勾股定理的逆定理教案(精选10篇)
活动1(1)总结直角三角形有哪些性质.(2)一个三角形,满足什么条件是直角三角形?
设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力.
师生行为学生分组讨论,交流总结;教师引导学生回忆.
本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”.
生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方:(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.
师:那么,一个三角形满足什么条件,才能是直角三角形呢?
生:有一个内角是90°,那么这个三角形就为直角三角形.
生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.
师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?
二、讲授新课
活动2问题:据说古埃及人用下图的`方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.
这个问题意味着,如果围成的三角形的三边分别为3、4、5.有下面的关系“32+42=52”.那么围成的三角形是直角三角形.
画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm.再试一试.
设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2,那么这个三角形就为直免三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法.
师生行为让学生在小组内共同合作,协手完成此活动.教师参与此活动,并给学生以提示、启发.在本活动中,教师应重点关注学生:①能否积极动手参与.②能否从操作活动中,用数学语言归纳、猜想出结论.③学生是否有克服困难的勇气.
生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52.我们围成的三角形是直角三角形.
生:如果三角形的三边分别是2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.
再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42+7.52=8.52.
是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?
把12段同样长的绳子连成环状, 拉直点B到点C之间的5段绳子, 然后在点A处将绳子拉紧, 则∠BAC为直角.你能说明其中的道理吗?
初读问题时, 觉得不可思议, 用一根绳子怎么能一定得到直角呢?后来仔细看看条件, 发现原来这个三角形的三边分别是3、4、5, 从而利用勾股定理的逆定理可以证明∠BAC为直角.数学真是奇妙!
老师在点评时, 却说这个应用早在几千年前的古埃及人就掌握了, 说是约五千年前金字塔的建造离不开确定直角这个基本问题, 而当时并没有现代化社会中大量先进的工具.听到这些, 我更感到惊讶了.
回到家后, 我在网上检索到如下的信息:
埃及是几何学的发源地, 埃及的“拉绳者”就是测量员, 他们利用有结的绳子进行测量, 两结之间的距离都是一样的, 比如说都是1米.他们可以利用一条12米的绳子拉出一个直角三角形来.这条绳子算上首尾的结共有13个结, 这样, 把第一个结同第13个结连在一起, 用桩子固定下来, 然后再把第4个结同第8个结也分别用桩子固定, 同时绷紧绳子.这三个桩子构成边长分别为3米、4米、5米的三角形, 而两短边形成直角 (如图所示) .
根据现有的材料推测, 埃及人可能只是考虑实用的目的, 而对进一步研究不感兴趣.
原来老师说的都是真的, 教材上却没有告诉我们这是埃及人最早的发明, 可见很多数学性质都有久远的历史, 需要我们去查询了解.
但是, 我们是否就能据此说古埃及人知道勾股定理的逆定理呢?我觉得他们是知道的, 但又没有系统论述, 只是满足于实用.因为, 印度人也考虑过直角三角形, 他们比埃及人进了一步, 得出了满足a2+b2=c2的三整数组 (a, b, c) , 在西方称为毕达哥拉斯三数组, 我们的教材上称之为勾股数.印度人发现的新的勾股数组还有12, 16, 20;15, 20, 25;5, 12, 13;15, 36, 39;8, 15, 17;12, 35, 37.
不过, 他们也没有进一步的结果.
在现有材料中最令人吃惊的是, 公元前两千年左右的巴比伦的泥板文书上有着许多勾股数组 (见表, 也即教材第84页表格) , 其中有的数很大, 表明他们也许已掌握了一般的规律.
这样来看, 说古埃及人知道严格的勾股定理逆定理还真不好回答.也许这就是数学, 这就是我们对真理的认识和学习.
教师点评:这是一篇富有思辨的数学习作, 小作者从教材上一个练习和老师的链接式讲评出发, 到网上链接式检索与学习, 穷追探源, 发现了勾股数组更多的史话, 并且富含思辨地提出了“古埃及人是否知道勾股定理逆定理”这样的难解之题教学相长, 老师也跟着学习了!
一、 直接应用
三、构造应用
例3(2006年湖南省常德市中考试题)如图3,P是等边三角形ABC
内的一点,连接PA、PB、PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.
(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.
(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.
解析:(1)猜想:AP=CQ.
证明:在△ABP与△CBQ中,因为AB=CB,BP=BQ,∠ABC=∠PBQ=60°,所以∠ABP=∠ABC-∠PBC=∠PBQ -∠PBC=∠CBQ,所以△ABP≌△CBQ,所以AP=CQ.
(2)由PA∶PB∶PC=3∶4∶5,可设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中,由于PB=BQ=4a,且∠PBQ= 60°,所以△PBQ为正三角形,所以PQ=4a.于是在△PQC中,因为PQ2+QC2=PQ2+PA2=16a2+9a2=25a2=PC2,所以△PQC是直角三角形.
教学目标
1.进一步理解、记忆并应用三垂线定理及其逆定理;
2.理解公式cosθ1·cosθ2=cosθ的证明及其初步应用;(课本第122页第3题)
3.理解正方体的体对角线与其异面的面对角线互相垂直及其应用; 4.了解课本第33页第11题. 教学重点和难点
教学的重点是进一步掌握三垂线定理及其逆定理并应用它们来解有关的题.教学的难点是在讲公式cosθ1·cosθ2=cosθ应用时比较θ2与θ的大小.
教学设计过程
师:上一节课我们讲了三垂线定理及其逆定理的证明并初步应用了这两个定理来解一些有关的题.今天我们要进一步应用这两个定理来解一些有关的题,先看例1.
例1 如图1,AB和平面α所成的角是θ1;AC在平面α内,BB′⊥平面α于B′,AC和AB的射影AB′成角θ2,设∠BAC=θ.求证:
cosθ1·cosθ2=cosθ.
师:这是要证明三个角θ,θ2和θ的余弦的关系,θ已经在直角△ABB′中,我们能否先作出两个直角三角形分别使θ2和θ是这两个直角三角形中的锐角.
11生:作B′D⊥AC于D,连BD,则BD⊥AC于D.这时θ2是直角△B′DA中的一个锐角,θ是直角△ABD中的一个锐角.
师:刚才的表述是应用三垂线定理及其逆定理时常常使用的“套话”,我们一定要很好理解并能熟练地应用.现在已经知道θ
1、θ2和θ分别在三个直角三角形中,根据三角函数中的余弦的定义分别写出这三个角的余弦,再来证明这公式.
师:这个公式的证明是利用余弦的定义把它们转化成邻边与斜边的比,为此要先作出直角三角形,为了作出直角三角形我们应用了三垂线定理.当然也可用它的逆定理.
这个公式是在课本第121页总复习参考题中的第3题.我们为什么要提前讲这个公式呢?讲这个公式的目的是为了用这个公式,因为在解许多有关题时都要用到这公式.那我们要问在什么条件下可用这个公式?
生:因为θ1是斜线AB与平面α所成的角,所以只有当图形中出现斜线与平面所成的角时,才有可能考虑用这公式.
师:为了在使用这个公式时方便、易记,我们规定θ1表示斜线与平面所成的角,θ2是平面内过斜足的一条射线与斜线射影所成的角,θ是这条射线与斜线所成的角.下面我们来研究一下这个公式的应用.
应用这个公式可解决两类问题.
第一是求值.即已知这公式中的两个角,即可求出第三个角或其余弦值. 例如:
θ=60°,这时θ2<θ;
当θ1=45°,θ2=135°时,cosθ=cos45°·cos135°=
第二是比较θ2与θ的大小.因为我们已经规定θ1是斜线与平面所成的角,一定有0°<θ1<90°,它的大小不变,为了比较θ2与θ的大小,下面分三种情况进行讨论.
(1)θ2=90°,因为θ2=90°,所以cosθ2=0,因此cosθ=cosθ1·cosθ2=0,故θ=90°.当θ=90°时,我们也可以证明θ=90°.
2一条直线如果和斜线的射影垂直,那么它就和斜线垂直.这就是三垂线定理.
一条直线如果和斜线垂直,那么它就和斜线的射影垂直.这就是三垂线定理的逆定理.
所以,我们可以这样说,这个公式是三垂线定理及其逆定理的一般情况,而三垂线定理及其逆定理是这公式的特殊情况.
现在我们来研究在θ2是锐角时,θ2与θ的大小.(2)0°<θ2<90°.
师:在这个条件下,我们怎样来比较θ2与θ的大小?
生:因为0°<θ1<90°,所以0<cosθ1<1,又因为0°<θ2<90°,所以0<cosθ2<1.又因为cosθ=cosθ1·cosθ2,所以0<cosθ1<1,而且cosθ=cosθ1·cosθ2<cosθ2,在锐角条件下,余弦函数值大的它所对应的角小.所以θ2<θ.
师:现在我们来讨论当θ是钝角时,θ2与θ的大小.
2(3)90°<θ2<180°.
在这个条件下,我们不再用公式cosθ1·cosθ2=cosθ做理论上的证明来比较θ2与θ的大小,而是一起来看模型(或图形).
我们假设θ2的邻补角为θ′2,θ的邻补角为θ′,即θ+θ′2=180°,θ+θ′=180°.在模型(或图形)中我们可以看出当θ2是钝角时,θ也是钝角,所以它们的两个邻补角θ′2和θ′都是锐角,由对第二种情况的讨论我们
2知道θ′2<θ′.由等量减不等量减去小的大于减去大的,所以由θ2=180°-θ′2,θ=180°-θ′,可得θ2>θ.
根据以上讨论现在小结如下:
当θ2=90°时,θ=θ2=90°,它们都是直角. 当0°<θ2<90°时,θ2<θ,它们都是锐角; 当90°<θ2<180°时,θ2>θ,它们都是钝角.
关于公式cosθ1·cosθ2=cosθ的应用,今后还要随着课程的进展而反复提到.现在我们来看例2.
例2 如图2,在正方体ABCD-A1B1C1D1中,求证:
(1)A1C⊥平面C1DB于G;(2)垂足G为正△C1DB的中心;(3)A1G=2GC.
师:我们先来证明第(1)问.要证直线与平面垂直即要证什么? 生:要证A1C与平面C1DB内两条相交的直线垂直. 师:我们先证A1C为什么与DB垂直?
生:连AC,对平面ABCD来说,A1A是垂线,A1C是斜线,AC是A1C在平面ABCD上的射影,因为AC⊥DB(正方形的性质),所以 A1C⊥DB.(三垂线定理)
同理可证A1C⊥BC1. 因为A1C⊥平面C1DB(直线与平面垂直的判定理)
(在证A1C⊥BC1时,根据情况可详、可略,如果学生对应用三垂线定理还不太熟悉,则可让学生把这证明过程再叙述一遍,因为这时是对平面B1BCC1来说,A1B1是垂线,A1C是斜线,B1C是A1C在平面B1BCC1上的射影,由B1C⊥BC1,得A1C⊥BC1)
师:现在来证第(2)问,垂足G为什么是正△C1DB的中心?
生:因为A1B=A1C1=A1D,所以BG=GC1=DG,故G是正△C1DB的外心,正三角形四心合一,所以G是正△C1DB的中心.
师:现在来证第(3)问,我们注意看正方体的对角面A1ACC1,在这对角面内有没有相似三角形?
生:在正方体的对角面A1ACC1内,由平面几何可知△A1GC1∽△OGC,且A1C1∶OC=A1G∶GC,所以A1G∶GC=2∶1,因此A1G=2GC.
师:例2是在正方体的体对角线与其异面的面对角线互相垂直引申而来,而例2也是一个基本的题型,对于以后证有关综合题型时很有用.所以对例2的证明思路和有关结论,尽可能的理解、记住.现在我们来看例3.
例3 如图3,已知:Rt△ABC在平面α内,PC⊥平面α于C,D为斜边AB的中点,CA=6,CB=8,PC=12.求:
(1)P,D两点间的距离;(2)P点到斜边AB的距离.
师:现在先来解第(1)问,求P,D两点间的距离.
师:现在我们来解第(2)问,求P点到AB边的距离.
生:作PE⊥AB于E,连CE则CE⊥AB.(三垂线定理的逆定理)PE就是P点到AB边的距离.
师:要求PE就要先求CE,CE是直角三角形ABC斜边上的高,已知直角三角形的三边如何求它斜边上的高呢?
生:可用等积式CE·AB=AC·CB,即斜边上的高与斜边的乘积等于两直角边的乘积.
师:这个等积式是怎样证明的?
生:有两种证法.因CE·AB是Rt△ABC面积的二倍,而AC·CB也是Rt△ABC面积的二倍,所以它们相等;也可用△BCE∽△ABC,对应边成比例推出这个等积式.
师:这个等积式很有用,根据这个等积式,我们可以由直角三角形的三边求出斜边上的高,这个等积式以后在求有关距离问题时会常常用到,所以要理解、记住、会用.现在就利用这等积式先求CE,再求PE.
师:通过这一题我们要区分两种不同的距离概念及求法;在求点到直线距离时,经常要用到三垂线定理或其道定理;在求直角三角形斜边上的高时会利用上述的等积式来求斜边上的高.现在我们来看例4.
例4 如图4,已知:∠BAC在平面α内,PO α,PO⊥平面α于O.如果∠PAB=∠PAC.
求证:∠BAO=∠CAO.
(这个例题就是课本第32页习题四中的第11题.这个题也可以放在讲完课本第30页例1以后讲.不论在讲课本第30页例1,还是在讲这个例时,都应先用模型作演示,使学生在观察模型后,得出相关的结论,然后再进行理论上的证明,这样使学生对问题理解得具体、实在,因而效果也较好)
师:当我们观察了模型后,很容易就猜想到了结论.即斜线PA在平面α上的射线是∠BAC的角平分线所在的直线,现在想一想可以有几种证法?
生:作OD⊥AB于D,作OE⊥AC于E,连PD,PE,则PD⊥AB,PE⊥AC. 所以Rt△PAD≌Rt△PAE,因此PD=PE,故OD=OE,所以∠BAO=∠CAO. 师:今天我们讲了公式cosθ1·cosθ2=cosθ.能否用这公式来证明这题.(利用这公式来证明这个题,完全是由学生想到的,当然如果有的班学生成绩较差,思路不活,也可做些必要的提示)
生:因为∠PAO是斜线与平面α所成的角,所以可以考虑用公式cosθ1·cosθ2=cosθ.∠PAO相当于θ1;∠PAB=∠PAC它们都相当于θ,由公式可得θ2=θ′2,即∠BAO=∠CAO.
师:今天我们是应用三垂线定理及其逆定理来解这四个例题.例
1、例
2、例4是三个基本题.对这三个题一定要会证、记住、会用.关于这三个题的应用,以后还会在讲课过程中反复出现.在高考题中也曾用到.
作业
课本第33页第13题. 补充题
1.已知:∠BSC=90°,直线SA∩平面BSC=S.∠ASB=∠ASC=60°,求:SA和平面BSC所成角的大小.[45°]
2.已知:AB是平面α的一斜线,B为斜足,AB=a.直线AB与平面α所成的角等于θ,AB在平面α内的射影A1B与平面α内过B
3.已知:P为Rt△ABC所在平面外一点,∠ACB=90°,P到直角顶点C的距离等于24,P到平面ABC的距离等于12,P到AC
4.已知:∠BAC在平面α内,PA是平面α的斜线,∠BAC=60°,∠PAB=∠PAC=45°.PA=a,PO⊥平面α于O.PD⊥AC于D,PE⊥AB于E.求:
(1)PD的长;
课堂教学设计说明
1.如前所述,在学习过三垂线定理及其逆定理以后,教学要达到第二个“高潮”.也就是说要学生在这一学科的学习上攀登上第二个高峰.攀登第二个高峰要比攀登第一个高峰(求异面直线所成的角)要困难得多.因为题型较杂,知识面较广,思路较活.这都给学习造成很大的困难.但是,也正是这种困难才能激发起学生的学习兴趣和积极性.所以我不论是在北京师大二附中还是在北京九十二中教学时都安排了一节新课,三节到四节练习课,采用精讲多练的方法,使学生见到的题型更多,解题的思路更活.使他们比较容易地登上新的高峰,从而使以后的学习较为顺利.
2.在解每一个例题时,如何灵活地应用三垂线定理及其逆定理是我们讲课的重点,也是时刻要把握住的中心环节.特别是一个空间图形有多个平面时,首先要找出“基准平面”,也就是说对于哪一个平面来用三垂线定理或其逆定理,在“基准平面”找出后,再找出“第一垂线”,也就是垂直“基准平面”的直线,然后斜线、射影也就迎刃而解了.
3.在讲练习课时,要讲的例题很多,但一定要讲下述四个基本题:(1)△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC.求证:BC⊥平面PAC.
(2)课本第122页第3题.(3)课本第33页第11题.
(4)正方体的体对角线与其异面的面对角线互相垂直. 因为上述四个基本题和与之对应的基本图形常常包含于某些综合题和与之对应的综合图形之中,并且往往起着决定性作用.因此,在我们解一些综合题时,通过观察和分析,如果发现存在上述情况,就可以将它们化归为上述基本题和与之对应的基本图形去解.这是在解立体几何题时又一重要的化归思想——“综合图形基本化”.(请参看《数学通报》1998年第2期《化归方法与立体几何教学》)
这四个基本题都是应用三垂线定理与其逆定理解题典型.对这四个基本题和与之对应的基本图形,一定要让学生会证、理解、掌握、记住.这样才有可能应用它们来解综合题,这四个基本题是四个台阶,是向上攀登必不可缺的台阶. 4.为了利用公式cosθ1·cosθ2=cosθ来比较θ2与θ的大小,特选三题供老师们选用.
(1)二面角α-AB-β的平面角是锐角,C是α内一点(它不在棱上),点D是C在β内的射影,点E是棱AB上任一点,∠CEB为锐角,求证:∠BEC>∠DEB.
(提示:∠CED相当于θ1,∠DEB相当于θ2,∠CEB相当于θ,θ>θ2)(2)在△ABC中,∠B,∠C是两个锐角,BC在平面α内,AA′⊥平面α于A′,A′ BC上,求证:∠BAC<∠BA′C.
(提示:∠ABA′相当于θ1,∠A′BC相当于θ2,∠ABC相当于θ,因为∠ABC为锐角,所以∠A′BC也为锐角,故 θ>θ2)
·教学目标
知识目标: 掌握勾股定理的几种证明方法,能够熟练地运用勾股定理由直角
三角形的任意两边求得 图
1紧接着再问学生:我们是通过测量的方式发现了直角三角形两直角边的平方和等于斜边的平方或者说两小正方形的面积和大正方形的面积.这种做法往往并不可靠,我们能否证出两直角边为3、4的直角三角形斜边是5.(目的:数学需要合情推理,但也要逻辑证明.通过此问题证明过程,关键是这里渗透了面积法的证明思想.)
三、自主探索、发现新知
为了解决好这个问题我们不妨把图19.2置于方格图中,计算大正方形的面积等于25.于是让学生计算大正方形的面积,但大正方形R的面积不易求出,可引导学生利用网格对大正方形尝试割或补两种方法解决.1(34)243425.方法一:将图2补成图3,则要求正方形的面积为:
2因此直角边分别为3、4的直角三角形斜边是5即324252.1方法二:将图2补成图4,则要求正方形的面积为:434125.2因此直角边分别为3、4直角三角形斜边是5即324252.(目的:在方格图中利用割补的思想通过计算面积的方法证明了直角边分别为3、4的直角三角形斜边是5即324252.为探索一般的直角三角形也有两直角边的平方和等于斜边的平方以及证明它的成立做好铺垫.)
此时老师提出问题:对于这个直角三角形满足两直角边的平方和等于斜边的平方,那么对于任何一个直角三角形都有这种关系吗?
通过以上探索,相信有学生能用文字语言概括猜想出一般的结论:直角三角形两直角边的平方和等于斜边的平方.符号表示为a2b2c2(a、b是直角边,c是斜边.).教师要鼓励这位同学讲的好,敢于猜想是一种难能可贵的数学素养,这位同学用精确的语言叙述了直角三角形三边的关系,那么这一结论是否正确,怎样论证?
(目的:在学生的数学学习过程中,既要学会证明又要学会猜想;既要学会演绎推理又要学会合情推理.鼓励学生在讨论的基础上大胆猜想,能培养学生的探索创新精神.)
老师用多媒体将图2的方格线隐去得图5,设RtACB直角边为a,b
及斜边
c,试证明a2b2c2.通过与学生的合作交流,只要证明出斜边上的正方形的面积,等于两直角边上的正方形的面积和即可.有前面的证明过程,学生可以想到通过割补利用面积法进行证明.这个地方要留够充足的时间让学生讨论交流,证好的同学请上台来解释他是如何证明的.方案一:,用三个与RtACB一样的直角三角形将图5中斜边上的正方形补
1成图6,则Sc2(ab)24ab.化简整理得到a2b2c2.2方案二:用三个与RtACB一样的直角三角形将图5中斜边上的正方形割成1图7,则S=c2(ab)24ab.化简整理得到a2b2c2.Aa-b BC图7 图6
教师介绍:我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦.图7称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的.图19.2.8是在北京召开的2002
年国际数学家大会(ICM-2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.此时,教师极力夸赞学生已成功探索出5000多年前人类历史
上的一个重大发现,真是太伟大了!a2b2c2,这就是赫赫有名的勾股定理(板书课题).接着用多媒体展
示勾股定理的历史.图19.2.8
勾股定理史话
勾股定理从被发现到现在已有五千年的历史.远在公元
前三千年的巴比伦人就知道和应用它了.我国古代也发现了
这个定理.据《周髀算经》记载,商高(公元前1120年)关
于勾股定理已有明确的认识,《周髀算经》中有商高答周公的话:“勾广三,股修四,径隅五.”同书中还有另一位学者陈子(公元前六七世纪)与荣方(公元前六世纪)的一段对话:“求邪(斜)至日者,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得邪至日”(如图所示),即
邪至日=2+股2.这里陈子已不限于“三、四、五”的特殊情形,而是推广到一般情况了.人们对勾股定理的认识,经历过一个从特殊到一般的过程,其特殊情况,在世界很多地区的现存文献中都有记载,很难区分这个定理是谁最先发明的.国外一般认为这个定理是毕达哥拉斯学派(Pythagoras,公元前580~前500)首先发现的,因而称为毕达哥拉斯定理.勾股定理曾引起很多人的兴趣,世界上对这个定理的证明方法很多.1940年卢米斯(E.S.Loomis)专门编辑了一本勾股定理证明的小册子――《毕氏命题》,作者收集了这个著名定理的370种证明,其中包括大画家达•芬奇和美国总统詹姆士••••阿•加菲尔德(James Abram
Garfield,1831~1881)的证法.美国总统詹姆士••阿•加菲尔德的证法如下:
1112S梯形=a+b)=a2abb2,222如图:因为 111S梯形2abc2abc2.222a
b所以a2b2c2.勾股定理是一条古老而又应用十分广泛的定理.例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率.据说4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差.勾股定理以其简单、优美的形式,丰富、深刻的内容,充分反映了自然界的和谐关系.人们对勾股定理一直保持着极高的热情,仅定理的证明就多达四百多种,甚至著名的大物理学家爱因斯坦也给出了一个证明.中国著名数学家华罗庚在谈论到一旦人类遇到了“外星人”,该怎样与他们交谈时,曾建议用一幅反映勾股定理的数形关系图来作为与“外星人”交谈的语言.这充分说明了勾股定理是自然界最本质、最基本的规律之一,而在对这样一个重要规律的发现和应用上,中国人走在了前面.方案三(教师介绍欧几里得证法)证明:证明:在Rt△ABC的三边上向外各作一个正方
形(如图8),作CN⊥DE交AB于M,那么正方形被分成两个矩形.连结CD和KB. ∵由于矩形ADNM和△ADC有公共的底AD和相等的高,∴S矩形ADNM=2S△ADC
又∵正方形ACHK和△ABK有公共的底AK和相等的高,∴S正方形ACHK=2S△ABK
在△ADC和△ABK中
∵AD=AB,AC=AK,∠CAD=∠KAB
∴△ADC≌△ABK
由此可得S矩形ADNM=S正方形ACHK 同理可证
图8
S矩形BENM=S正方形BCGF
∴S正方形ABED=S矩形ADNM+S矩形BENM=S正方形ACHK+S正方形BCGF
即a2b2c2.(目的:在勾股定理的发现过程中,充分鼓励学生不同的拼图方法得出不同的验证方法,帮助学生自主建构新知识.另外要介绍学生所拼的图7就是古代的弦图,也是在北京召开的2002年国际数学家大会的会标,进一步激发学生的成就感.让学生充分体验到探索创新所带来的成功的喜悦.)
四、应用新知、解决问题
例1如图19.2.4,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底端B的距离AB.(精确到0.01米)
解 在Rt△ABC中,∠ABC=90゜,BC=2.16, CA=5.41,根据勾股定理得
ABAC2BC25.4122.16
2≈4.96(米)
答:梯子上端A到墙的底端B的距离约为4.96米.图
19.2.4例2(趣味剪纸)如图两个边长分别为4个单位和
3个单位的正方形连在一起的“L”形纸片,请你剪两刀,再将所得到的图形拼成正方形.(目的:本段内容主要通过教师启发引导,学生共同探究完成,一方面让学生感受解决问题的愉悦与强烈的成就感,培养学生动手能力和学习兴趣以及加强对勾股定理的理解.另一方面让学生知道:(1)勾股定理应用的前提条件(在直角三角形中);(2)已知直角三角形的两边会用勾股定理求第三边.)
五、自我评价、形成知识
⑴这节课我的收获是.⑵我感兴趣的地方是.⑶我想进一步研究的问题是.(目的:通过这几个问题,可以很好的揭示学生新建立的不同的认知结构,也体现了不同的人学数学有不同的收获.把学习的权利交给学生,使学生体验做数学的乐趣.同时,把探究阵地从课堂延伸到课外,有利于充分挖掘学生的潜能.)
六、作业
⑴课本P104习题19.2 1,2,3⑵通过上网,搜索有关勾股定理的知识:如(1)勾股定理的历史;(2)勾股定
理的证明方法;(3)勾股定理在实际生活中的应用等.然后写一篇以勾股定理为
主题的小论文.(目的:巩固勾股定理,进一步体会定理与实际生活的联系.促进学生学知识,用知识的意识.新课程标准提倡课题学习(研究性学习),通过课题学习与研究更多地把数学与社会生活和其他学科知识联系起来,使学生进一步体会不同的数学知识以及数学与外界之间的联系,初步学习研究问题的方法,提高学生的实践能力和创新意识.)
· 关于教学设计的几点说明:
1、这节课是定理课,针对八年级学生的知识结构和心理特征,本节课我准备以“问题情境-----实验、猜测-----验证、证明----实际应用”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论.让学生经历知识的发生、形成与应用的过程,从而更好地理解数学知识的意义.让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想;
2、由于学生的个体差异表现为认知方式与思维策略的的不同,以及认知水平和学习能力的差异,所以在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平.在学生回答时,我通过语言、目光、动作给予鼓励与赞许,发挥评价的积极功能;
3、探索定理采用了面积法,通过用割补两种方法对直角边为3、4这一特殊直角三角形的斜边上的正方形的面积的计算,得到此直角三角形的两直角边的平方和等于斜边的平方.由此自然的过渡到对一般直角三角形三边关系的研究,当然也自然的用此方法证明了勾股定理.这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用;
本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析
本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。具体内容是运用勾股定理及其逆定理解决简单的实际问题。当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:
1.通过观察图形,探索图形间的关系,发展学生的空间观念.
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点.
四、教法学法
1.教学方法
引导—探究—归纳
本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,顺势教学过程;
(3)利用探索研究手段,通过思维深入,领悟教学过程.
2.课前准备
教具:教材、电脑、多媒体课件.
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具.
五、教学过程分析
本节课设计了七个环节.第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业.
1.3勾股定理的应用:课后练习
一、问题引入:
1、勾股定理:直角三角形两直角边的________等于________。如果用a,b和c表示直角三角形的两直角边和斜边,那么________。
2、勾股定理逆定理:如果三角形三边长a,b,c满足________,那么这个三角形是直角三角形
1.3勾股定理的应用:同步检测
1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( )
A.0.7米B.0.8米C.0.9米D.1.0米
2.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米.小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个( )
A.锐角弯B.钝角弯C.直角弯D.不能确定
3.如图,是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15
4.一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组.
一、大量留白,给足空间
学案是教师将学习理论、教学理论与自己的教育教学实践相结合的产物,它的设计与编制,应有利于学生的学习。在刚开始使用的过程中,我们往往把整个教学过程都体现其上,辅以大量的例、习题。这样的学案,让学生失去了探索新知的兴趣,更谈不上创新。笔者在设计《勾股定理逆定理》一课的学案时,从定理的发现、验证、应用、归纳等环节都大量留白,给学生充分的自主学习空间。
活动二:请从3cm、4cm、5cm;2.5cm、6cm、6.5cm;4cm、7.5cm、8.5cm这三组数据中任选一组为三边画一个三角形,猜想图形形状,并尝试验证你的猜想。
活动三:
1.判断由线段 a,b,c 组成的三角形。
(1)a=7,b=24,c=25; (2)a=13,b=14,c=15
⑶a:b:c=5:12:13
2.一个零件的形状如图1所示,按规定这个零件中∠A和∠DBC都应为直角。工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?
变题:四边形ABCD各边长度如图2所示,请你添加一个条件______并求_______。
3.已知如图3,在平面直角坐标系中,A (-1,-3),OB=,OB与x轴所夹锐角是45°。
你能发现新的问题并解决吗?
学案的大量留白,使得学生在课堂中充满了疑惑。为了解决疑惑,他们主动进行思考、小组合作,充分参与学习的全过程,从而体验获得知识、探究知识和提升能力的快乐,保证了学习质量,提高了课堂教学的有效性。
二、回归教材,以本为本
阅读不只是文科的专利,数学的学习同样需要阅读。只有会读题,学生才能从中获取相应的信息,进而利用数学知识解答问题,而数学课本则是培养阅读能力的基本素材。在长期使用学案的过程中,笔者发现,学生将书本视为可有可无之物,偶而翻翻也是为了完成书上的习题。这就导致学生数学阅读能力的下降,具体表现在面对信息量大的题目时云里雾里,抓不住重点,而在老师点拨后恍然大悟。笔者在设计《勾股定理逆定理》一课的学案时,故意将互逆命题、互逆定理的知识省略不讲,在学生学会运用新知后让他们回归书本,通过阅读发现这个知识点,进而对所学新知进行再认识,通过对比与勾股定理的关系自我认识、自我归纳,这个知识点的生成也就水到渠成。
活动四:比较勾股定理及本节课所学知识,阅读书本31-32页,你还有新的发现吗?
在回归书本的过程中,学生读到了本节课的知识内容、解决方法、课本“示例”答题。这不仅培养了学生的阅读能力、分析能力,还能够帮助学生养成规范答题的好习惯。同时,在阅读的过程中,学生也会自觉地梳理本节知识,掌握学习方法,从而将课本内容内化为自己的认知结构,提升了解决问题的能力。
三、目标后置,悬而得解
学习目标是学习的出发点,也是学习的归宿,是学生通过学习最终实现的目的。确立具体明确的学习目标是每位学生的首要学习任务。目标越明确、越切合自己的实际情况,其学习行动的每一次努力越能够获得成功。在以往的学案中,总是在学案的开端给出学习目标,再让学生根据目标进行学习。而本节课,由于教学内容与学生已有的勾股定理知识相辅相成,除数学知识外,所经历的数学活动、基本的数学思想方法和必要的应用技能均与上节的内容相类似,所以笔者将学习目标与归纳小结合二为一,放置在学案的末尾。
活动六:
【学习目标】
1.了解和的概念;2.会应用判断;3.能灵活应用,在应用中培养建模能力,学会与同学交流、合作并大胆展示。
【学习重点】掌握及灵活运用。
【学习难点】的证明和在问题情境中发现新问题的能力。
学习目标后置,既充分保护了学生对新知的好奇心与求知欲,从而使其积极参与到本节课的各个学习环节中去,又能使学生在完成新知学习的基础上,通过获得的成功体验来自我检验达目标成的情况,有助于树立学习数学的自信心。
结语
把12段同样长的绳子连成环状,拉直点B到点C之间的5段绳子,然后在点A处将绳子拉紧,则∠BAC为直角. 你能说明其中的道理吗?
初读问题时,觉得不可思议,用一根绳子怎么能一定得到直角呢?后来仔细看看条件,发现原来这个三角形的三边分别是3、4、5,从而利用勾股定理的逆定理可以证明∠BAC为直角. 数学真是奇妙!
老师在点评时,却说这个应用早在几千年前的古埃及人就掌握了,说是约五千年前金字塔的建造离不开确定直角这个基本问题,而当时并没有现代化社会中大量先进的工具. 听到这些,我更感到惊讶了.
回到家后,我在网上检索到如下的信息:
埃及是几何学的发源地,埃及的“拉绳者”就是测量员,他们利用有结的绳子进行测量,两结之间的距离都是一样的,比如说都是1米. 他们可以利用一条12米的绳子拉出一个直角三角形来. 这条绳子算上首尾的结共有13个结,这样,把第一个结同第13个结连在一起,用桩子固定下来,然后再把第4个结同第8个结也分别用桩子固定,同时绷紧绳子. 这三个桩子构成边长分别为3米、4米、5米的三角形,而两短边形成直角(如图所示).
根据现有的材料推测,埃及人可能只是考虑实用的目的,而对进一步研究不感兴趣.
原来老师说的都是真的,教材上却没有告诉我们这是埃及人最早的发明,可见很多数学性质都有久远的历史,需要我们去查询了解.
但是,我们是否就能据此说古埃及人知道勾股定理的逆定理呢?我觉得他们是知道的,但又没有系统论述,只是满足于实用. 因为,印度人也考虑过直角三角形,他们比埃及人进了一步,得出了满足a2+b2=c2的三整数组(a,b,c),在西方称为毕达哥拉斯三数组,我们的教材上称之为勾股数. 印度人发现的新的勾股数组还有12,16,20; 15,20,25;5,12,13; 15,36,39;8,15,17;12,35,37.
不过,他们也没有进一步的结果.
在现有材料中最令人吃惊的是,公元前两千年左右的巴比伦的泥板文书上有着许多勾股数组(见表,也即教材第84页表格),其中有的数很大,表明他们也许已掌握了一般的规律.
这样来看,说古埃及人知道严格的勾股定理逆定理还真不好回答. 也许这就是数学,这就是我们对真理的认识和学习.
教师点评:这是一篇富有思辨的数学习作,小作者从教材上一个练习和老师的链接式讲评出发,到网上链接式检索与学习,穷追探源,发现了勾股数组更多的史话,并且富含思辨地提出了“古埃及人是否知道勾股定理逆定理”这样的难解之题. 教学相长,老师也跟着学习了!
知识与技能:
了解勾股定理的一些证明方法,会简单应用勾股定理解决问题
过程与方法:
在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。
情感态度价值观:
通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。
教学过程
1、创设情境
问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?
师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。
设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。
2、探究勾股定理
观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界
问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?
师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论
追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?
师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。
设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论
问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。
对直角三角形的特殊性质全面进行总结。让学生回顾本章的知识,同时重温这些知识尤其是勾股定理的获得和验证的过程,在勾股定理及其逆定理应用过程中,体会各种数学思想方法的应用。了解勾股定理的历史。能力训练要求
体会在结论获得和验证过程中的数形结合的思想方法。
在回顾与思考的过程中,提高学生分析问题、解决问题的能力,鼓励学生要善于思考、善于创新。
情感与价值观要求
在反思和交流的过程中,体验学习带来的无尽乐趣。
通过对勾股定理历史的了解,培养学生的爱国主义精神,体验科学给人类带来的力量。教学重点
回顾并思考勾股定理及其逆定理的获得和验证过程;总结直角三角形边、角之间分别存在的关系。
在勾股定理及其逆定理应用过程中,体会各种数学思想方法。教学难点
在勾股定理及其逆定理应用过程中,体会各种数学思想方法。建立本章的知识框架图。教学方法
交流与反思-----合作与探究 教具准备 无
教学过程
创设情境,导入新课 活动一:展示两幅图片,第一幅图片为2002年在我国北京召开的第24届国际数学家大会的场景,值得一提的是这次大会的会徽,为著名的赵爽弦图。
第二幅图片为我国著名数学家华罗庚教授提议的向宇宙发射的勾股定理的图形,用来与外星人联系。我国著名数学家华罗庚曾经说过:“把勾股定理送到外星球,与外星人进行数学交流”。
勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,在数学的发展中起着重要作用,在现实世界中有着广泛的应用。勾股定理的发现、验证及应用的过程蕴含了丰富的文化价值。这节课,我们将通过回顾与思考中的几个问题更进一步了解勾股定理的历史和它的广泛应用。
设计意图:这样的导入富有科学特色和浓郁的数学气息,激起学生强烈的兴趣和求知欲。
二、反思交流,探求新知,:
一、议一议:
1、直角三角形的边、角之间分别存在什么关系? ⑴在△ABC中,∠C=90º,a,b,c为三角形的三边,则 角与角之间的关系:∠A+∠B=90º 边与边之间的关系:a2 + b2 = c2 ⑵在△ABC中,a,b,c为三角形的三边,如果∠A+∠B=90º,则三角形为直角三角形。a2 + b2 = c2则三角形为直角三角形。
活动三:回顾勾股定理及直角三角形的判别条件
如果直角三角形两直角边分别为a,b,斜边为c,那么a2 + b2 = c2 即直角三角形两直角边的平方和等于斜边的平方。
直角三角形的判别条件:如果三角形的三边长a,b,c满足a2 +b2=c2,那么这个三角形是直角三角形。
满足a2 +b2=c2的三个正整数,称为勾股数
游戏:叫一列学生玩常见勾股数的接龙游戏。3、4、5;6、8、10;9、12、15;15、20、25;5、12、13;8、15、17;7、24、25;9、40、41等。
二、方格纸中勾股定理的验证
方法一:分割为四个直角三角形和一个小正方形。
方法二:补成大正方形,用大正方形的面积减去四个直角三角形的面积。
方法三:将几个小块拼成一个正方形,如图中两块红色(或绿色)可拼成一个小正方形。方法四:利用皮克公式
正方形周边上的格点数a=12,正方形内部的格点数b=13,所以,正方形C的面积为:S=1/2a+b-1.三、史话勾股定理的证明
1、三国时期数学家赵爽在为《周髀算经》作注时,创制了一幅“勾股圆方图”,也称为“弦图”,这是我国对勾股定理最早的证明.它用几何图形来证明代数式之间的恒等关系,体现了以形证数、形数统一、代数和几何的紧密结合.2、传说古希腊的毕达哥拉斯用下面的两个图形证明了勾股定理,你能直接观察验证勾股定理吗?
活动:通过本章的学习,你还知道勾股定理的哪些证明方法?请同学们介绍。
1、美国总统伽菲尔德的证明.他的方法直观、简捷、易懂、明了。
2、刘徽的“青朱出入图”,证明不需用任何数学符号和文字,更不需进行运算,隐含在图中的勾股定理便清晰地呈现,整个证明单靠移动几块图形而得出,被称为“无字证明”.3、著名画家达芬奇的证明 同学们,通过了解勾股定理的历史,我们感受到古代数学家的伟大成就和勾股定理丰富的文化价值,希望同学们在今后的学习中善于探索,善于创新,并且把这些成就发扬光大。
四、欣赏美丽的勾股树,感受数学图形之美,创造之美。
五、拓展与应用勾股定理中的思想方法 数学思想方法是解决数学问题的灵魂.正解的运用数学思想方法也是成功解题的关键.尤其是在运用勾股定理解题时,更应注重思想方法的运用,那么你知道运用勾股定理解题应注重哪些思想方法呢?为了帮助同学们能清楚地知道这一问题,现就常用的思想方法举例说明,供同学们学习时参考. 类型之
一、分类讨论思想
已知一个直角三角形的两边长是和,求第三边的长. 分析 已知一个直角三角形的两边长,并没有指明是直角边还是斜边,因此要分类讨论. 解 当和是两条直角边时,则利用勾股定理求得第三条边即斜边是=5;当是直角边,是斜边时,仍由勾股定理求得另一条直角边是㎝.
说明 求解本题许多同学往往受勾3股4弦5的思维定势,而误认为和就是直角三角形的两条直角边,斜边当然是了,从而漏掉一解导致错误. 构造直角三角形解题
类型之二转化思想台阶中的最值问题
空间图形的距离最短问题是勾股定理在实际生活中的具体应用,一般地求距离最短问题要把“立体图形”转化为“平面图形”,再利用“两点之间线段最短”,以及“勾股定理”等知识来解决问题,这类问题涉及的几何体主要有长方体、正方体、圆柱等。
1、台阶中的最值问题
如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物。请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少? 解:台阶展开成平面如图所示,连接AB 因为BC=3×3+1×3=12,AC=5,所以AB2=AC2+BC2=169,AB=13㎝,所以蚂蚁爬行的最短路线为13㎝。B 类型之三方程思想
3、如图,在波平如镜的湖面上,有一朵美丽的红莲,它高出水面3尺。突然,一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少? 分析:由题意,我们知在图1-1中为AB湖水的深度,AC为荷花的长,△ABC为直角三角形. 解:设水深为x尺,则荷花的长为(x+3)尺,由勾股定理得: 62+ x2=(x+3)2
解得:x=4.5,所以这个湖的水深为4.5尺. 类型之四数形结合思想
应用勾股定理及其逆用解决有关航海问题的应用题,首先要能从实际问题中抽象出数学模型,画出图形,结合其他知识求出直角三角形的未知边或相关的量。
例如:甲、乙两船从港口A同时出发,甲船以30海里/小时的速度向北偏东35°的方向航行,乙船以40海里/小时的速度另一个方向航行,2小时后,甲船达到C岛,乙船到达B岛。若两岛相距100海里,问:乙船航行的方向是南偏东多少度? 解:如图所示,在△ABC中,因为AC=2 × 30=60,AB=2 × 40=80,BC=100,所以AC2+BC2=602+802=3600+6400=10000=1002=BC2,所以△ABC是直角三角形,且∠BAC=90°.由于180°-35°- 90°= 55°,所以乙船航行的方向是南偏东55 °。
六、跟踪练习
1、已知一个Rt△ABC的两边长分别为3和4,则第三边长的平方是
2、有一个圆柱,它的高等于13厘米,底面半径等于3厘米.一只蚂蚁从距底面1米的A点爬行到对角B点处去食物,需要爬行的最短路程是多少?(π的值取3).解:将圆柱的侧面展开成平面图形,连接AB 因为AC=13-1=12㎝,BC=3×3=9㎝,所以AB2=AC2+BC2=225,AB=15㎝,所以蚂蚁爬行的最短路线为15㎝。
七、感悟与收获
1、通过这节课的学习活动你有哪些收获?
2、通过本节课的学习,你获得了那些数学思想和方法?
3、学习过程中你还有什么困惑?
八、分层作业 必做题:
1、课本第16页复习题
3,4,5
B组1
2、独立完成一份小结,用自己的语言梳理本章的内容。选做题:
【勾股定理的逆定理教案】推荐阅读:
动能定理的应用教案02-12
勾股定理教案教案10-29
勾股定理教案一06-25
动能定理教案大学09-26
正弦余弦定理教案11-01
余弦定理教学教案12-14
三角形的内角和定理教案09-14
北师大勾股定理教案02-15
命题、定理和证明教案04-08
教案三垂线定理10-02