等式的性质求x:-2x=-5x+7引发竞争意识,提高自我评价和自我表现的机会,以达到激发兴趣,巩固知识的目的。评价包括对学生个人、小组,对学生的学习态度、情感投入及学习的效果方面等。

本课作业①必做题:教科书第73页第4(1)、(2)、(4)题;补充:用等式的性质解方程:①3+4x=17;②4- =3

②选做题:教科书第73页第4(3)题,第74页第10题。

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1、力求体现新课程理念:数学教学活动必须建立在学生的认知发展水平和已有的.知

识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.本设计从新课的引人、例题的处理(包括解题后的反思)、反馈练习及小结提高等各环节都力求充分体现这一点.

2、在传统的课堂教学中,教师往往通过大量地讲解,把学生变成任教师“灌输”的“容

器”,学生只能接受、输入并存储知识,而教师进行的也只不过是机械地复制文化知识.新

课程的一个重要方面就是要改变学生的学习方式,将被动的、接受式的学习方式,转变为动手实践、自主探索与合作交流等方式.本设计在这方面也有较好的体现.

七年级数学从算式到方程说课稿 篇9

(一)教材的地位和作用

方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础.方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的重要开端,也是增强学生学习数学、应用数学意识的重要题材.本节教材主要起着承前启后的作用,可以说是小学与中学内容上的衔接点,方法上的分水岭.

(二)教学内容

“从算式到方程”新教材与原教材的显著区别:方程这一部分内容不是按照由定义到解法最后讲应用的纯数学体系编排,而是首先从实际问题出发,通过比较算术方法与方程求解的区别,体会方程的优越性,让学生认识到从算式到方程是数学的一大进步.然后再通过具体实际问题所列方程,介绍方程等概念.新教材的编写更加体现了数学的应用价值.

(三)教学重点难点

由于学生在小学阶段已习惯用算术方法解决实际问题,对列方程不太熟练,为了防止学生仍停留在列算式解题的低层上,所以本节重点确定为:让学生在讨论问题、解决问题的过程中,比较列算式与列方程在分析数量关系上的区别及列方程时相等关系的建立.而本节中学生可能感到困难的仍是实际问题相等关系的建立.

二、目标分析

依据课程标准的要求,确定以下目标:

(一)知识与技能目标

1.了解方程等基本概念.

2.会根据具体问题中的数量关系列出方程.

(二)过程与方法目标

经历从具体问题中的数量相等关系列出方程的过程,体会并认识方程是刻画现实世界的一个有效的数学模型,渗透数学建模的思想.

(三)情感目标

让学生进一步认识到方程与现实世界的密切关系,感受数学的价值.培养学生获取信息,分析问题,处理问题的能力。

三、教法与学法分析

根据本节内容与现实生活联系较紧密的特点,教学中选取学生熟悉的、感兴趣的背景材料,充分调动学生的学习热情.并恰当设计各种问题,让学生在教师的引导下,通过小组讨论、相互交流、动手操作、自主探索等活动,获得知识,积累经验,体验成功,积极推行自主学习、合作学习、探究学习等新的学习方式,努力完成教师和学生在教与学活动中角色的转变.

四、教学过程分析

教学目标①进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程

②初步具有解方程中的化归意识;

③培养言必有据的思维能力和良好的思维品质.

教学重点用等式的性质解方程。

上一篇:鲁教版初中语文古诗下一篇:小学语文《精彩极了和糟糕透了》优秀教案设计