圆柱圆锥整理与练习(精选5篇)
沐子边缘
教材内容:
数学苏教版六年级(下册)33页圆柱和圆锥的整理与练习第一课时。教学目标与要求: 知识与能力:
通过回顾与整理,进一步理解圆柱和圆锥的基本特征,掌握圆柱的侧面积和表面积、圆柱和圆锥的体积的计算方法。过程与方法:
通过学生自主交流与回顾,练习与小结,系统整理圆柱的侧面积和表面积计算方法和圆柱和圆锥的体积的计算方法。情感态度与价值观:
启发学生回忆获取这些知识的过程,体会这些知识间的内在联系,体会数学思想方法的应用价值。教学重点与难点:
进一步理解和掌握圆柱的侧面积表面积、圆柱和圆锥体积的计算方法,并感受这些知识的应用价值。教学准备:
1.同底等高的圆柱和圆锥挂图各一个,圆柱和圆锥实物各一个。2.准备相关教学课件。教学过程:
一、提示课题
师:同学们,这节课,我们来回顾与整理有关圆柱和圆锥的知识。谁来说一说这一单元,你学会了什么?
[设计说明:导入新课,开门见山,提出本课学习内容与要求。]
二、复习圆柱和圆锥的基本特征 1.出示圆柱实物。
师:同学们回顾一下,圆柱有哪些特征? 学生活动:同桌简要交流,指名学生回答。2.根据回答出示课件。
根据刚才几位同学讲的,我们小结一下圆柱的特征,生读: ⑴ 圆柱有上下两个底面,两个底面是完全相等的两个圆。
⑵ 圆柱有一个侧面,侧面是一个曲面,展开是一个长方形(有时是一个正方形)。⑶ 圆柱两底面间有无数条高,并且长度都相等。
3.出示圆锥实物。
师:谁能再讲一讲圆锥有哪些特征?
学生活动:同桌讨论交流,然后指名学生回答。4.根据回答出示课件。
学生小结出,圆锥的特征主要也有三点: ⑴ 圆锥下面有一个圆形底面,上面有一个顶点。
⑵ 圆锥有一个侧面,侧面也是一个曲面,展开是一个扇形。⑶ 从圆锥顶点到底面圆心的距离叫圆锥的高,圆锥有且只有一条高。
5.齐读一遍,进一步感知。
[设计说明:通过实物展示学习是最直观的学习方法,新课标指出,课堂学习应以学生为学习主体,因此这节课复习时以学生交流活动为主,让学生自主交流、讨论与归纳,这样更容易掌握相关知识。]
三、复习圆柱的侧面积表面积、圆柱和圆锥体积的计算方法。1.出示圆柱挂图:(单位:分米)老师这里有一个圆柱,请一位同学来算一算圆柱的侧面积 和表面积。
⑴ 学生练习:
指名学生板演,其他人在练习本上做。⑵ 师生交流: 算式一3.14×6×6 :
3.14×6求什么? 再×6求什么? 依据公式是什么? 算式二3.14×(6÷2)2 ×2 :
3.14×(6÷2)2求什么? 依据公式是什么? 后面为什么要乘以2 ? 根据学生交流情况小结、板书:
S侧 = 2πr h =πd h S底 =πr2 S表 = S侧 + 2 S底 [设计说明:复习不是简单的重复,这里通过本题来复习圆柱的侧面积表面积计算,通过学生自主练习与说理,加强对知识的梳理与小结,从而让学生更好地理解与掌握圆柱的侧面积表面积计算。] 2.在圆柱图右,出示圆锥挂图:(单位:分米)请两位同学分别求一下圆柱与圆锥的体积。
⑴ 学生练习:
指名两学生板演,其他人在练习本上做。⑵ 师生交流:
算式一3.14×(6÷2)2 ×6:
3.14×(6÷2)2求什么? 依据是什么? 再×6求什么? 依据公式是什么? 算式二 ×3.14×(6÷2)2 ×6 怎么求一个圆锥的体积,依据的公式是什么? 为什么要× ?
根据学生交流情况小结、板书:
V柱 =πr2h = S h V锥 = S h [设计说明:这里出示两个底和高数据一样的圆柱和圆锥,让学生对比练习,练习时引起学生的注意,学生会自觉地把两者放在一起比较,通过学生的练习、比较与交流,让学生进一步体会数学知识之间的内在联系。]
四、复习圆柱和圆锥的相互联系 1.交流
师:比较以上两题结果,你发现了什么?谁可用一句话说明圆锥体积与圆柱体积的关系?
学生讨论:一个圆锥的体积等于和它等底等高的圆柱体积的三分之一。2.根据刚才的复习内容,判断以下各题对与错:(课件出示)
⑴圆锥体积等于圆柱体积的三分之一。(×)为什么?
⑵圆柱的底面半径缩小2倍,高扩大2倍,它的体积不变。(×)为什么? ⑶等底等体积的圆柱与圆锥比,圆锥高是圆柱的3倍。(√)为什么?
⑴学生活动:分小组讨论,说明理由。⑵师生交流:指名各组代表交流。
[设计说明:这三条判断题先易后难,可以让学生分小组讨论,通过师生之间的共同交流,进一步理解圆柱和圆锥的相互联系。]
五、复习圆柱和圆锥的实际应用
1.出示题目,了解题中信息:
一个圆柱形无盖水桶,量得它的底面周长是12.56分米,高是5分米。⑴做这个水桶至少需要用多少平方分米的铁皮? ⑵这个水桶的最大容积是多少升?
(得数都保留整数)
2.指名学生板演,其他人在练习本上练习。3.师生交流:
在计算本题时,有哪几个要点需要大家注意?让板演的同学讲,其他同学补充,共同探讨后列在黑板上:
① 这个圆柱无盖,即无上底; ② 先根据底面周长求出底面积; ③ 水桶容积单位为升; ④ 计算时注意进一法与去尾法的运用。4.检查与订正。
[设计说明:复习是为了达到对已学知识的巩固与提高,因此在复习实际应用时,所选习题选择了几个在计算时需要注意的要点,这样不断提示学生,达到层层递进,便于学生更深入地理解、巩固与提高。]
六、课堂小结
今天这节课,我们主要复习了哪些内容?
学生回顾:今天我们主要复习了圆柱和圆锥的基本特征(出示课件巩固一下)。重点练习了求圆柱的侧面积表面积和求圆柱、圆锥的体积的方法(复述相关公式)。理解了圆柱与圆锥的关系(一句话概括),并进行了实际应用练习。
七、作业练习
1.课堂作业:教材33页,练习与应用2、3、4题。2.课外练习:练习与应用第1题。
[总体设计意图:本节课是圆柱和圆锥单元复习第一课时。个人认为,复习课不是简单地重复已学的知识,而是通过系统地回顾与整理,让学生在交流、概括、巩固、再认识的过程中,进一步领会已学知识,从而达到再提高的目的。因此,我在本节课的复习中,留出大量时间让学生自主练习,注重学生概括、交流的过程,通过学生的练习、讨论与小结,对知识进行系统梳理,层层递进,帮助学生在自主探索和合作交流的过程中真正掌握和提高本单元的知识,全面巩固和理解关于圆柱与圆锥的相关知识。]
教材简析:
本课教学内容是先引导学生把本单元学过的知识进行系统整理,回顾圆柱和圆锥的特征,再通过层次不同的练习,巩固已学的圆柱侧面积表面积的计算方法及圆柱与圆锥体积的计算方法,帮助学生提高应用公式解决简单实际问题的能力,理解圆柱和圆锥的相互联系。重点是通过复习进一步理解圆柱和圆锥的特征及表面积与体积的计算与应用。
教材以学生回应教师提问的形式呈现了本课的主要知识点,并启发学生回忆获取这些知识的过程,体会这些知识之间的内在联系。在回顾圆柱和圆锥的基本特征时,先让学生简要交流、自由发言,然后归纳出几点特征用课件出示,这样使学生更容易记住圆柱和圆锥的特征。教学过程中采用回顾、讨论、归纳、小结、巩固、应用的教学程序。通过出示圆柱和圆锥的实物模型复习,让学生计算与归纳的过程中进一步掌握圆柱侧面积和表面积的联系、区别及计算方法,更清楚地理解和掌握圆柱和圆锥的体积计算方法及相互联系。
古希腊的几何学家对圆、球、柱、锥进行研究, 而且还对其他的多种曲线如椭圆、抛物线、双曲线等等的性质进行研究, 获得杰出的成果。[1]这三类曲线统称为圆锥曲线, 是数学研究的重要对象。小学生认识圆柱与圆锥, 学习相关的测量, 为进一步研究圆锥曲线的性质打下基础。下面从概念引入、转化方法与学生理解三个方面, 讨论教材的设计, 比较不同教材的编排方式, 分析学生的理解与掌握情况。
一、概念的引入:分类与抽象
不同教材引入圆柱与圆锥的方式大致可以分成两类:一类是从图形的分类中引入, 一类是从实物的抽象中引入。
从分类中引入。教材提供众多的直柱体与正锥体, 让学生按一定的标准进行分类, 在分类的活动中认识圆柱与圆锥区别于其他柱体与锥体的特征。如韩国2006年修订的《数学课程标准》, 在小学六年级图形的教学内容中, 安排了角柱 (棱柱, 下同) 与角锥 (棱锥, 下同) 的性质、圆柱与圆锥的性质, [2]在认识棱柱与棱锥的基础上学习圆柱与圆锥。台湾版《国民小学数学课本》第十一册 (南一书局企业股份有限公司, 2002年8月版) , 以“角柱与角锥”为单元标题, 先是提供了各种各样的直棱柱与正棱锥, 按照是否有尖顶分成柱体和锥体, 再根据底面形状把柱体分成圆柱与角柱。如下图:
无论是研究问题还是认识图形, 分类都是重要的。通过以上两级分类, 学生可以把柱体与锥体、圆柱与棱柱清晰地区分开来。认识图形不仅仅是为了让学生知道哪一种图形叫什么名字, 学会区别图形, 更重要的是让学生学会对图形分类, 认识某种具体图形的教学只是个案, 只有让学生理解图形的分类才使教学具有一般性。[3]分类的核心是建立分类的标准, 只有那些可以作为分类标准的性质才是图形的重要特征。在分类的过程中, 既要关注图形的共性, 也要关注图形的差异, 而共性和差异都是抽象的结果, 是抽象的具体体现。[4]因此, 分类不仅是学生认识图形的手段, 也是培养学生抽象能力的途径。
从抽象中引入。从实物图形中抽象出几何体, 也是认识几何图形的重要方法。这个抽象的过程, 舍弃了图形的颜色、材质等物理属性, 只保留空间、大小、位置等数学属性。国内的教材大多采用这种方式来引入圆柱与圆锥。如人教版教材 (下左图) 与北京版教材 (下右图) :
不过, 抽象似乎并没有确切的定义, 从实物图抽象到几何图, 究竟哪些属性应当保持不变, 不同教材其处理的方式也有差异。以上两个版本的教材, 实物图与几何图形的大小是一致的, 或者说抽象前后基本保持1 ∶ 1的大小比例关系。以前的教材似乎并不注意这一点。如下图:
笔者的理解是数学中的抽象也是分层次的。如果从不同大小的实物图形中抽象出一个几何图形, 属于比较高层次的抽象, 这时抽象得到的几何图形具有“类”的特征。换句话说, 从大小不同的实物中抽象得到的几何图形, 只是数学研究的对象, 在现实世界中并不真实存在。
二、转化的方法:立体与平面
认识立体图形的基本思路是转化为平面图形。我国《义务教育数学课程标准 (2011年版) 》要求:通过观察、操作, 认识圆柱与圆锥, 认识圆柱的展开图。[5]这些观察、操作的活动主要是图形的观察比较, 图形的展开折叠, 平面图形的旋转, 立体图形的截面, 等等。从教材的呈现上看, 包括看一看、比一比、转一转、做一做、截一截。
看一看。观察是认识图形最重要也是最基本的方法。如下图人教版教材:
学生在认识图形的过程中, 积累了许多观察图形的经验, 比如分析平面直线图形可以观察它的边与角, 分析长方体可以观察棱和面的大小与位置关系, 这些经验不容易直接迁移到认识圆柱的活动中来, 教材需要设计更加直观与丰富的活动。
比一比。圆柱与圆锥联系密切, 同底等高的圆柱体与圆锥体的体积存在确定的倍数关系。通过对这两类立体图形进行比较, 学生容易找到它们的相同点与不同点。北师大版教材把认识圆柱与圆锥安排在同一课时, 使比较成为认识图形的现实途径。如下图:
转一转。由平面图形旋转得到立体图形, 这是旋转体独有的特征, 这种特征体现了平面与立体的奇妙关系, 也为学生认识立体图形的特征提供了新的视角。许多教材都安排了将平面图形进行旋转的活动, 浙教版教材在要求学生观察想象的同时, 还要进一步思考平面图形的边长与立体图形底面半径的关系。如下图:
做一做。把立体图形转化为平面图形进行研究, 比较直观的方式就是展开与折叠。人教版教材在学生初步认识圆柱的特征之后, 通过展开与折叠的活动, 发现立体图形的组成元素与平面展开图之间的关系, 为学习表面积计算打下基础。如下图:
截一截。用一个平面去截立体图形, 也是认识立体图形性质的一种途径。如下图北师大版教材:
朗文出版社出版的《小学数学》, 在6A学段呈现了丰富多样的圆柱或圆锥截面。如下图:
对于圆柱, 用一个垂直于旋转轴的平面去切割, 所得的截痕是一个圆, 如果割面和转轴不垂直, 则截痕是一个椭圆。对于圆锥, 用一个垂直于旋转轴的平面去切割, 所得的截痕也是一个圆, 如果割面和转轴不垂直, 则截痕是椭圆、抛物线或双曲线。
三、学生的理解:特征与反例
为了解学生对圆柱特征的理解水平, 笔者对浙江省某城镇小学六年级两个班的113名学生进行了测查。教学使用北师大版教材, 两个班由同一个教师执教。测查安排在上完“面的旋转”这节新课之后进行, 时间20分钟。测查题目为北师大版教材第4页的一道练习题, 如下图:
测查的问题是:上面的图形哪些是圆柱体, 哪些不是?想一想圆柱有什么特点, 用自己的话写下来。
主要从两个方面进行分析:一是学生对图形特征的描述是否完备?二是反例是否支持学生改善特征描述?
圆柱的组成元素包括底面、侧面、高等, 这些元素包括形状、大小、空间关系。这项研究主要考查学生从哪些角度描述圆柱特征, 研究的方法是对学生描述的特征进行归类分析。主要包括: (1) 底面是形状一样、大小相同的圆; (2) 侧面是曲面, 展开是长方形; (3) 有无数条高, 这些高都相等; (4) 由长方形旋转得到, 是圆平移的轨迹。结果如下:
可见, 对于底面的特征学生比较容易把握, 而对于圆柱的动态形成过程印象并不深刻。其中, 特征描述中包含 (1) (2) (3) 这三项的有34人, 占30.1%。可以这样说, 这部分学生对于圆柱特征的描述比较完备。或者说, 与那些“顾此失彼” (只描述一项或两项) 的描述相比, 约1/3的学生对圆柱特征的描述比较完备, 可以理解为他们对图形特征的掌握比较好。
正例与反例对于概念学习有各自不同的价值, 正例用于概括, 反例推动反思。调查时先让学生独立写下圆柱的特征, 然后提示学生:再想一想, 你写的话有没有把上面不是圆柱的例子排除在外, 如果没有排除外, 应当怎样修改你写的话。对113名学生进行分析, 描述中包含了许多错误或不够清晰、严谨的地方, 但在教师提示学生对照反例后, 对描述作了修改的有23人, 占20.4%。这样看来, 反例对学生改善图形特征的描述所起的作用比较小, 这是在教学时需要引起注意的地方。
“透过现象看本质”是一句至理名言, 它对数学概念教学也有启示意义。教材提供的实物或几何图形, 各种属性是混杂在一起的, 它是“现象”。抽象、分类、转化与概括正例、思考反例, 这些活动就像一个个筛子, 把本质属性与非本质属性分离开来, 帮助学生“看透”概念的本质, 形成对图形特征的理解。
参考文献
[1]项武义著.几何学的源起与演进[M].北京:科学出版社, 1983:130~131.
[2]曹一鸣主编.十三国数学课程标准评介[M].北京:北京师范大学出版社, 2012:224.
[3][4]史宁中著.小学数学教学中的核心问题——基本概念与运算法则[M].北京:高等教育出版社, 2013:57.
执教者:苏军平
小学数学第12册圆柱和圆锥表面积和体积的有关知识。复习目标:
1、通过复习使学生对所学的圆柱和圆锥的认识、表面积和体积等知识有一个系统的掌握。
2、通过复习掌握圆柱和圆锥的特征及体积计算上的联系与区别。
3、通过复习培养学生的综合概括能力和解决数学问题的能力。
4、培养和训练学生的空间想象能力和发散思维。复习重点:圆柱和圆锥表面积和体积的计算 复习难点:圆柱和圆锥体积计算上的联系与区别 教学过程:
一、情景引入、回顾交流
1、圆柱与圆锥各有哪些特征?
2、怎样求圆柱的侧面积、表面积、体积?计算公式各是什么?
3、怎样求圆锥的体积?计算公式是什么?
4、圆柱与圆锥的体积之间有什么关系?
练习:
(1)因为圆柱体积是圆锥体积的3倍,所以圆锥体积都比圆柱体积小。()(2)圆柱侧面展开后只能是长方形。()
(3)圆柱底面积半径扩大2倍,高不变,它的侧面积就扩大4倍。()(4)圆锥底面积不变,它的高度越高,圆锥的体积就越大。()(5)如果圆锥的体积是圆柱体积的1/3,那么这个圆锥和圆柱一定等底等高。()(6)两个体积相等的圆柱和圆锥,它们的底面积也相等。圆柱的高一定是圆锥高的1/3.()
(7)一个圆锥的底面半径不变,高扩大2倍,体积就扩大2倍。()师:孩子们,屏幕上是一个装粮食的粮囤,这个粮囤是由哪两种图形组合而成的? 生:圆柱和圆锥 师:这节课我们就运用圆柱和圆锥的知识,解决生活中的相关问题。(板书课题:解决问题——圆柱和圆锥)。组内交流
汇报圆柱和圆锥的特征,电脑大师也是这样说的,请看屏幕,齐读一遍。
汇报圆柱的侧面积、表面积,圆柱和圆锥的体积各怎样计算(教师分别出示课件并板书)
圆 柱
圆 锥
S侧
= c×h S表
= S侧
+ 2 S底
V=sh
V=sh÷3
4、从体积公式可以看出,圆柱与圆锥的体积之间有什么关系?
等底等高圆锥体积是圆柱体积的三分之一 等底等高圆柱体积是圆锥体积的3倍
二、应用知识,解决问题 下面我们用圆柱和圆锥的知识来解决生活中的相关问题。
1、看谁快:一个圆柱形水桶,底面半径10分米,高是20分米。回答问题,并列出算式
3.14×102
②2×3.14×10 ③2×3.14×10×20
④3.14×102×20
2、压路机前轮直径10分米,宽2.5米,前轮转一周,可以压路多少平方米?如果平均每分前进50米,这台压路机每时压路多少平方米? 10分米=1米
3.14×1×2.5=7.85(平方米)
50×2.5×60=7500(平方米)
答:————————。
3、一根6米长的圆柱形木料锯成相等的3段, 表面积增加了15平方厘米,每一小段的木料的体积是多少立方厘米? 每小段木料的长:
6÷3=2(m)=200(cm)
15÷4 × 200=750(cm3)答:———————。
4、圆柱与圆锥等底等高,圆柱体积比圆锥体积大36立方分米,圆柱与圆锥体积各是多少?
圆锥体积:36÷2=18(dm3)
圆柱体积:18 × 3=54(dm3)
答:——————。
5、一个圆锥形的沙堆,底面周长是31.4m,高是7.2m,每立方米沙重1.5吨,如果用一辆载重6吨的汽车来运,几次可以运完? 解:底面半径r=31.4÷3.14÷2=5(m)
沙堆的体积:
V= × 3.14 × 52 × 7.2=188.4(m3)
188.4 × 1.5÷6≈48(次)
答:——————————。
6、将一个底面半径是3分米,高是6分米的圆柱木料削成一个最大的圆锥,至少要削去多少立方分米的木料?
3.14×32×6×2/3=113.04(dm2)答:——————。
7、一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形,量得圆柱底面的周长是62.8米,高是2米,圆锥的高是1.2米。这个粮囤能装稻谷多少立方米?如果每立方米稻谷重500千克,这个粮囤能装稻谷多少吨? 解:圆柱的底面半径为:
62.8÷3.14÷2=10(m)
3.14×102×2+3.14×102×1.2÷3=628+125.6=753.6(m3)圆柱体积
圆锥体积
753.6×500=376800(千克)=376.8(吨)答:————————————
四、全课总结。
这节课你有什么收获? 板书设计
解决问题——圆柱和圆锥
圆 柱
圆 锥
S侧
= c×h S表
= S侧
+ 2 S底
V=sh
沙沟小学 孙庆刚
在设计这节复习课时,课前,先指导学生对本单元的知识进行了整理,多数学生整理得都比较完整,说明学生已形成了能力。学生掌握了本单元的知识结构后,还要强化教材的重点。在复习圆柱和圆锥特征这部分内容时,让学生说一说圆柱的特征,互相补充,学生说不到的,教师再进行补充。这样学生从感性到理性对立体图形的特征有了进一步明确的认识,学生更进一步形成了空间观念。
对公式的理解和掌握又是本单元的另一个难点。复习时,先让学生看书、交流,重温几个最基本公式的推导过程,进一步理解公式形成的过程,进而达到流利地复述,增强记忆的效果。如:S侧=ch,S表=S侧+2S底,V柱=sh,V锥= 1/3sh,其中侧重让学生流利地复述圆柱侧面积、体积,圆锥体积等公式的推导过程,这样学生在整理复习中就抓住了教材的重点。
为了深化这部分知识,培养学生灵活运用知识的能力,还提出这样的问题:在S侧=ch这个公式中,谁容易成为间接条件呢?题里往往告诉我们哪些条件呢?(r或者d)这样S侧=ch,这个公式就可以写成什么呢?
S侧 =2πrh或S侧=πdh,这样学生在掌握基本公式的基础上又沟通了知识之间的联系,他们对公式又有了新的认识,学生就能灵活地运用公式,从而提高了学生分析、解决实际问题的能力。
1.加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。这部分内容加强了与生活的联系,也为教师组织教学提供了思路。如,在教学认识圆柱体和圆椎之前,可以让学生收集、整理生活中应用圆柱、圆锥的实例和信息资料,以便在课堂中交流。认识圆柱、圆锥后,还可以让学生根据需要创设和制作一个圆柱或圆锥形的物品,这样,既可激发学生的学习兴趣,又可提高学生运用数学的意识和能力。
2.让学生经历探索知识的过程,培养自主解决问题的能力。
科目: 数学 班级: 五年级下学期数学第4章第9节
教学目标: 1.使学生掌握有关圆柱和圆锥体积的应用。
2.进一步了解圆柱和圆锥体积的关系,熟练运用所学公式计算解答实际问题
教学重难点: 熟练运用所学(圆柱、圆锥)的公式解答实际问题。
教具准备: 多媒体
课件链接: 无
教学过程:
一、回顾旧知。
师:前面我们学习了圆柱和圆锥的体积,你能说说它们的体积应用有哪些吗?
二、运用知识,解决问题。
(一)基本练习。
(运用圆锥体积公式解决实际问题,提高了认知能力)
1.填空:
(1)一个圆柱的底面直径是4厘米,高10厘米,它的侧面积是()平方厘米,体积是()立方厘米。
(2)在平地上挖一个圆柱形的水池,水池深4米,直径是6米。这个水池的占地()平方米,需挖土()立方米。
(3)把一个圆柱的侧面展开,得到一个正方形。这个圆柱的底面半径是2厘米,圆柱的高是()厘米,它的体积师()立方厘米。
2.选择。
(1)等底等高的圆柱、正方体、长方体的体积相比较,()
A正方体体积大 b长方体体积大
c圆柱体积大 d一样大
(2)如果圆柱的高增加2倍,底面积不变,圆柱的体积就()
A扩大2倍 b扩大3倍 c扩大4倍
(3)用一块长28.26厘米,宽15.7厘米的长方体铁皮,配上直径是()厘米的圆形铁皮就可以作成一个容积最大的容器。
A2.5 b4.5 c5 d9
(4)一个圆柱形的水桶可装水200升,这个水桶的()是200升。
A重量(质量)b体积c表面积d容积
(二)提高练习。
1.用铁皮制作圆柱形的通风管100节,每节长24米,底面周长是0.628米。至少需要铁皮多少平方分米?(适当渗透与此相关的滚筒、烟囱、水管、柱子等数学情境。)
2.砌一个圆柱形的水池,底面半径是2.5米,深4米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?水池的容积是多少?
3.一个圆柱形的木头,长6分米。如果沿着与底面平行的方向把它平均锯成3段,表面积比原来增加12.56平方分米。求每段木头的体积是多少?
4.压路机的滚筒是一个圆柱,它的长是3米,滚筒横截面的直径是1米。如果滚筒每分钟转4周,那么压路机每分钟能压路面多少平方米?
(进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。)
三、总结:通过本节课的学习,你有哪些收获?
【圆柱圆锥整理与练习】推荐阅读:
圆柱和圆锥分类练习05-28
六年级奥数圆柱和圆锥06-28
《复习圆柱和圆锥》教学反思11-14
第三单元圆柱圆锥备课11-29
认识圆柱和圆锥教学设计06-15
六年级数学圆柱、圆锥和球01-12
8《圆锥的体积练习》教学设计07-12
《圆柱的体积》教学设计与评析12-31
《圆锥体积》评课稿10-19
圆锥的体积计算11-19