函数单调性免费教案

2024-07-19 版权声明 我要投稿

函数单调性免费教案(共11篇)

函数单调性免费教案 篇1

一、教学目标

1、建立增(减)函数及单调性、单调区间的概念

2、掌握如何从函数图象上看出单调区间及单调性

3、掌握如何利用定义证明一段区间上的函数单调性

二、教学重难点

1、了解增(减)函数定义

2、用定义法证明一段区间上的函数单调性

三、教材、学情分析

单调性是处于教材《数学•必修一》B版第二章第一节,初中对单调性有着初步感性认识,到这节课我们给单调性严格的定义。单调性是对函数概念的延续和扩展,也是我们后续研究函数的基础,可以说,起到了承上启下的作用。

四、教学方法

数形结合法、讲解法

五、教具、参考书

三角尺、PPT、数学必修

一、教师教学用书

六、教学过程

(一)知识导入

引入广宁县一天气温变化折线图

询问学生今天的温度是如何变化的?

学生答:气温先上升,到了14时开始不断下降。

由此导入函数图像的上升下降变化,给出f(x)=x和f(x)=x²的图像,询问学生,这两个函数图象是如何变化的?

学生答:前一个不断上升,后一个在y轴左边下降,在y轴右边上升。再询问学生并提醒学生回答:从上面的观察分析,能得出什么结论?

不同的函数,其图像的变化趋势不同,同一函数在不同区间上的变化趋势也不同,函数图像的变化规律就是函数性质的反映。

教师:那么这就是我们要研究的单调性。

(二)给出定义。

教师:首先我们来看一下一元二次函数y=x²的图象的对应值表,当x从0到5上变化时,y是如何变化的。生:随着x的增大而增大

教师:那么我们在这段上升区间中任取两个x1,x2,x1

教师顺势引导出增函数的概念,再由增函数类比画图演示,引导出减函数的概念。强调增(减)函数概念,尤其是在区间内任取x1,x2这句话的理解。由增(减)函数可以引出单调区间的定义,不作很详细讲解。给出例题让学生思考作答,进一步巩固知识点。

(三)证明方法

让学生们思考例二(思想为用定义法证明一段区间的单调性)并尝试解答,一段时间后教师给学生讲解。

讲解完例题后,引导学生归纳用定义法正明一段区间的单调性的方法:

1、设元。

2、做差。

3、变形。

4、断号。

5、定论。

(四)巩固深化

思考:函数y=1/x 的定义域I是什么?在定义域I上的单调性是怎样的?

通过这道问题的讲解说明,让学生们意识到单调性是离不开区间的且单调区间不能求并。

(五)课堂小结

再次对

1、增(减)函数定义。

2、增(减)函数的图象有什么特点?如何根据图象指出单调区间。

3、怎样用定义证明函数的单调性?三个问题进行阐述,牢固学生记忆和理解。

函数单调性免费教案 篇2

【例1】 求函数f (x) =x+1x的单调区间.

解析:函数的定义域为 (-∞, 0) ∪ (0, +∞) , 在定义域内任取x1, x2, 设x1x2.f (x1) -f (x2) = (x1+1x1) - (x2+1x2) = (x1-x2) (1-1x1x2) .由于x1<x2, ∴x1-x2<0, 而1-1x1x2与0的大小在定义域内不确定, 这时令x1=x2=t, 解方程1-1x1x2=0, 即1-1t2=0, t=±1, 同时考虑到定义域中x≠0, 所有的界点为:-1, 0, 1, 相应的单调区间为 (-∞, -1]、[-1, 0) 、 (0, 1]、[1, +∞) , 再用定义域证明.

①当x1, x2∈ (-∞, -1]时, ∵x1<x2, ∴x1-x2<0, 而01x1x211-1x1x20.从而 (x1-x2) (1-1x1x2) 0.即f (x1) <f (x2) , 故f (x) 在 (-∞, -1) 上为增函数.

②当x1, x2∈[-1, 0) 时, ∵x1<x2, ∴x1-x2<0, 而1x1x211-1x1x20.从而 (x1-x2) (1-1x1x2) 0.即f (x1) >f (x2) , 故f (x) 在[-1, 0) 上为减函数.

同理可得f (x) 在 (0, 1]上为减函数;f (x) 在[1, +∞) 上为增函数.

综上可知:f (x) =x+1x的单调增区间为 (-∞, -1]和[1, +∞) ;单调减区间为:[-1, 0) 和 (0, 1].

【例2】 已知f (x) =8+2x-x2, 如果g (x) =f (2-x2) , 求g (x) 的单调区间.

“函数的单调性”教学设计 篇3

认识目标:掌握函数单调性的概念;会判断一些简单函数的单调性。

能力目标:培养学生的分析、归纳和总结能力;培养学生运动变化和数形结合的数学思想;培养学生理论联系实际的辩证唯物主义思想。

情感目标:营造亲切、活跃的课堂气氛,实施多元化评价,激励学生,使学生尝试成功,以点燃学生的学习热情。

教学重点、难点

重点:函数单调性概念和函数单调性的判断。

难点:判断函数的单调性。

教学过程设计与分析

创设问题情境

多媒体:学校的简介。(利用Flash进行演示)

提出问题:学校准备建造一个长方形的花坛,面积设计为16平方米。由于周围环境的限制,其中一边的长度长不能超过10米,短不能少于4米,求花坛半周长的最小值和最大值。

教师说明:此环节为创设情境。我们学校是上海市投资新建的郊区四所寄宿制重点高中之一,有着一流的硬件设施,绿化建设正在进行之中。抓住这一点,我设计了这节课的引例,切合实际,让学生有种亲切感。提出问题后,让学生思考、讨论下列问题:如何把实际问题归结为数学问题?经过思考、讨论,估计学生可以把问题归结为:设受限制一边长为x米,4≤x≤10,则另一边为16/x米,求半周长y=x+16/x(4≤x≤10)的最小值和最大值。如何求最小值?——运用基本不等式。如何求最大值?经过思考、讨论,最后大家一致认为利用y=x+16/x(4≤x≤10)的图像可以得出结论。

多媒体:利用Flash演示y=x+16/x(4≤x≤10)的图像,如图1所示。

教师说明:利用Flash给出函数的图像,从函数图像可以直观地得出结论,但是缺乏理论依据。指出缺乏理论依据的结论是站不住脚的,所以问题转化为寻找其理论依据,从而引入课题。这样可以培养学生严谨的治学态度。

揭示课题,引入新课

1.几何画板演示,点明课题。

多媒体:利用几何画板演示y=x+16/x(4≤x≤10)的动态的变化过程。用鼠标从左向右缓慢拖动y=x+16/x(4≤x≤10)上的A点,引导学生观察A点的纵坐标的变化情况(随着自变量x的增大,函数值y也在增大),如图2所示。

2.请学生根据自己的理解给出增函数定义。

一般地,对于给定区间上的函数f(x):如果对于属于这个区间的自变量的任意两个值x1和x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在这个区间上是增函数。

3.请学生通过类比得出减函数的定义。

教师说明:在减函数定义的教学过程中,我改变了以往“灌输结论”的做法,让学生通过对增函数定义的理解从而得到减函数的定义,培养了学生的类比的重要数学思想方法,对于学生学习新知识、新概念有很大的帮助。

巩固新知,深化扩展

1.一次函数的单调性问题。

[例1]证明函数f(x)=3x+2在区间(-∞,+∞)上是增函数。

引申:探索一次函数f(x)=kx+b(k≠0)在区间(-∞,+∞)上的单调性。

2.二次函数的单调性问题。

[例2]判断函数f(x)=x2-2x的单调区间,并加以证明。

教师说明:例题的给出由简单的一次函数到二次函数,遵循了学生一般的认知规律,使学生容易接受,易于理解。在二次函数f(x)=x2-2x的单调性的证明中,分工合作,第一、二组的学生完成函数在[1,+∞)上的证明;第三、四组的学生完成函数在(-∞,1]上的证明,倡导自主学习、合作学习的新的学习方式。通过例1、例2的解决,让学生归纳判断函数单调性的基本步骤,培养学生分析、归纳和总结的能力。

判断函数单调性的基本步骤:

第一步,设x1、x2是区间内的任意两个实数,且x1<x2

第二步,比较f(x1)、f(x2)的大小。

第三步,给出结论。

自主解决——[引例]的解决

教师说明:有了上述理论作基础,一开始提出的问题就能迎刃而解:证明函数y=x+16/x在区间[4,10]上是增函数;得出结论,当x=10时,ymax=11.6。此环节起到了首尾呼应的作用,让学生体会到数学源于生活又服务于生活,体会到数学的魅力,并指出,函数单调性的研究为解决函数的最值问题提供了又一重要方法,可见研究函数的单调性是非常有必要的。那么我们为何不乘胜追击,探索更一般的情况,研究函数y=x+k/x(k∈R)的单调性。

多媒体:利用Authorware进行探索、总结y=x+k/x(k∈R)图像,寻找一般的结果。(从特殊到一般)如图3、4所示。

学生总结、教师归纳

教师说明:提出问题,这节课你学到了哪些数学知识?学生一一罗列:函数单调性的概念、判断函数单调性的常用方法、证明函数单调性的基本步骤。进一步提出问题:整堂课体现了哪些重要的数学思维?自问自答:从特殊到一般的研究方法;从大胆的猜想到严格的证明;数形结合、类比的思想。利用计算机使我们探索数学问题的过程更加直观、简洁和生动。

(作者单位:上海市南汇中学 201300)

点评

“问题是数学的心脏”。一个好的问题能引起学生兴趣,启迪学生的思考,将思维引向深刻。闵丽红老师的“学校花坛问题”是一个很好的实际问题:在学校绿化建设中,如何建造其费用最省?闵老师通过引导学生观察问题、发现问题、提出问题、探究和解决问题,使学生感受到数学源于生活又服务于生活,以培养学生形成科学观,培养学生的创新精神和实践能力。

这节课最大的特点是贯穿始终的现代软件技术的应用,娴熟地运用了PowerPoint、Authorware、Flash和几何画板等多种教学媒体和手段,通过直观的画面和动态的影像,将数学知识的发生和发展淋漓尽致地展现在学生面前。尤其在利用Authorware进行探索、总结图像的过程中,首先,研究特殊情况(当k=2时),使用列表描点、几何绘图两种方法,利用计算机动态地绘画出它的图像。紧接着,探索、总结其一般结果:随机地输入k的值,随即电脑显示相应函数的图像。最后,显示所有情况,一目了然,使每位学生对于图像都有了清晰的、精确的认识。利用多媒体处理这一部分达到的效果,是传统教学所不及的,充分地体现了现代技术的优越性。

高一数学函数的单调性教案 篇4

教学目标

1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性. 2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.

3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.

教学重点与难点

教学重点:函数单调性的概念. 教学难点:函数单调性的判定.

教学过程设计

一、引入新课

师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?

(用投影幻灯给出两组函数的图象.)第一组:

第二组:

生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小.

师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.

(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)

二、对概念的分析

(板书课题:函数的单调性)

师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍.

(学生朗读.)

师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?

生:我认为是一致的.定义中的“当增大而增大;“当

时,都有

时,都有

”描述了y随x的”描述了y随x的增大而减少.

”和“

或师:说得非常正确.定义中用了两个简单的不等关系“”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!

(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数图象,体会这种魅力.

和的(指图说明.)师:图中因此而图中因此对于区间[a,b]上的任意,当

时,都有,的单调增区间;,的单调减区间. 在区间[a,b]上是单调递增的,区间[a,b]是函数对于区间[a,b]上的任意,当

时,都有在区间[a,b]上是单调递减的,区间[a,b]是函数(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)

师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应„„(不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.)生:较大的函数值的函数. 师:那么减函数呢?

生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.(学生可能回答得不完整,教师应指导他说完整.)师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?

(学生思索.)

学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力.

(教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.)

生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.

师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?

生:不能.因为此时函数值是一个数.

师:对.函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?

生:不能.比如二次函数而我们不能说,在y轴左侧它是减函数,在y轴右侧它是增函数.因是增函数或是减函数. 的图像,从“形”上感知.)(在学生回答问题时,教师板演函数师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明函数的单调性是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.

师:还有没有其他的关键词语?

生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语. 师:你答的很对.能解释一下为什么吗?(学生不一定能答全,教师应给予必要的提示.)师:“属于”是什么意思? 生:就是说两个自变量生:可以.

师:那么“任意”和“都有”又如何理解?

生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要,就必须都小于,或

都大于

.,必须取自给定的区间,不能从其他区间上取.

师:如果是闭区间的话,能否取自区间端点?

师:能不能构造一个反例来说明“任意”呢?(让学生思考片刻.)生:可以构造一个反例.考察函数,定,显然,而,在区间[-2,2]上,如果取两个特定的值,有,若由此判是[-2,2]上的减函数,那就错了. 师:那么如何来说明“都有”呢? 生:在[-2,2]上,当,这时就不能说,时,有

;当,时,有,在[-2,2]上是增函数或减函数.

师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量,根据它们的函数值

和的大小来判定函数的增减性.

(教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.)

师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.

(用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力.)

三、概念的应用

例1 图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?

(用投影幻灯给出图象.)

生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间.

生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢? 师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,b]上单调(增或减),且[](增或减).反之不然.

例2 证明函数f(x)=3x+2在(-∞,+∞)上是增函数.

师:从函数图象上观察函数的单调性固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径.

(指出用定义证明的必要性.)

师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.

(教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较和的大小关系感到无从入手,教师应给以启发.)师:对于和

我们如何比较它们的大小呢?我们知道对两个实数a,b,如果,]

[a,b],则f(x)在[,a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.

生:(板演)设,是(-∞,+∞)上任意两个自变量,当,所以f(x)是增函数.

师:他的证明思路是清楚的.一开始设设,是(-∞,+∞)内任意两个自变量,并

时,(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看,这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么

<0,没有用到开始的假设“

”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以,从而

<0,即

.”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).

这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以

小.

(对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.)

调函数吗?并用定义证明你的结论.

师:你的结论是什么呢?

上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数. 生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),显然有,而不是

显然成立,而,因此它不是定义域内的减函数.

生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.

域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.

上是减函数.

(教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:(1)分式问题化简方法一般是通分.(2)要说明三个代数式的符号:k,.

要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.

对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)

四、课堂小结

师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?(请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)

生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明函数的单调性时,应该注意证明的四个步骤.

五、作业

1.课本P53练习第1,2,3,4题.

数.

.(*)

+b>0.由此可知(*)式小于0,即

课堂教学设计说明

函数的单调性是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,函数的单调性早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.

另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.

函数单调性免费教案 篇5

一、教材分析

1、本节内容在全书及章节的地位:《函数的单调性》是必修1第一章第 3 节,是高考的重点考查内容之一,是函数的一个重要性质,在比较几个数的大小、求函数值域、对函数的定性分析以及与其他知识的综合上都有广泛的应用。通过对这一节课的学习,可以让学生加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

2、教学目标:根据上述教材结构与内容分析,考虑到学生已有的认知水平我制定如下教学目标:

基础知识目标:了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;

能力训练目标:培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,

情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

重点:形成增(减)函数的形式化定义。

难点。形成增减函数概念的过程中,如何从图像升降的直观认识过渡到函数增减数学符号语言表述;用定义证明函数的单调性。

为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

二、教法

在教学中我使用启发式教学,在教师的引导下,创设情景,通过开放性问题的设置来启发学生思考,在思考中体会数学概念形成过程中所蕴涵的数学方法,

三、学法

倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的`能力”。数学作为基础教育的核心课程之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。我以建构主义理论为指导,辅以多媒体手段,采用着重于学生探索研究的启发式教学方法,结合师生共同讨论、归纳。在课堂结构上,我根据学生的认知水平,我设计了 ①创设情境——引入概念②观察归纳——形成概念③讨论研究——深化概念④即时训练—巩固新知⑤总结反思——提高认识⑥任务后延——自主探究六个层次的学法,

它们环环相扣,层层深入,从而顺利完成教学目标。接下来,我再具体谈一谈这堂课的教学过程:

四、教学程序及设想

(一) 创设情境——引入概念

通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。

1、由具体的数列实例引入:

函数单调性免费教案 篇6

(一)课 型:新授课 教学目标:

理解增函数、减函数、单调区间、单调性等概念,掌握增(减)函数的证明和判别, 学会运用函数图象理解和研究函数的性质。

教学重点:掌握运用定义或图象进行函数的单调性的证明和判别。教学难点:理解概念。教学过程:

一、复习准备: 1.引言:函数是描述事物运动变化规律的数学模型,那么能否发现变化中保持不变的特征呢? 2.观察下列各个函数的图象,并探讨下列变化规律:

①随x的增大,y的值有什么变化? ②能否看出函数的最大、最小值? ③函数图象是否具有某种对称性?

3.画出函数f(x)= x+

2、f(x)= x2的图像。(小结描点法的步骤:列表→描点→连线)

二、讲授新课:

1.教学增函数、减函数、单调性、单调区间等概念:

①根据f(x)=3x+

2、f(x)=x2(x>0)的图象进行讨论:

随x的增大,函数值怎样变化? 当x1>x2时,f(x1)与f(x2)的大小关系怎样? ②.一次函数、二次函数和反比例函数,在什么区间函数有怎样的增大或减小的性质?

③定义增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

④探讨:仿照增函数的定义说出减函数的定义;→ 区间局部性、取值任意性

⑤定义:如果函数f(x)在某个区间D上是增函数或减函数,就说f(x)在这一区间上具有(严格的)单调性,区间D叫f(x)的单调区间。⑥讨论:图像如何表示单调增、单调减?

所有函数是不是都具有单调性?单调性与单调区间有什么关系? ⑦一次函数、二次函数、反比例函数的单调性

2.教学增函数、减函数的证明:

例1.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?

1、例题讲解

例1(P29例1)如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?

例2:(P29例2)物理学中的玻意耳定律pkV

(k为正常数),告诉我们对于一定量的气体,当其体积V增大时,压强p如何变化?试用单调性定义证明.例3.判断函数y

三、巩固练习: 1.求证f(x)=x+1x2x1在区间[2,6] 上的单调性 的(0,1)上是减函数,在[1,+∞]上是增函数。

函数的单调性教学初探 篇7

在这部分内容中主要应该掌握以下几点:

1. 增函数与减函数的定义

定义:对于函数f (x) 的定义域D内的某个区间上的任意两个自变量的值x1, x2。

(1) 若当x1<x2时, 都有f (x1) <f (x2) , 则说明f (x) 在这个区间上是增函数。 (如图1)

(2) 若当x1<x2时, 都有f (x1) >f (x2) , 则说明f (x) 在这个区间上是减函数。

说明: (1) 增函数描述的是f (x) 随x的增大而增大, 函数图象从左到右是呈上升的;减函数描述的是f (x) 随x的增大而减少, 函数图象从左到右是呈下降的。

(3) 增函数就其本质而言是在相应区间上较大的自变量对应较大的函数值、较小的自变量对应较小的函数值。即“大对大、小对小”;减函数在相应区间上较大的自变量对应较小的函数值、较小的自变量对应较大的函数值。即“大对小、小对大”。

2. 单调性与单调区间

若函数y=f (x) 在某个区间是增函数或减函数, 则就说函数y=f (x) 在这一区间具有 (严格的) 单调性, 这一区间叫做函数y=f (x) 的单调区间。此时也说函数是这一区间上的单调函数。

在单调区间上, 增函数的图象从左到右是上升的, 减函数的图象从左到右是下降的。

说明: (1) 函数的单调区间是其定义域的子集;

(2) 应是该区间内任意的两个实数, 忽略需要任意取值这个条件, 就不能保证函数是增函数 (或减函数) , 例如图2中, 在x1, x2, 那样的特定位置上, 虽然使得f (x1) <f (x2) , 但显然此图象表示的函数不是一个单调函数;

(3) 除了严格单调函数外, 还有不严格单调函数, 它的定义类似上述的定义, 只要将上述定义中的“f (x1) <f (x2) 或f (x1) >f (x2) ”改为“f (x1) ≤f (x2) 或f (x1) ≥f (x2) ”即可;

(4) 定义的内涵与外延:内涵是用自变量的大小变化来刻画函数值的变化情况;外延: (1) 一般规律:自变量的变化与函数值的变化一致时是单调递增, 自变量的变化与函数值的变化相反时是单调递减。 (2) 几何特征:在自变量取值区间上, 若单调函数的函数图象从左到右上升, 则为增函数, 函数图象从左到右下降则为减函数。

函数的单调性是对某个区间而言的, 对于单独的一点, 由于它的函数值是唯一确定的常数, 因而没有增减变化, 所以不存在单调性问题;另外, 中学阶段研究的函数, 对于闭区间内的任意值都有意义, 那么只要在开区间上单调, 它在闭区间上也就单调, 因此, 在考虑它的单调区间时, 包括不包括端点都可以;但若的取值函数无意义时, 则单调区间不包括该点。

3. 单调性的证明

根据定义证明函数单调性的一般步骤是:

(1) 设x1, x2是给定区间内的任意两个值, 且x1<x2;

(2) 作差f (x1) -f (x2) , 并将此差式变形 (要注意变形的程度) ;

(3) 判断f (x1) -f (x2) 的正负 (要注意说理的充分性) ;

(4) 根据f (x1) -f (x2) 的符号确定其增减性。

4. 复合函数的单调性

复合函数单调性的根据是:设y=f (u) , u=g (x) , x∈[a, b], u∈[m, n]都是单调函数, 则y=f[g (x) ]在[a, b]上也是单调函数。

(1) 若y=f (u) 是[m, n]上的增函数, 则y=f[g (x) ]的增减性与u=g (x) 的增减性相同;

(2) 若y=f (u) 是[m, n]上的减函数, 则y=f[g (x) ]的增减性与u=g (x) 的增减性相反。

复合函数单调性的规律见下表:

函数单调性在抽象函数中的应用 篇8

题组讲习

【例1】 已知函数f(x)是定义在R上的增函数,若f(logax)>f(x2)在x∈0,12上恒成立,则a的取值范围是.

【例2】 已知定义在R上的奇函数f(x)满足在(0,+∞)单调递减,且f(2)=0,则不等式f(x+1)<0的解集是.

1. 解法一 由题意得,不等式logax>x2对x∈0,12上恒成立,

当a>1时显然不成立;

图1

当0

由函数y=logax(0<a<1)的单调性可得a14≥12,

所以116≤a<1.

解法二 (数形结合法)不等式logax>x2对x∈0,12上恒成立,表示在x∈0,12时,函数y=logax的图象在y=x2图象的上方,如图1所示,当a>1时显然不成立;

当0

所以116≤a<1.

2. 解法一 (分类讨论法)由f(x+1)<0得,f(x+1)

当x+1>0,即x>-1时,有x+1>2,解得x>1;

当x+1<0,即x<-1时,-x-1>0,由f(x+1)<0得,f(-x-1)>0=f(2),

则-x-1<2,解得-3

综上,不等式f(x+1)<0的解集是(-3,-1)∪(1,+∞).

图2

解法二 (数形结合法)由题意,画出函数y=f(x)的示意图,如图2所示,

函数y=f(x+1)的图象是由函数y=f(x)的图象向左平移一个单位得到的,

由函数y=f(x)的图象经过点(2,0)、(0,0)和(-2,0)可知,

函数y=f(x+1)的图象经过点(1,0)、(-1,0)和(-3,0),

由图可知,不等式f(x+1)<0的解集是(-3,-1)∪(1,+∞).

点评 1. 解决抽象函数中不等式问题的关键是利用函数单调性将f(m(x))>f(n(x))转化成m(x)与n(x)的大小关系;

2. 不等式问题的实质是函数图象的高低问题,函数的单调性则反映了图象的升降.数形结合也是解决这两类问题的很好途径,如问题1,2中的解法二。

类比•拓展•延伸

1. 已知f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是.

图3

解 当x<0时,-x>0,f(-x)=(-x)2=x2,

∵f(x)是定义在R上的奇函数,

∴当x<0时,f(x)=-x2,

又当x≥0时,f(x)=x2,

∴由图3可知,函数f(x)在(-∞,+∞)上单调递增,

由f(x+t)≥2f(x)=f(2x)得,x+t≥2x对x∈[t,t+2]恒成立,

即t≥(2-1)x,∴t≥[(2-1)x]max,

∴t≥(2-1)(t+2),解得t≥2.

2. 设函数y=f(x)定义在R上,对任意实数m,n恒有f(m+n)=f(m)•f(n),且当x>0时,0

(1) 求证:f(0)=1,且当x<0时,f(x)>1;

(2) 求证:函数f(x)在R上单调递减;

(3) 设集合A={(x,y)|f(x2)f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=,求a的取值范围.

解 (1) 令x=0,y=1得f(1)=f(0)f(1),

∵0

设x<0,则-x>0,0

令m=x,n=-x,则有

f(x)f(-x)=f(0)=1,

∴f(x)=1f(-x)>1;

(2) 设x1

x2-x1>0,0

f(x1)-f(x2)=f(x1)-f(x2-x1+x1)

=f(x1)-f(x2-x1)f(x1)

=f(x1)[1-f(x2-x1)],

由题意及(1)可知,对任意实数x恒有

f(x)>0,则f(x1)>0,又1-f(x2-x1)>0,

∴f(x1)>f(x2),

∴函数f(x)在R上单调递减;

(3) 由集合A可得,f(x2+y2)>f(1),

由函数f(x)在R上单调递减得x2+y2<1,A表示单位圆内部的点的集合,

由集合B可得,f(ax-y+2)=1=f(0),则ax-y+2=0,B表示直线上的点的集合,

∵A∩B=,

∴直线ax-y+2=0与圆x2+y2=1相切或相离,

∴2a2+1≥1,解得a∈[-3,3].

点评 1. 在问题1中用图象判断函数f(x)是定义在R上单调递增是关键,把2f(x)化成f(2x)是难点,这样就化成f(m(x))>f(n(x))形式;若将不等式两边都用解析式代入,则问题很难解决。

2. 在问题2中证明抽象函数单调性时运用了x2=(x2-x1)+x1,即减一个数再加一个数的技巧,使问题得到突破。

方法总结

从上面这些问题中我们可以看出,函数的单调性在抽象函数中的应用主要是两个方面:一是单调性的判断;二是单调性的逆向运用。判断抽象函数单调性主要运用定义法,但更应当注意x2=(x2-x1)+x1,x2=x2x1•x1的变形技巧以及题目中所给性质的运用。单调性的逆向运用,关键在于将所给的不等式两边化为函数值f(x)的形式,再利用函数单调性脱去函数的记号“f”。

实战演练

1. 已知偶函数f(x)在区间[0,+∞)单调增加,则满足f(2x-1)

2. 设函数f(x)是定义在[-1,1]上的奇函数,对任意的a、b∈[-1,1],当a+b≠0时都有f(a)+f(b)a+b>0.

(1) 若a>b,比较f(a)与f(b)的大小;

(2) 解不等式fx-12

(3) 记P={x|y=f(x-c)},Q={x|y=f(x-c2)},且P∩Q=,求c的取值范围.

【参考答案】

1. 函数f(x)在[0,+∞)上递增,则在(-∞,0]上递减.

f(2x-1)

2. 设-1≤x10,

∵x1-x2<0,

∴f(x1)+f(-x2)<0,

∵函数f(x)是定义在[-1,1]上的奇函数,

∴f(x1)-f(x2)<0,即f(x1)

∴函数f(x)是定义在[-1,1]上的增函数.

(1) 若a>b,则f(a)>f(b);

(2) ∵fx-12

∴-1≤x-12≤1,

-1≤x-14≤1,

x-12

(3) 由题意得P={x|-1≤x-c≤1}={x|-1+c≤x≤1+c},Q={x|-1+c2≤x≤1+c2},

∵P∩Q=,

∴-1+c>1+c2或-1+c2>1+c,

函数单调性教学设计 篇9

关于函数的单调性习题课教学设计,本人在听了专家的讲解后感到受益匪浅,结合平时的教学,有些教学方面的心得如下,希望专家和同行批评指正。

本节课是高中数学新课程标准必修1的第2章函数里的函数基本性质中介绍的第一个性质。它既是在学生学过函数概念等知识后的延续和拓展,又是后面研究指数函数、对数函数、三角函数各类函数的单调性的基础,而且函数单调性在解决函数变化趋势、值域、最值、不等式等许多问题中有着广泛的应用。对整个高中数学教学起着重要的奠基作用。研究函数单调性的过程体现了数学的数形结合和归纳转化的思想方法,反映了从特殊到一般的数学归纳思维形式,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。下面我就这部分内容的习题教学提出一些不成熟的做法。

教学目标:

(1)在知识方面,通过习题训练,使学生能加深对函数单调性概念的理解,进一步掌握判断并证明函数的单调性方法、学会应用函数的单调性解决相关问题。

(2)在能力方面,培养学生归纳、抽象以及推理的能力,提高学生创新的意识,并渗透数形结合的思想。

(3)在价值观和情感教育方面,让学生在解题的过程中体验数学美,培养学生乐于求索的精神,提高学生的数学修养,使其养成科学、严谨的研究态度。教学重点和难点:

本节课的教学重点是函数单调性的判定、证明及应用。其中的教学难点是函数单调性的应用和复合函数单调性的理解。教法和学法:

在教法上采用传统的讲练结合。在具体实施上,将采用计算机辅助教学的手段,为了贴切地服务于教学目标,课件的制作是为了能更好的讲练习题,提高课堂效率,用是PowerPoint软件。而学生在学习过程中不仅要训练知识技能,还要达到思维的训练,因此这节课要以学生为主体,给学生充足的活动空间。作为教师,我要做好启发和规范地指导,引领学生大胆地探索,并培养其严谨的数学品质。

教学过程设计:

大概分为复习回顾、例题讲解、规律小结、巩固练习四个版块,最后布置作业。下面为每部分的具体构思。

1、复习分为概念回顾和基础练习两部分,预计费时7到8分钟左右,其中概念为(1)函数单调性和单调区间的定义以及用定义证明函数单调性的步骤,(2)怎么判断函数单调性及单调区间——可以用定义法,也可以从图象上观察。形式主要由学生口答。基础练习部分选择了5道小题目,课件形式给出,请学生口答,内容涉及单调性的理解,一次函数、二次函数的单调性,最后一题让学生们画出图象,观察图象的“升降”写出单调区间,渗透数形结合的思想,都是小题目,难度小,用时少,但紧扣概念,也让学生迅速热身,无形中抓住了学生的课堂注意力。

2、例题选择方面:

关于例

1、试判断函数f(x)变式:讨论函数f(x)x(1x1)的单调性并证明; x21ax(1x1)的单调性。x21选择这个题目是为了让学生更好地掌握定义法证明函数单调性的方法和基本步骤,变式的选择是为培养学生分情况讨论的意识和能力,讲解过程中要注意证明的规范性,进一步培养学生严谨、规范的科学态度和品质。

关于例

2、求函数yx21的值域。x2函数单调性的一个很重要的应用是求函数的值域或最值,选择这道题,教会学生利用单调性来求函数值域的方法。让学生体会利用单调性求值域时的简捷有效。丰富学生的知识体系。

关于例

3、已知函数f(x)是定义在(0,)上的增函数,且f()f(x)f(y)

xy(1)求f(1)的值

(2)若f(3)1,解不等式f(x5)2

这是一道抽象函数的题目,对于求出f(1)、f(9)分别是0和2用的是赋值法,这是抽象函数中常用的方法,不等式变为f(x5)f(9),应用函数单调性,将抽象函数函数值的大小关系,转化为自变量之间的大小关系,即x59,提醒学生注意函数定义域!

x50选择这个抽象函数的例子,目的就是让学生体会并掌握怎么样利用单调性转化函数和自变量的大小关系。

关于例

4、已知f(x)是R上的减函数,g(x)x24x,求函数h(x)f(g(x))的单调增区间。

最终的那个函数明显是个复合函数,函数g(x)图象的对称轴是x2,开口向下,在[2,)上递减,又f(x)也递减,所以[2,)是个增区间。

本题小结:两个函数单调性相同则复合后是增,相反则复合后是减。

3、关于这部分的课堂小结:

我们可以应用函数的单调性求函数值域、解不等式,以及证明一些代数命题。

4、关于巩固练习题目方面的选择:

这部分选两题,类型在例题中已出现,其中第一个要先证明函数的单调性,再求值域。而第二题则先要判断单调性,再进行证明,确定了单调性之后再应用到三角形的问题中,使学生在解题的过程中体会在一些代数不等式证明中如何应用函数单调性的。

这部分让学生自己做,用投影仪和板书结合,规范其书写和论证。

5、关于作业布置方面:

结合本节课的讲解内容,为进一步巩固教学成果,在作业题型选择上,本人力求做到紧扣和深化上课内容。一共有三大题,第一题是求单调区间,其中要用图形,数形结合;第二题要利用例4的小结“两个函数单调性相同则复合后是增,相反则复合后是减。”;第三题是抽象函数题,与课上的例3类型一样,让学生课后练习巩固。

函数单调性的定义 篇10

函数的单调性,也叫函数的增减性,可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。当函数f(x)的自变量在其定义区间内增大(或减小)时,函数值也随着增大(或减小),则称该函数为在该区间上具有单调性(单调增加或单调减少)。在集合论中,在有序集合之间的函数,如果它们保持给定的次序,是具有单调性的.。

如果说明一个函数在某个区间D上具有单调性,则我们将D称作函数的一个单调区间,则可判断出:

DQ(Q是函数的定义域)。

区间D上,对于函数f(x),(任取值)x1,x2∈D且x1>x2,都有f(x1)>f(x2)。或,x1,x2∈D且x1>x2,都有f(x1)

函数图像一定是上升或下降的。

对函数单调性定义的认识与理解 篇11

最初学习单调性时往往容易将定义域与单调区间混淆.有些函数在整个定义域上是单调的,如一次函数;有些函数在整个定义域上是非单调的,如常函数y=c,又如函数y=1,x∈Q,0,x∈RQ;而有些函数在整个定义域上是非单调的,但在其部分区间上是增函数,在其另一部分区间上是减函数,如二次函数.

若函数在定义域的两个区间A,B上都是增(减)函数,一般不能简单地认为其在A∪B上是增(减)函数.如

f(x)=在(-∞,0)上是减函数,在(0,+∞)上也是减函数,但不能说它在(-∞,0)∪(0,+∞)上是减函数,事实上,取x1=-1<1=x2,而f(x1)=-1<1=f(x2),并不符合减函数的定义.又如函数g(x)的图像如图1所示,g(x)在(-∞,0)上是增函数,在[0,+∞)上也是增函数,且对任意的x1<0≤x2,g(x1)<g(x2),则可以说g(x)在R上是增函数.能不能说函数在A∪B上是增(减)函数,关键看它是否符合函数单调性的定义.

例1 (2006年北京理科卷)已知f(x)=(3a-1)x+4a,x<1,logax,x≥1(a>0且a≠1)是(-∞,+∞)上的增函数,那么实数a的取值范围是.

分析 这是利用分段函数在其定义域上是增函数这样一个条件,求其中字母参数的问题.毫无疑问,f(x)在分段函数的各段范围上都应该是增函数,于是可以分别获得a的取值范围.那么怎么实现f(x)在定义域(-∞,+∞)上是增函数呢? 这就需要借助函数单调性的定义了.显然函数f(x)两部分的图像分布状况如图2,图3或图4所示,其中图2,图3满足函数单调性的定义,于是应有(3a-1)×1+4a≥loga1.

答案:,.

点评 函数单调性的定义强调“任意”所取的“x1,x2”来自于“同一区间”,所以函数的两个(或多个)单调区间能否写成并集形式的关键是,在并集中任意取x1,x2时,是否符合函数单调性的定义.

函数的单调性是对于函数定义域内的某一子集而言的.反过来,在讨论函数单调性时,不能遗忘首先是在定义域的大前提下进行的.

例2 已知f(x)=loga(2-ax)(a>0且a≠1)在[0,1]上是减函数,则实数a的取值范围是.

分析 函数可以分解成y=logat和t=2-ax,显然t=2-ax是x的减函数,于是要使得f(x)=loga(2-ax)是减函数,只需y=logat是t的增函数,故有a>1.但对数函数要求真数大于零,故t=2-ax是x的减函数应理解为是[0,1]上的正值递减函数.同学们,下面怎么处理,你想到了吗?

答案:(1,2).

函数的单调区间反映的是函数值的连续变化情况,属于函数的整体性质,是函数具有增(减)性质的所有部分,如函数f(x)=x2+1的单调增区间为[0,

+∞);而函数在区间上单调体现的是函数在被考察区间上的局部特征,如函数f(x)=x2+1在[1,2]和(3,+∞)上单调递增.一般地,后者应为前者的子集.

例3 已知函数f(x)=x2-2ax+1在区间[1,+∞)上递增,求实数a的取值范围.

分析 思路一 函数f(x)=x2-2ax+1的单调增区间是[a,+∞),所以[1,+∞)应为[a,+∞)的子集.

思路二 函数f(x)=x2-2ax+1在区间[1,+∞)上递增,即有当1≤x1<x2时,f(x1)<f(x2)恒成立,从而求出实数a的取值范围.

答案:(-∞,1].

点评 (1) 判断函数单调性的常用方法有:图像法,即根据图像的上升和下降进行判断;定义法,即根据增、减函数的定义,按照“取值——作差、变形——定号——下结论”的步骤进行判断(其中“作差、变形——定号”的目的是比较大小,有时也可作商).

(2) 不等式a<对1≤x1<x2恒成立,即a小于右式的最小值.这里尽管1并不是右式的最小值,但它是右式取值的端点,右式均比1大,故a可取1.

(3)本题中的在[1,+∞)上递增,也可说成在(1,+∞)上递增,因为函数在某点处的函数值是确定的,讨论函数在某点处的单调性没有意义.事实上,只要函数连续且在区间端点有意义,函数单调区间既可以写成闭区间,也可以写成开区间,所以本题区间无论是开或闭,都不影响结果.

在所讨论的区间上任取x1<x2,当f(x1)<f(x2)时,函数是增函数,当f(x1)>f(x2)时,函数是减函数.实际上,若任取x1>x2,当f(x1)>f(x2)时,函数为增函数,当

f(x1)<f(x2)时,函数为减函数.即如果自变量的大小关系与函数值的大小关系一致时,函数为增函数,反之,函数为减函数.

例4 已知函数f(x)是定义在(0,+∞)上的减函数,求不等式f(x)<f(8(x-2))的解集.

分析 函数f(x)是定义在(0,+∞)上的减函数,所以自变量的大小关系与函数值的大小关系相反,可以列出相应的不等式,注意不要忘记定义域,即有x>0,8(x-2)>0,x>8(x-2),解得2<x<,所以原不等式的解集为x2<x<?摇.

1. 若函数f(x)=x2+2ax+2在[-5,5]上是单调函数,则实数a的取值范围是.

2. 已知函数f(x)是(-∞,+∞)上的增函数,则f(a2+a+1)f(填“<”,“>”,“≤”或“≥”符号),不等式f(x)>f(2-x)的解集为.

3. 已知0<x≤2,则函数f(x)=的最大值为.

4. 判断函数f(x)=(a≠0)在区间(-1,1)上的单调性.

1. {a|a≤-5或a≥5}. 2. ≥,{x|x>1}. 3. -1.

上一篇:小学校外教育活动计划下一篇:青岛市孵化器发展规划