6.1 二元函数的极限与连续

2024-06-29 版权声明 我要投稿

6.1 二元函数的极限与连续(通用4篇)

6.1 二元函数的极限与连续 篇1

定义 设二元函数有意义, 若存在 常数A,都有

则称A是函数

当点

趋于点

或 或趋于点

时的极限,记作

。的方式无关,即不,当

(即)时,在点的某邻域

内 或 必须注意这个极限值与点论P以什么方

向和路径(也可是跳跃式地,忽上忽下地)趋向分接近, 就能 使

。只要P与 充与A 接近到预先任意指定的程度。注意:点P趋于点点方式可有无穷多

种,比一元函数仅有左,右两个单侧极限要复杂的多(图8-7)。

图8-7

同样我们可用归结原则,若发现点P按两个特殊的路径趋于点时,极限

在该点

存在,但不相等, 则可以判定元函数极限不 存在的重要方法之一。

极限不存在。这是判断多 一元函数极限中除了单调有界定理外,其余的有关性质和结论, 在二元函数极

限理论中都适用,在这里就不一一赘述了。例如

有, 其中。

求多元函数的极限, 一般都是转化为一元函数的极限来求, 或利用夹逼定理

来计算。例4 求。

解由于 , 而,根据夹逼定理知

,所以。

a≠0)。

解 例5 求

(。例6 求。解

由于理知

且,所以根据夹逼定

.例7 研究函数在点处极限是否存在。

解 当x2+y2≠0时,我们研究函数,沿x→0,y=kx→0这一方式趋于

(0,0)的极限,有值,可得到不同的极 限值,所以极限

不存在,但 ,。很显然,对于不同的k。注意:极限方式的 的区别, 前面两个求本质是两次求一元函数的极限, 我们称为累次极限, 而最后一个是求二元函数的

极限,我们称为求二重极限。

例8 设函数极限都不存在,因 为对任何,当

时,。它关于原点的两个累次

的第二项不存在极限;同理对任何 时, 的第 一项也不存在极限,但是因此。

由例7知, 两次累次极限存在, 但二重极限不存在。由例8可知,二重极限存

在,但二个累次极限不存在。我们有下面的结果: 定理1 若累次极限都存在,则

三者相等(证明略)。推论 若但不相等,则二重极限

存在和二重极限, 由于, 存在。定义 设

在点的某邻域内有意义,且称函数,则

在点

续,记

上式称为函数(值)的全增量。则。

定义

增量。

为函数(值)对x的偏二元函数连续的定义可写为

偏增量。若断点, 若

在点

为函数(值)对y的处不连续,则称点

是的间在某区域

在区域G上连续。若

在闭区域GG上每一点都连续,则称的每一内点都连 续,并在G的连界点

处成立 , 则称为连续曲面。在闭域G上连续。闭域上连续的二元函数的图形称 关于一元函数连续的有关性质, 如最值定理、介值定理、Cantor定理,对于

二元函数也相应成立。可以证明如下的重要结果:

定理2 设

在平面有界闭区域G上连续,则(1)必在G上取到最大值,最小值及其中间的一切值;(2),当

时,都有

。以上关于二元函数的在G上一致连续,即

一、多元函数、极限与连续解读 篇2

一定法则总有确定的值与它对应,则称 是变量 x、y 的二元函数(或点 P 的函数),记为

(或),点集 D 为该函数的定义域,x、y 为自

为该函数值域。由此变量,为因变量,数集也可定义三元函数以及三元以上的函数。二元函数的图形通常是一张曲面。例如 面。

㈡二元函数的极限

⒈设函数 f(x,y)在开区域(或闭区域)D 内有定义,是 D 的内点或边界点,如果对于任意给定的正数,总存在正数,使得对于适合不等式,都有 的一切点

是球心在原点,半径为 1 的上半球

成立,则称常数 A 为函数f(x,y)当

或 , 这里 时的极限,记作

。为了区别一元函数的极限,我们把二元函数的极限叫做二重极限。⒉注意:二重极限存在是指 都无限接近A。因此,如果条定直线或定曲线趋于

沿任意路径趋于,函数

沿某一特殊路径,例如沿着一时,即使函数无限接近于某一确定值,我们也不能由此判定函数的极限存在。

㈢多元函数的连续性 .定义:设函数 f(x,y)在开区间(或闭区间)D 内有定义,是 D 的内点或边界点且

。如果

连续。如果函,则称函数 f(x,y)在点

数 f(x,y)在开区间(或闭区间)D 内的每一点连续,那么就称函数 f(x,y)在 D 内连续,或者称 f(x,y)是 D 内的连续函数。2 .性质

⑴一切多元初等函数在其定义域内是连续的;

⑵在有界闭区域 D 上的多元连续函数,在 D 上一定有最大值和最小值;

⑶在有界闭区域 D 上的多元连续函数,如果在 D 上取两个不同的函数值,则它在 D 上取得介于这两 个值之间的任何值至少一次;

⑷在有界闭区域 D 上的多元连续函数必定在 D 上一致连续。

二、偏导数和全微分 ㈠偏导数

⒈偏导数定义:设函数

在点 的某一邻域内有定义,时,相应地函数有增量

存在,则称此极限为

处对 的偏导数,记作,当 固定 在而 在处有增量,如果函数

或 类似,函数 在点

在点

处对 的偏导数定义为,记作

际中求,或。在实的偏导数,并不需要用新的方法,因为这里只有一个自变量在变动,另一个自变量是看作固定的,所以求 时只要将暂时看作常量而对 求导数;求 时,则只要将 暂时看作常量而对 求导数。偏导数可以推广到二元以上的函数 注意:对于一元函数来说 可以看作函数的微分 分 之商,而偏导数的记

与自变量微号是一个整体符号,不能看作分母与分子之商。⒉偏导数的几何意义:设 过 做平面,截此曲面得一曲线,此曲线在平面,则导数

上的方程为

为曲面

上的一点,即偏导数

对 轴的 斜率。同样,偏导数 截得的曲线在点 的切线

处,就是这曲线在点 处的切线 的几何意义是曲面被平面 所对 轴的斜率。

在区域 D 内具有偏导数,都是,⒊高阶偏导数:设函数,那么在 D 内 的函数,如果这两个函数的偏导数也存在,则称它们是函数 的二阶偏导数。按照对变量求导次序的不同有以下四个二阶偏导数: ,。二阶及二阶以上的偏导数统称为高阶偏导数。

定理:如果函数 的两个二阶混合偏导数 及 在区域 D 内连续,那么在该区域内这两个二阶混合偏导数必相等。(即二阶混合偏导数在连续的条件下与求导的次序无关。)㈡全微分

⒈全微分定义:如果函数

可表示为

赖于、而仅与、有关,在点

可微分,而

在点 的全增量,其中 A、B 不依,则称函数

为函数

在点 的全微分,记作,即。如果函数在区域 D 内各点都可微分,那么称这函数在 D 内可微分。定理 1(必要条件):如果函数 函数在点 的偏导数

在点 的全微分为 在点

可微分,则该必定存在,且函数

。定理2(充分条件):如果函数续,则函数在该点可微分。的偏导数 在点 连以上关于二元函数全微分的定义及可微分的必要条件和充分条件,可以完全类似地推广到三元和三元以上的多元函数。习惯上将自变量的增量、分别记作、;并分别称为自变量的微分,则函数 的全微分可表示为 分等于它的两个偏微分之和

这件事称为二元函数的微分符合叠加原理。叠加原理也适用于二元以上的函数的情形。

三、多元复合函数的求导法则 ㈠复合函数的全导数:如果函数 函数 在对应点

在点 可导,且

都在点 可导。通常将二元函数的全微具有连续偏导数,则复合函数 其导数可用下列公式计算:。此定理可推广到中间变量多余两个的情况,例如,,则,其中 称为全导数。上述定理还可推广

到中间变量不是一元函数而是多元函数的情形。㈡复合函数的偏导数 : 设 则

可微,函数,对,并且,的复合函数。如果 的偏导数存在,则 复合函数

对 的偏导数存在,且

㈢全微分形式的不变性 : 设函数 则有全微分 果、又是,如 的函数、具有连续偏导数,且这两个函数也具有连续偏导数,则复合 函数 的全微分为

由此可见,无论 是自变量、的函数或中间变量、的函数,它的全微分形式是一样的,这个性质叫做全微分形式不变性。

四、隐函数的求导公式 ㈠、一个方程的情形 隐函数存在定理 1 :设函数 有连续的偏导数,且,内恒能

唯一确定一个单值连续且具有连续偏导数的函数,它满,则方程

在点 的某一邻域

在点 的某一邻域内具 足条件,并有

隐函数存在定理 2 :设函数 具有连续的偏导数,且,一邻域

内恒能唯一确定一个单值连续且具有连续偏导数的函数,它满足条件,则方程

在点 的某

在点 的某一邻域内,并有

㈡、方程组的情况 隐函数存在定理 3 :设 某一邻域内、在点 的具有对各个变量的连续偏导数,又,且,偏导数所组成的函数行列式(或称雅可比(Jacobi)行列式):

在点 点 不等于零,则方程组,在的某一邻域内恒能唯一确定一组单值连续且具有连续偏导数的函数,它们满足条件,并有,,五、方向导数、梯度 ㈠、方向导数 1、定义:设函数

在点 的某一邻域 内有定义,自点 P 引射线。设轴正向到射线 的转角为 , 并设

为 上的另一点,且

。我们考虑函数的增量 的比

与 和 两点间的距离

值。当 沿着 趋于 时,如果这个比的极限存在,则称这极限为函数 在点沿着方向的方向导数,记作,即。、定理:如果函数 在点 是可微分的,那么函数,在该点沿任一方向 的方向导数都存在,且有 其中 为 x 轴到方向 的转角。上述定义也可推广到三元函数 着方向(设方向 的方向角为,其中,它在空间一点

沿)的方向导数可以定义为,如果函数在所考虑的点处可微,则函数在该点沿着方向 的方向导数为

㈡、梯度、定义(二元函数的情形):设函数 内具有一阶连续偏导数,则对于每一点量,这个向量称为函数,即,在点

在平面区域 D,都可定出一个向的梯度,记作,由梯度的定义可知,梯度的模为: 当 不为零时,x 轴到梯度的转角的正切为 2、与方向导数的关系:如果设

是与方向 同方向的单位向量,则由方向导数的计算公式可知:

由此可知,就是梯度在 上的投影,当方向 与梯度的方向一致时,有,从而 有最大值。所以沿梯度方向的方向导数达最大值,也就是说,梯度的方向是函数

在该点增长最快的方向,因此,函数在某点的梯度的方向与取得最大方向导数的方向一致,而它的模为方向导数的最大值。※上述所讲的梯度的概念也可推广到三元函数的情况。设函数 续偏导数,则对于每一点,这个向量称为函数

六、多元函数的泰勒公式、极值和几何应用 ㈠、二元函数的泰勒公式 定理:设 的连续偏导数,在点 的某一邻域内连续且有直到

在空间区域 G 内具有一阶连,都可定出一个向量

在点 的梯度,即 为此邻域内任一点,则有

一般地,记号 表示

设,则上式可表示为

⑴,公式⑴称为二元函数

在点的n阶泰勒公式,而的表达式为拉格朗日型余项。在泰勒公式⑴中,如果取 公式,则⑴式成为 n 阶麦克劳林

㈡、多元函数的极值 定理 1(必要条件):设函数 数,且在点

在点(,)具有偏导(,)处有极值,则它在该点的偏导数必然为零:

定理 2(充分条件): 设函数 内连续且

有一阶及二阶连续偏导数,又)=A,(,)=B,(,)=C, 则 f(x,y)在(,)处是否取得极值的条件如下:,令

(,,在点(,)的某邻域⑴ AC->0 时具有极值,且当 A<0 时有极大值,当 A>0 时有极小值;

⑵ AC-<0 时没有极值;

⑶ AC-=0 时可能有极值,也可能没有极值,还需另作讨论。㈢、几何应用、空间曲线的切线和法平面: ⑴设空间曲线 的参数方程为 在曲线上取相应于 的一点,这里假设 解析几何中有,假设三个函数都可导,则曲线在点 M 处的切线方程为

均不为零。如果有个别为零,则应按空间关直线的对称式方程来理解。切线的方向向量成为曲线的切向量。向量

就是曲线 在点 M 处的一个切向量。

⑵通过点 M 而与切线垂直的平面称为曲线 在点 M 处的法平面,它是通过点

而与 T 为法向量的平面,因此方程为。

⑶若空间曲线 的方程以 为: 的形式给出 , 则切线方程,其中分母中带下标 0 的行列式表示

行列式在点 的值;曲线在点

处的法平面方程为 的值;曲线在点 处的法平面方程为、曲面的切平面和法线 ⑴若曲面方程为 M 处的

切平面的方程为:

;,是曲面上一点,则曲面在点

法线方程为: ⑵若曲面方程为,则切平面方程为

高数课件-函数极限和连续 篇3

1,是非题

(1)无界变量不一定是无穷大量

()(2)若limf(x)a,则f(x)在x0处必有定义

()

xx012x(3)极限lim2sinxlimx0

()

xx33x2,选择题

(1)当x0时,无穷小量1x1x是x的()A.等价无穷小

B.同阶但不等价

C.高阶无穷小

D.低价无穷小

x11x0(2)设函数f(x),则x0是f(x)的()x0x0A.可去间断点 B.无穷间断点

C 连续点

D 跳跃间断点

exx0(3)设函数f(x),要使f(x)在x0处连续,则a

()axx0A.2

B 1

C 0

D 1

3n25n1

()(4)lim2n6n3n2A 151

B 

C 

D  2321xsinx0x(5)设f(x),则在x0处f(x)

()

1sinx1x0xA 有定义

B 有极限

C 连续

D左连续

3(6)x1是函数yx1的()x1A 可去间断点

B 无穷间断点

C 连续

D跳跃间断点

3.求下列极限

(1)limxxsinxsin(2x)x23

(2)lim

(3)lim

x0x12xln(12x)x1e2x1(4)lim

(5)limn[ln(1n)lnn]

(6)lim(sinn1sinn)

nnx0x2x3x2(sinx3)tanx2lim()(7)lim

(8)

(9)limx(x1x)x2x1x01cosx2xcosxcosaarctanxexex0(10)lim

(11)lim

(12)lim

xaxxx0xxxax0x232x21sin(x1))(13)lim

(14)lim(2

xx1x1x24,求满足下列条件的a,b的值

1x2xab

(2)lim(3xax2x1)(1)limxx26x2tanaxx0axb2

(4)已知f(x)x(3)lim且limf(x)存在

x0x1x2x2x0x122(5)已知f(x)xaxb1x1在(,)内连续

2x1sin2xe2ax1x0(6)函数f(x)在x0点连续 xax05.求下列函数的间断点并判断其类型

x1x11cosxx21(1)y2

(2)y

(3)f(x)

sinxx3x23xx11x0x(4)f(x)ex1

(5)y

tanxln(1x)1x026.已知x1时,xax5x1是同阶无穷小,求a

7.证明方程x4x20在区间(1,2)内至少有一个根 8.当x0时,eln(1x)1与x是同阶无穷小,求n 9.设函数f(x)a,(a0,a1),求limxxn41ln[f(1)f(2)f(n)]

6.1 二元函数的极限与连续 篇4

2016考研数学大纲解析及复习重点--函

数、极限、连续

9月18日这个在中国历史上成为转折点的一天,同样也为2016年参加考研的同学带来了重磅消息—2016年考研大纲正式发布,下面凯程教育数学教研室老师就按章节来分析大纲的要求以及复习该章节的重点:

一、大纲要求:函数、极限、连续

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、复习重点

本部分重点是极限,前后内容交叉多,综合性强,主要有两个出题点,一个是计算极限,一个是对极限的定义的考查。主要求极限的方法有:

利用极限的四则运算法则、幂指函数运算、连续函数代入法

利用两个重要极限求极限

利用洛必达法则

利用等价无穷小

极限存在准则:夹逼准则,单调有界准则

利用左右极限求分段函数分段点

利用导数定义

利用定积分定义

利用泰勒公式求极限

通过与2015年的数学一大纲比较,今年没有做任何调整,同学们按照原计划复习,夯实基础,把握重点,重视总结、归纳解题思路、方法和技巧,提高解题计算能力必能在2016

凯程考研辅导班,中国最强的考研辅导机构 的考试中创造辉煌。最后祝同学们,金榜题名。

2016考研数学考试大纲对比—高等数学(数二)

大家翘首以待的2016年考研数学大纲终于出炉,凯程教育数学教研室第一时间为各位考生权威、详尽解析大纲变化、预测命题趋势,从而有的放矢地提供备考指导,以帮助同学们快速了解、把握今年的考试方向、复习重点,选择适合的复习方法和策略,以利于同学们在今后复习中,高效学习,取得好成绩。

在逐字逐句的比对后,发现2016年考研数学二大纲与2015年相比,没有发生任何变化,经历了多年统考实践,考研数学的考试内容已趋于完善,因此,相应的考试大纲今年也没有发生变化。考生可以通过研究真题来揣摩命题者的出题规律,从而把握今年命题的思路和趋势,按部就班的进行分析复习,增加复习备考的针对性和有效性。尽管2016年考研数学大纲没有变动,但是仍然需要考生提高横向、纵向梳理考点的能力,只有这样才能拿到高分,所以考生仍然需要扎实备考。

下面我们就看看今年数学二高等数学部分的大纲要求:

一、函数、极限、连续

1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时,的图形是凹的;当 时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会

凯程考研辅导班,中国最强的考研辅导机构

描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学

1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学

1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程

上一篇:患者丢失应急预案下一篇:北京高考0分作文